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Abstract  

    In this paper, a new technique is applied to modified treatment of initial boundary value problems for 

one dimensional heat-like and wave-like partial differential equations (ordinary or fractional) by mixed 

initial and boundary conditions together to obtain a new initial solution at every iteration using 

Adomian decomposition method (ADM). The structure of a new successive initial solutions can give a 

more accurate solution in a first step. 
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1. Introduction 

    Many researchers discussed the initial and boundary value problems. The Adomian decomposition 

method discussed for solving higher dimensional initial boundary value problems by Wazwaz [2000]. 

Analytic treatment for variable coefficient fourth-order parabolic partial differential equations 

discussed by Wazwaz [2001]. The solution of fractional heat-like and wave-like equations with 

variable coefficients using the decomposition method was found by Momani [2005] and so as by using 

variational iteration method was found by Yulita Molliq et.al [2009]. Solving higher dimensional initial 
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boundary value problems by variational iteration decomposition method by Noor and Mohyud-Din 

[2008]. Exact and numerical solutions for non-linear Burger's equation by variational iteration method 

was applied by Biazar and Aminikhah [2009]. Weighted algorithm based on the homotopy analysis 

method is applied to inverse heat conduction problems and discussed by Shidfar and Molabahrami 

[2010]. The boundary value problems was applied by Niu and Wang [2010] to calculate a one step 

optimal homotopy analysis method for linear and nonlinear differential equations with boundary 

conditions only, and homotopy perturbation technique for solving two-point boundary value problems–

compared it with other methods was discussed by Chun and Sakthivel [2010]. Fractional differential 

equations with initial boundary conditions by modified Riemann–Liouville derivative was solved by 

Wu and Lee [2010]. 

    It is interesting to point out that all these researchers obtained the solutions of initial and boundary 

value problems by using either initial or boundary conditions only. So we present a reliable framework 

by applying a new technique for treatment initial and boundary value problems by mixed initial 

conditions with boundary conditions together to obtain a new initial solution at every iteration using 

variational iteration method. Such as technique was applied by Ali [2011] for treatment of initial 

boundary value problems. In this paper, a new technique is applied to modified treatment of initial 

boundary value problems for one dimensional heat-like and wave-like partial differential equations 

(ordinary or fractional) to construct a new successive initial solutions which can give a more accurate 

solution by Adomian decomposition method, some examples are given in this  paper to illustrate the 

effectiveness and convenience of this technique. 

 

    We give some basic definitions and properties of the fractional calculus theory which are used 

further in this paper. 

 

Definition 2.1. Jumarie is defined the fractional derivative [Jumarie, 2009] as the following limit form 

 

𝑓 𝛼 = lim
→0

∆𝛼[𝑓 𝑥 − 𝑓 0 ]

𝛼
.                                                                                                                 (1.1) 

 

This definition is close to the standard definition of derivatives, and as a direct result, the 𝛼𝑡 

derivative of a constant, 0 < 𝛼 < 1 is zero. 
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Definition 2.2. Fractional integral operator of order  𝛼 ≥ 0 is defined as 

 

𝐼𝑎
𝛼𝑓 𝑥 =

1

Γ(𝛼)
  𝑥 − 𝜏 𝛼−1𝑓 𝜏 𝑑𝜏,     

𝑥

𝑎

𝑎 < 𝑥 < 𝑏,   𝛼 > 0.                                                        (1.2) 

Where  Γ is a gamma function. 

 

Definition 2.3. Fractional derivative of  𝑓(𝑥) in the Caputo sense [Caputo,1967] is defined as  

 

𝐷𝑥
𝛼𝑓 𝑥 =

1

Γ(𝑚 − 𝛼)
  𝑥 − 𝜏 𝑚−𝛼−1

𝑑𝑚𝑓 𝜏 

𝑑𝜏𝑚
𝑑𝜏,    𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑥 > 0.           (1.3)

𝑥

0

 

 

Definition 2.4. Fractional derivative of compounded functions [Jumarie, 2009] is defined as 

 

𝑑𝛼𝑓 ≅ Γ 1 + 𝛼 𝑑𝑓,   0 < 𝛼 < 1.                                                                                                          (1.4)  

 

Definition 2.5. The integral with respect to  (𝑑𝑥)𝛼  [Jumarie, 2009] is defined as the solution of the 

fractional differential equation 

 

𝑑𝑦 ≅ 𝑓 𝑥 (𝑑𝑥)𝛼 ,     𝑥 ≥ 0,    𝑦 0 = 0,   0 < 𝛼 < 1.                                                                        (1.5)  

 

Lemma 2.1. Let  𝑓(𝑥) denote a continuous function [Jumarie, 2009] then the solution of the Eq. (1.5) 

is defined as 

𝑦 =  𝑓 𝜏 (𝑑𝜏)𝛼 =

𝑥

0

𝛼  𝑥 − 𝜏 𝛼−1𝑓 𝜏 𝑑𝜏,   0 < 𝛼 < 1.                                                               (1.6)

𝑥

0

 

 

For example  𝑓 𝑥 = 𝑥𝛾  in Eq. (1.6) one obtains 

 

