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Abstract

In this paper, a new technique is applied to modified treatment of initial boundary value problems for
one dimensional heat-like and wave-like partial differential equations (ordinary or fractional) by mixed
initial and boundary conditions together to obtain a new initial solution at every iteration using
Adomian decomposition method (ADM). The structure of a new successive initial solutions can give a

more accurate solution in a first step.

Keywords: initial boundary value problems, one dimensional, heat-like and wave-like partial
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1. Introduction

Many researchers discussed the initial and boundary value problems. The Adomian decomposition
method discussed for solving higher dimensional initial boundary value problems by Wazwaz [2000].
Analytic treatment for variable coefficient fourth-order parabolic partial differential equations
discussed by Wazwaz [2001]. The solution of fractional heat-like and wave-like equations with
variable coefficients using the decomposition method was found by Momani [2005] and so as by using

variational iteration method was found by Yulita Molliq et.al [2009]. Solving higher dimensional initial
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boundary value problems by variational iteration decomposition method by Noor and Mohyud-Din
[2008]. Exact and numerical solutions for non-linear Burger's equation by variational iteration method
was applied by Biazar and Aminikhah [2009]. Weighted algorithm based on the homotopy analysis
method is applied to inverse heat conduction problems and discussed by Shidfar and Molabahrami
[2010]. The boundary value problems was applied by Niu and Wang [2010] to calculate a one step
optimal homotopy analysis method for linear and nonlinear differential equations with boundary
conditions only, and homotopy perturbation technique for solving two-point boundary value problems—
compared it with other methods was discussed by Chun and Sakthivel [2010]. Fractional differential