 𝜏𝛾(𝑑𝜏)𝛼 =
Γ 𝛼 + 1 Γ(𝛾 + 1)

Γ(𝛼 + 𝛾 + 1)

𝑥

0

𝑥𝛼+𝛾 ,   0 < 𝛼 ≤ 1.                                                                        (1.7) 
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3. Adomian decomposition method 

    Adomian [1994] has presented and developed a so-called decomposition method for solving linear or 

nonlinear problems such as ordinary differential equations. It consists of splitting the given equation 

into linear and nonlinear parts, inverting the highest-order derivative operator contained in the linear 

operator on both sides, identifying the initial and/or boundary conditions and the terms involving the 

independent variable alone as initial approximation, decomposing the unknown function into a series 

whose components are to be determined, decomposing the nonlinear function in terms of special 

polynomials called Adomian’s polynomials, and finding the successive terms of the series solution by 

recurrent relation using Adomian’s polynomials. Consider the equation 

 

𝐹 𝑢 𝑥  = 𝑔 𝑥 ,                                                                                                                                       (2.1) 

where 𝐹 represents a general nonlinear ordinary differential operator and  𝑔 is a given function. The 

linear terms in 𝐹 𝑢 𝑥   are decomposed into 𝐿𝑢 + 𝑅𝑢, where 𝐿 is an easily invertible operator, which 

is taken as the highest order derivative and 𝑅 is the remainder of the linear operator. Thus, Eq. (2.1) can 

be written as 

 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔,                                                                                                                                  (2.2) 

where 𝑁𝑢 represents the nonlinear terms in 𝐹 𝑢 𝑥  . Applying the inverse operator  𝐿−1 on both sides 

yields 

 

𝑢 = 𝜑 +  𝐿−1 𝑔 − 𝐿−1 𝑅𝑢 −  𝐿−1 𝑁𝑢 ,                                                                                          (2.3) 

where 𝜑 is the constant of integration satisfies the condition 𝐿𝜑 = 0. Now assuming that the solution 𝑢 

can be represented as infinite series of the form 

𝑢 =  𝑢𝑛  ,

∞

𝑛=0

                                                                                                                                                (2.4) 

Furthermore, suppose that the nonlinear term 𝑁𝑢  can be written as infinite series in terms of the 

Adomian polynomials 𝐴𝑛  of the form 
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𝑁𝑢 =  𝐴𝑛

∞

𝑛=0

 ,                                                                                                                                            (2.5) 

where the Adomian polynomials 𝐴𝑛  of 𝑁𝑢 are evaluated using the formula 

 𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
𝑁( (𝜆𝑖𝑢𝑖))

∞

𝑖=0

 

𝜆=0

 ,     𝑛 = 0,1,2, …                                                                                (2.6) 

Then substituting (2.4) and (2.5) in (2.3) gives 

 𝑢𝑛 = 𝜑+𝐿−1(𝑔) − 𝐿−1(𝑅  𝑢𝑛)

∞

𝑛=0

− 𝐿−1( 𝐴𝑛)

∞

𝑛=0

∞

𝑛=0

                                                                     (2.7) 

Each term of series (2.4) is given by the recurrent relation 

 

𝑢0 = 𝜑 + +𝐿−1 𝑔 ,                                   𝑛 = 0                                                                                (2.8. 𝑎) 

𝑢𝑛+1 = 𝐿−1 𝑅𝑢𝑛 − 𝐿−1 𝐴𝑛 ,                𝑛 ≥ 0                                                                                (2.8. 𝑏) 

 

    To describe the solution procedure of the fractional Adomian decomposition method, we consider 

the following one dimensional heat-like or wave-like partial differential equations  

 

𝜕𝛼

𝜕𝑡𝛼
𝑢 𝑥, 𝑡 = 𝜇 𝑥  𝑢𝑥𝑥  𝑥, 𝑡 ,   0 < 𝑥 < 1,   𝑡 > 0,   𝛼 > 0,                                                            (2.9) 

 

where  𝜇 𝑥  is the differential operator in 𝑥  such as  𝜇 𝑥 =
1

2
𝑥2 . In an operator form, Eq. (2.9) 

becomes 

𝐷𝑡
𝛼𝑢 𝑥, 𝑡 = 𝜇 𝑥  𝑢𝑥𝑥  𝑥, 𝑡 ,                                                                                                                 (2.10) 

where the fractional differential operator 𝐷𝑡
𝛼  is  𝐷𝑡

𝛼 =
𝜕𝛼

𝜕𝑡𝛼 , so that 𝐷𝑡
𝛼  is the operator defined (1.3). 

Where the Caputo time-fractional derivative operator of order 𝛼 > 0 is defined as 
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𝐷𝑡
𝛼𝑢 𝑥, 𝜏 =

𝜕𝛼

𝜕𝜏𝛼
𝑢 𝑥, 𝜏  

                   =

 
 
 

 
 

𝜕𝑚 𝑢 𝑥 ,𝜏 

𝜕𝜏𝑚 ,                                                                      for 𝛼 = 𝑚 ∈ ℕ.                                   

                                                                                                                                          (2.11)
1

Γ 𝑚−𝛼 
  𝑡 − 𝜏 𝑚−𝛼−1 𝜕

𝑚 𝑢 𝑥 ,𝜏 

𝜕𝜏𝑚 𝑑𝜏,
𝑡

0
                     for  𝑚 − 1 < 𝛼 < 𝑚.                         

                         

   

Operating with 𝐼𝛼 = 𝐼0
𝛼  on both sides of Eq. (2.9) and using the initial conditions yields 

𝑢 𝑥, 𝑡 =  
𝜕𝑘

𝜕𝑡𝑘

𝑚−1

𝑘=0

𝑢 𝑥, 0+ 
𝑡𝑘

𝑘!
+ 𝐼𝛼  𝜇 𝑥  𝑢𝑥𝑥  𝑥, 𝑡  ,                                                                     (2.12) 

where the function 𝑢 𝑥, 𝑡  is a assumed to be a causal function of time, i.e., vanishing for 𝑡 < 0. 

According to the Adomian decomposition method [Adomian (1994), Momani (2005)], assuming that 

the solution 𝑢 can be represented as infinite series as the form (2.4). Substituting Eq. (2.4) into both of 

Eq. (2.12) gives 

 𝑢𝑛 𝑥, 𝑡 

∞

𝑛=0

=  
𝜕𝑘

𝜕𝑡𝑘

𝑚−1

𝑘=0

𝑢 𝑥, 0+ 
𝑡𝑘

𝑘!
+ 𝐼𝛼  𝜇 𝑥    (𝑢𝑛 𝑥, 𝑡 )𝑥𝑥

∞

𝑛=0

  ,                                       (2.13) 

Each term of series (2.4) is given by the recurrent relation 

𝑢0 𝑥, 𝑡 =  
𝜕𝑘

𝜕𝑡𝑘

𝑚−1

𝑘=0

𝑢 𝑥, 0+ 
𝑡𝑘

𝑘!
,                                                                                                      (2.14. a) 

𝑢𝑛+1 𝑥, 𝑡 = 𝐼𝛼  𝜇 𝑥  𝑢𝑛 𝑥, 𝑡  
𝑥𝑥

 ,    𝑛 ≥ 0.                                                                              2.14. b  

The convergence of the decomposition series have investigated by several authors [Cherrualt (1989), 

Cherrualt and Adomian (1993)]. 

  

3. New technique for solving one dimensional heat-like and wave-like equations (ordinary  

     or fractional) using VIM 
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   To convey the basic idea for modified treatment of initial boundary value problems by Adomian 

decomposition method to solve one dimensional heat-like and wave-like equation of the form  

𝜕𝛼

𝜕𝑡𝛼
𝑢 𝑥, 𝑡 =

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
,     𝑡 > 0,   0 < 𝑥 < 1,   𝛼 > 0,                                                                    (3.1) 

 

the initial conditions associated with Eq. (3.1) are of the form 

 

𝑢 𝑥, 0 = 𝑓0 𝑥 ,
𝜕𝑢 𝑥, 0 

𝜕𝑡
 = 𝑓1 𝑥 , ,      0 < 𝑥 < 1,                                                         (3.2) 

 

and the boundary conditions are given by 

𝑢 0, 𝑡 = ℊ0 𝑡 , 𝑢 1, 𝑡 = ℊ1 𝑡 ,    𝑡 > 0,                                                                                  (3.3)  

where  𝑓0 𝑥 , 𝑓1 𝑥 , ℊ0 𝑡  and ℊ1 𝑡  are given functions. The initial solution can be written as  

𝑢0 𝑥, 𝑡 = 𝑓0 𝑥 + 𝑡𝑓1 𝑥 . 

The initial values are usually used for selecting the zeroth approximation 𝑢0  but in this paper, we 

accredit to modified a new technique to calculate the zeroth approximation 𝑢0
∗  by construct a new 

initial solutions 𝑢𝑛
∗  by mixed initial conditions in Eq. (3.2) with boundary conditions in Eq. (3.3) at 

every iteration as follows [Ali (2011)] 

𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥  ℊ0 𝑡 − 𝑢𝑛 0, 𝑡  + 𝑥 ℊ1 𝑡 − 𝑢𝑛 1, 𝑡  ,   𝑛 ≥ 0.                    (3.4)    

It is obvious that the new successive initial solutions 𝑢𝑛
∗  in Eq. (3.4) satisfying the initial and boundary 

conditions together as follows  

𝑖𝑓  𝑥 = 0  𝑡𝑒𝑛   𝑢𝑛
∗  0, 𝑡 = ℊ0 𝑡 ,    

 

𝑖𝑓  𝑥 = 1  𝑡𝑒𝑛   𝑢𝑛
∗  1, 𝑡 = ℊ1 𝑡 ,    

 

𝑖𝑓  𝑡 = 0  𝑡𝑒𝑛   𝑢𝑛
∗  𝑥, 0 = 𝑢𝑛 𝑥, 0 .                                                                                                  (3.5) 

 

The second and third terms in right side of Eq. (3.4) well be vanish when we applying the second 
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derivative by 𝑥 which is used in the right side of Eq. (2.8.b) or Eq. (2.14.b), so to establish these terms 

we can be modified Eq. (3.4) and rewritten in a new formulation as 

 𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  ℊ0 𝑡 − 𝑢𝑛 0, 𝑡  + 𝑥2 ℊ1 𝑡 − 𝑢𝑛 1, 𝑡  ,   𝑛 ≥ 0.              (3.6)   

Eq. (2.14.b) associated with Eqs. (3.1) and (3.6) can be rewritten in a new formulation as 

𝑢𝑛+1 𝑥, 𝑡 =
1

2
𝑥2𝐼𝛼 (𝑢𝑛

∗  𝑥, 𝑡 )𝑥𝑥  ,    𝑛 ≥ 0.                                                                                       (3.7) 

 Such as treatment is a very effective as shown in this paper.  

4. Applications and results 

Example 1: Consider the following one-dimensional heat-like problem  

𝜕𝑢

𝜕𝑡
−

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
= 0,   0 < 𝑥 < 1, 𝑡 > 0,                                                                                               (4.1) 

subject to the initial conditions 

𝑢 𝑥, 0 = 𝑥2 , 0 < 𝑥 < 1,                                                                                                                 (4.2) 

 

and the boundary conditions 

𝑢 0, 𝑡 = 0 ,     𝑢 1, 𝑡 = et ,    𝑡 > 0.                                                                                                    (4.3) 

The initial approximation is 

 
𝑢0 𝑥, 𝑡 = 𝑥2 .                                                                                                                                            (4.4)   

By applying a new approximations  𝑢𝑛
∗  in Eq. (3.6) we have 

 

 𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  0 −𝑢𝑛 0, 𝑡  + 𝑥2 et −𝑢𝑛 1, 𝑡  ,     𝑛 = 0,1,2, …  .                (4.5)  

 

To begin with a new initial approximation 𝑢0
∗  we applying Eq. (4.5) at 𝑛 = 0 such as 

𝑢0
∗ 𝑥, 𝑡 = 𝑥2  et .                                                                                                                                        (4.6)  

According to the Adomian decomposition method, we have an operater form for Eq.(4.1) as 
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𝐿𝑢 =
1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
 , 0 < 𝑥 < 1, 𝑡 > 0,                                                                                               (4.7) 

where the differential operator is  𝐿 =
𝜕

𝜕𝑡
 , so that 𝐿−1 is integral operator 

𝐿−1 .  =   .  𝑑𝑡.                                                                                                                                      (4.8)

𝑡

0

 

By operating with  𝐿−1on both sides of Eq.(4.7) and using a new technique of initial solutions 𝑢𝑛
∗  we 

have  

𝑢𝑛+1(𝑥, 𝑡) =   
1

2
𝑥2

𝜕2𝑢𝑛
∗ (𝑥, 𝑡)

𝜕𝑥2
 𝑑𝑡.                                                                                                  (4.9)

𝑡

0

 

By Eq. (4.6), so as soon we have  

 

𝑢1 𝑥, 𝑡 = 𝑥2(𝑒𝑡 − 1).                                                                                                                          (4.10) 

We can readily check   

𝑢 𝑥, 𝑦, 𝑡 = 𝑢0 𝑥, 𝑦, 𝑡 + 𝑢1 𝑥, 𝑦, 𝑡 = 𝑥2  et .                                                                                  (4.11)  

Which yields an exact solution of Eq. (4.1). 

 

 Example 2: We next consider the one-dimensional wave-like equation  

𝜕2𝑢

𝜕𝑡2
−

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
= 0, 0 < 𝑥 < 1, 𝑡 > 0,                                                                                    (4.12) 

subject to the initial conditions 

𝑢 𝑥, 0 = 𝑥,    
𝜕𝑢 𝑥, 0 

𝜕𝑡
  = 𝑥2  ,      0 < 𝑥 < 1,,                                                                               (4.13) 

and the boundary conditions 

𝑢 0, 𝑡 = 0   ,     𝑢 1, 𝑡 = 1 + sinh 𝑡 ,   𝑡 > 0.,                                                                               (4.14) 

The initial approximation is 
  

𝑢0 𝑥, 𝑡 = 𝑥 + 𝑥2𝑡.                                                                                                                                (4.15)  
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By applying a new approximations  𝑢𝑛
∗  in Eq. (3.6) we have 

 

𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  0 − 𝑢𝑛 0, 𝑡  + 𝑥2 1 + sinh 𝑡 − 𝑢𝑛 1, 𝑡  , 𝑛 = 0,1,2, …  (4.16)  

 

To begin with a new initial approximation 𝑢0
∗  we applying Eq. (4.16) at 𝑛 = 0 such as 

𝑢0
∗ 𝑥, 𝑡 = 𝑥 + 𝑥2 sinh 𝑡 .                                                                                                                      (4.17)  

By Adomian decomposition method , we have an operator form for Eq.(4.12) as 

𝐿𝑢 =
1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
 , 0 < 𝑥 < 1, 𝑡 > 0,                                                                                             (4.18) 

where the differential operator is  𝐿 =
𝜕2

𝜕𝑡2 , so that 𝐿−1 is a two-fold integral operator 

𝐿−1 .  =    .  𝑑𝑡𝑑𝑡.                                                                                                                           (4.19)

𝑡

0

𝑡

0

 

By operating with  𝐿−1 on both sides of (4.18) and using a new technique of initial solutions 𝑢𝑛
∗  we 

have 

𝑢𝑛+1 𝑥, 𝑡 =    
1

2
𝑥2

𝜕2 𝑢𝑛
∗  𝑥, 𝑡 

𝜕𝑥2
 𝑑𝑡𝑑𝑡 ,

𝑡

0

𝑡

0

       𝑛 ≥ 0.                                                                 (4.20) 

By Eq. (4.17), so as soon we have  

 

𝑢1 𝑥, 𝑡 = 𝑥2 (sinh 𝑡 − 𝑡).                                                                                                                   (4.21) 

We can readily check   

𝑢 𝑥, 𝑦, 𝑡 = 𝑢0 𝑥, 𝑦, 𝑡 + 𝑢1 𝑥, 𝑦, 𝑡 = 𝑥 + 𝑥2 sinh 𝑡 .                                                                  (4.22)  

Which yields an exact solution of Eq. (4.12). 

Example 3: Consider the following one-dimensional fractional heat-like problem  

𝜕𝛼𝑢

𝜕𝑡𝛼
−

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
= 0,   0 < 𝑥 < 1,   0 < 𝛼 ≤ 1, 𝑡 > 0,                                                                  (4.23) 

subject to the initial conditions  
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𝑢 𝑥, 0 = 𝑥2 , 0 < 𝑥 < 1,                                                                                                              (4.24) 

 

and the boundary conditions 

𝑢 0, 𝑡 = 0 ,     𝑢 1, 𝑡 = et ,    𝑡 > 0.                                                                                                 (4.25)  

The exact solution is [Momani (2005), Yulita Molliq et.al (2009)] 

𝑢 𝑥, 𝑡 = 𝑥2Eα tα ,                                                                                                                               (4.26) 

where  

Eα tα = lim
m→∞

 
tkα

Γ(1 + kα)
 .                                                                                                            (4.27)

m

k=0

 

The initial approximation is  

  

𝑢0 𝑥, 𝑡 = 𝑥2 .                                                                                                                                          (4.28) 

 

By applying a new approximations  𝑢𝑛
∗  in Eq. (3.6) we have 

 

𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  0 −𝑢𝑛 0, 𝑡  + 𝑥2 et −𝑢𝑛 1, 𝑡  ,          𝑛 = 0,1,2, …  .          (4.29) 

 

At  𝑛 = 0, we begin with a new initial approximation 𝑢0
∗  as 

 𝑢0
∗ 𝑥, 𝑡 = 𝑥2  et   

                 = 𝑥2  1 +
𝑡

Γ 2 
+

𝑡2

Γ 3 
+ ⋯ .                                                                                          (4.30) 

We choose 𝑚 = 1 in Eq. (2.14.a)  

𝑢0 𝑥, 𝑡 =  
𝜕𝑘

𝜕𝑡𝑘

0

𝑘=0

𝑢 𝑥, 0 
𝑡𝑘

𝑘!
= 𝑥2,                                                                                                    (4.31) 

by Eq. (3.7) and Eq. (1.2) we have 
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𝑢1 𝑥, 𝑡  =
1

2
𝑥2𝐼𝛼 (𝑢0

∗ 𝑥, 𝑡 )𝑥𝑥   

                =
1

2
𝑥2𝐼𝛼  

𝜕2(𝑥2 et  )

𝜕𝑥2
  

                =
𝑥2

Γ(𝛼)
  𝑡 − 𝜏 𝛼−1  1 +

𝜏

Γ 2 
+

𝜏2

Γ 3 
+ ⋯ 𝑑𝜏,     

𝑡

0

 

                =
𝑥2

Γ(𝛼)
 ℬ(𝛼, 1)𝑡𝛼 +

ℬ(𝛼, 2)𝑡𝛼+1

Γ 2 
+

ℬ(𝛼, 3)𝑡𝛼+2

Γ 3 
+ ⋯  

                = 𝑥2  
𝑡𝛼

Γ 𝛼 + 1 
+

𝑡𝛼+1

Γ 𝛼 + 2 
+

𝑡𝛼+2

Γ 𝛼 + 3 
+ ⋯ ,                                                           (4.32) 

We can readily check   

𝑢 𝑥, 𝑡 = 𝑢0 𝑥, 𝑡 + 𝑢1 𝑥, 𝑡 = 𝑥2  1 +
𝑡𝛼

Γ 𝛼+1 
+

𝑡𝛼+1

Γ 𝛼+2 
+

𝑡𝛼+2

Γ 𝛼+3 
+ ⋯ .                                (4.33)  

Let 𝛼 = 1, Eq.(4.33)  becomes  

𝑢 𝑥, 𝑡 = 𝑥2  1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+ ⋯ = 𝑥2𝑒𝑡 .                                                                                (4.34) 

Which yields an exact solution of Eq. (4.23) when 𝛼 = 1. But, generally the solution (4.33) is not 

exactly for Eq. (4.23), because it doesn’t satisfying of vinery equation. In the other hand the boundary 

conditions (4.25) is not corresponding to the exact solution (4.26) which were given in [Momani 

(2005), Yulita Molliq et.al (2009)], that’s mean the boundary conditions (4.25) are be not true for this 

problem. So, in the following example we present a reliable framework by applying another boundary 

conditions which can be satisfying by exact solution (4.26).  

 

Example 4: Consider the following one-dimensional fractional heat-like problem  

𝜕𝛼𝑢

𝜕𝑡𝛼
−

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
= 0,   0 < 𝑥 < 1,   0 < 𝛼 < 1, 𝑡 > 0,                                                                  (4.35) 

subject to the initial conditions  
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𝑢 𝑥, 0 = 𝑥2 , 0 < 𝑥 < 1,                                                                                                              (4.36) 

 

and the boundary conditions 

𝑢 0, 𝑡 = 0 ,     𝑢 1, 𝑡 = Eα(tα) ,    𝑡 > 0,                                                                                        (4.37)  

where  

Eα tα = lim
m→∞

 
tkα

Γ(1 + kα)
 .                                                                                                            (4.38)

m

k=0

 

The initial approximation is 
  

 

𝑢0 𝑥, 𝑡 = 𝑥2 .                                                                                                                                          (4.39) 

 

By applying a new approximations  𝑢𝑛
∗  in Eq. (3.6) we have 

 

𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  0 −𝑢𝑛 0, 𝑡  + 𝑥2 Eα(tα) −𝑢𝑛 1, 𝑡  ,       𝑛 = 0,1,2, … .     (4.40) 

 

At  𝑛 = 0, we begin with a new initial approximation 𝑢0
∗  as 

𝑢0
∗ 𝑥, 𝑡 = 𝑥2Eα(tα)  

                = 𝑥2  1 +
𝑡𝛼

Γ 𝛼 + 1 
+

𝑡2𝛼

Γ 2𝛼 + 1 
+ ⋯ .                                                                       (4.41) 

We choose 𝑚 = 1 in Eq. (2.15.a)  

𝑢0 𝑥, 𝑡 =  
𝜕𝑘

𝜕𝑡𝑘

0

𝑘=0

𝑢 𝑥, 0 
𝑡𝑘

𝑘!
= 𝑥2,                                                                                                    (4.42) 

by Eq. (3.7) and Eq. (1.2) we have 

𝑢1 𝑥, 𝑡  =
1

2
𝑥2𝐼𝛼 (𝑢0

∗ 𝑥, 𝑡 )𝑥𝑥   

                =
1

2
𝑥2𝐼𝛼  

𝜕2(𝑥2Eα(tα) )

𝜕𝑥2
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                =
𝑥2

Γ(𝛼)
  𝑡 − 𝜏 𝛼−1  1 +

𝜏𝛼

Γ 1 + 𝛼 
+

𝜏2𝛼

Γ 2𝛼 + 1 
+ ⋯ 𝑑𝜏,     

𝑡

0

 

                =
𝑥2

Γ(𝛼)
 ℬ(𝛼, 1)𝑡𝛼 +

ℬ(𝛼, 𝛼 + 1)𝑡2𝛼

Γ 𝛼 + 1 
+

ℬ(𝛼, 2𝛼 + 1)𝑡3𝛼

Γ 2𝛼 + 1 
+ ⋯  

                = 𝑥2  
𝑡𝛼

Γ 𝛼 + 1 
+

𝑡2𝛼

Γ 2𝛼 + 1 
+

𝑡3𝛼

Γ 3𝛼 + 1 
+ ⋯ ,                                                      (4.43) 

where ℬ is beta function. We can readily check   

𝑢 𝑥, 𝑦, 𝑡 = 𝑢0 𝑥, 𝑦, 𝑡 + 𝑢1 𝑥, 𝑦, 𝑡 = 𝑥2  1 +
𝑡𝛼

Γ 𝛼+1 
+

𝑡2𝛼

Γ 2𝛼+1 
+

𝑡3𝛼

Γ 3𝛼+1 
+ ⋯ .               (4.44)  

Which yields an exact solution of Eq. (4.35), it is the same result which is writing by [Momani (2005), 

Yulita Molliq et.al (2009)] where are using initial conditions only. 

Example 5: Consider the one-dimensional fractional wave-like equation  

𝜕𝛼𝑢

𝜕𝑡𝛼
−

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
= 0,   0 < 𝑥 < 1, 1 < 𝛼 < 2, 𝑡 > 0,                                                                     (4.45) 

subject to the initial conditions 

𝑢 𝑥, 0 = 𝑥,    
𝜕𝑢 𝑥, 0 

𝜕𝑡
  = 𝑥2  ,      0 < 𝑥 < 1,                                                                                (4.46) 

 

and the boundary conditions 

𝑢 0, 𝑡 = 0 ,     𝑢 1, 𝑡 = 1 + sinh 𝑡 ,    𝑡 > 0,                                                                                  (4.47) 

The exact solution is [Momani (2005), Yulita Molliq et.al (2009)] 

𝑢 𝑥, 𝑡 = 𝑥 + 𝑥2𝑡 Eα ,2 tα ,                                                                                                                  (4.48)  

where 

Eα ,2 tα = lim
m→∞

 
tkα

Γ 2 + kα 
 .

m

k=0

                                                                                                        (4.49) 

The initial approximation is
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𝑢0 𝑥, 𝑡 = 𝑥 + 𝑥2𝑡.                                                                                                                                (4.50) 

By applying a new approximations  𝑢𝑛
∗  in Eq. (3.6) we obtain 

 

𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  0 − 𝑢𝑛 0, 𝑡  + 𝑥2 1 + sinh 𝑡 − 𝑢𝑛 1, 𝑡  ,   𝑛 = 0,1,2, …  (4.51)  

 

To begin with a new initial approximation 𝑢0
∗  we applying Eq. (4.51) at 𝑛 = 0 such as 

𝑢0
∗ 𝑥, 𝑡 = 𝑥 + 𝑥2 sinh 𝑡 .                                                                                                                      (4.52)  

We choose 𝑚 = 1 in Eq. (2.14.a)  

𝑢0 𝑥, 𝑡 =  
𝜕𝑘

𝜕𝑡𝑘

0

𝑘=0

𝑢 𝑥, 0 
𝑡𝑘

𝑘!
= 𝑥 + 𝑥2𝑡,                                                                                          (4.53) 

by Eq. (3.7) and Eq. (1.2) we have 

𝑢1 𝑥, 𝑡  =
1

2
𝑥2𝐼𝛼 (𝑢0

∗ 𝑥, 𝑡 )𝑥𝑥   

                =
1

2
𝑥2𝐼𝛼  

𝜕2(𝑥 + 𝑥2 sinh 𝑡  )

𝜕𝑥2
  

                =
𝑥2

Γ(𝛼)
  𝑡 − 𝜏 𝛼−1  𝜏 +

𝜏3

Γ 4 
+

𝜏5

Γ 6 
+ ⋯ 𝑑𝜏,     

𝑡

0

 

                =
𝑥2

Γ(𝛼)
 ℬ(𝛼, 2)𝑡𝛼+1 +

ℬ(𝛼, 4)𝑡𝛼+3

Γ 4 
+

ℬ 𝛼, 6 𝑡𝛼+5

Γ 6 
+ ⋯  

                = 𝑥2  
1

Γ 𝛼 + 2 
𝑡𝛼+1 +

1

Γ 𝛼 + 4 
𝑡𝛼+3 +

1

Γ 𝛼 + 6 
𝑡𝛼+5 + ⋯                                  (4.54) 

We can readily check   

𝑢 𝑥, 𝑡 = 𝑢0 𝑥, 𝑡 + 𝑢1 𝑥, 𝑡  

              = 𝑥 + 𝑥2  𝑡 +
1

Γ 𝛼 + 2 
𝑡𝛼+1 +

1

Γ 𝛼 + 4 
𝑡𝛼+3 +

1

Γ 𝛼 + 6 
𝑡𝛼+5 + ⋯ .                   (4.55) 

Let 𝛼 = 2, Eq. (4.55) becomes  
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𝑢 𝑥, 𝑡  = 𝑥 + 𝑥2  𝑡 +
𝑡3

3!
+

𝑡5

5!
+

𝑡7

6!
+ ⋯ = 𝑥 + 𝑥2 sinh 𝑡.                                                      (4.56) 

Which yields an exact solution of Eq. (4.45) when 𝛼 = 1. But, generally the solution (4.55) is not 

exactly for Eq. (4.45), because it doesn’t satisfying of vinery equation. In the other hand the boundary 

conditions (4.47) is not corresponding to the exact solution (4.48) which were given in [Momani 

(2005), Yulita Molliq et.al (2009)], that’s mean the boundary conditions (4.47) are be not true. So, in 

the following example we present a reliable framework by applying another boundary conditions which 

can be satisfying by exact solution (4.48). 

Example 6: Consider the one-dimensional fractional wave-like equation  

𝜕𝛼𝑢

𝜕𝑡𝛼
−

1

2
𝑥2

𝜕2𝑢

𝜕𝑥2
= 0,   0 < 𝑥 < 1, 1 < 𝛼 < 2, 𝑡 > 0,                                                                     (4.57) 

subject to the initial conditions 

𝑢 𝑥, 0 = 𝑥,    
𝜕𝑢 𝑥, 0 

𝜕𝑡
  = 𝑥2  ,      0 < 𝑥 < 1,                                                                                (4.58) 

 

and the boundary conditions 

𝑢 0, 𝑡 = 0 ,     𝑢 1, 𝑡 = 1 + 𝑡 Eα ,2(tα) ,    𝑡 > 0,                                                                           (4.59) 

where  

Eα ,2 tα = lim
m→∞

 
tkα

Γ(2 + kα)
 .

m

k=0

                                                                                                        (4.60) 

The initial approximation is 
  

𝑢0 𝑥, 𝑡 = 𝑥 + 𝑥2𝑡.                                                                                                                                (4.61) 

By applying a new approximations  𝑢𝑛
∗  in Eq. (3.6) we obtain 

 

𝑢𝑛
∗  𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  1 − 𝑥2  0 −𝑢𝑛 0, 𝑡  + 𝑥2 1 + 𝑡Eα ,2(tα) −𝑢𝑛 1, 𝑡  , 𝑛 = 0,1,2, . . (4.62) At  

𝑛 = 0, the new initial approximation 𝑢0
∗  is 
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𝑢0
∗ 𝑥, 𝑡 = 𝑥 + 𝑥2𝑡 Eα ,2(tα)  

                = 𝑥 + 𝑥2𝑡  1 +
𝑡𝛼

Γ 2 + 𝛼 
+

𝑡2𝛼

Γ 2 + 2𝛼 
+ ⋯ .                                                              (4.63) 

We choose 𝑚 = 1 in Eq. (2.14.a)  

𝑢0 𝑥, 𝑡 =  
𝜕𝑘

𝜕𝑡𝑘

0

𝑘=0

𝑢 𝑥, 0 
𝑡𝑘

𝑘!
= 𝑥 + 𝑥2𝑡,                                                                                          (4.64) 

by Eq. (3.7) and Eq. (1.2) we have 

𝑢1 𝑥, 𝑡  =
1

2
𝑥2𝐼𝛼 (𝑢0

∗ 𝑥, 𝑡 )𝑥𝑥   

                =
1

2
𝑥2𝐼𝛼  

𝜕2(𝑥 + 𝑥2𝑡 Eα ,2(tα)  )

𝜕𝑥2
  

                =
𝑥2

Γ(𝛼)
  𝑡 − 𝜏 𝛼−1  𝜏 +

𝜏𝛼+1

Γ 𝛼 + 2 
+

𝜏2𝛼+1

Γ 2𝛼 + 2 
+ ⋯ 𝑑𝜏,     

𝑡

0

 

                =
𝑥2

Γ(𝛼)
 ℬ(𝛼, 2)𝑡𝛼+1 +

ℬ(𝛼, 𝛼 + 2)𝑡2𝛼+1

Γ 𝛼 + 2 
+

ℬ 𝛼, 2𝛼 + 2 𝑡3𝛼+1

Γ 2𝛼 + 2 
+ ⋯  

                = 𝑥2  
𝑡𝛼+1

Γ 𝛼 + 2 
+

𝑡2𝛼+1

Γ 2𝛼 + 2 
+

𝑡3𝛼+1

Γ 3𝛼 + 2 
+ ⋯ ,                                                      (4.65) 

We can readily check   

𝑢 𝑥, 𝑡 = 𝑢0 𝑥, 𝑡 + 𝑢1 𝑥, 𝑡  

              = 𝑥 + 𝑥2𝑡  1 +
𝑡𝛼

Γ 𝛼 + 2 
+

𝑡2𝛼

Γ 2𝛼 + 2 
+

𝑡3𝛼

Γ 3𝛼 + 2 
+ ⋯  

              = 𝑥 + 𝑥2𝑡 Eα ,2 tα .                                                                                                                  (4.66) 

Which yields an exact solution of Eq. (4.57), it is the same result which is writing by [Momani (2005), 

Yulita Molliq et.al (2009)] whrer are using initial conditions only. 
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5. Conclusions 

    Very effective to construct a new initial successive solutions 𝑢𝑛
∗  by mixed initial and boundary 

conditions together which explained in formula (3.6) and used it to find successive approximations 𝑢𝑛  

of the solution 𝑢 by applying Adomian decomposition method to solve initial boundary value problems 

for one dimensional heat-like and wave-like partial differential equations (ordinary or fractional). Some 

examples are given in this paper to illustrate the effectiveness and convenience of a new technique. It is 

important and obvious to show that the exact solutions have found directly from a first iteration of 

these examples by applying a new technique which is determined in this paper, but if used initial 

conditions only [Momani (2005), Yulita Molliq et.al (2009)] or applied formula of Eq. (3.4) [Ali 

(2011)] we will have exact solution by calculating infinite successive solutions 𝑢𝑛  which closed form 

by Eq. (2.4). In the other hand we note that the first a new initial approximation  𝑢0
∗  are appearing in the 

same exact solution. 
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 قين الأبتذائيت والحذوديت الخاصت بالوعادلاث الللوسائل راث  هعالجت هعذلت

 الوثيلت للحراريت والووجيت راث البعذ الواحذ 

 باستخذام طريقت تحليل أدوهين

 

ايلاف جعفر علي 

 جاهعت البصرة - كليت العلوم-  قسن الرياضياث

 

: الوستخلص

 انخاصت بانًعادلاث انًثيهت نهحشاسيت وانًوجيت راث انبعذ انواحذ ابتذائيت وحذوديت    في هزا انبحث، طبقنا يعانجت يعذنت نًسائم راث قيى

 الأبتذائيت وانحذوديت يعا بأسهوب يعيٍ نغشض انحصول عهى حم ابتذائي جذيذ عنذ   ورنك بخهط انششوط(تفاضهيت اعتياديت أو كسشيت)

، اٌ تكويٍ يتتابعت انحهول الابتذائيت بالاسهوب انجذيذ يعطي حلا دقيق في  (ADM)كم خطوة تكشاسيت باستخذاو طشيقت تحهيم أدوييٍ 

. أول خطوة تكشاسيت

 

 

 

 

 

 


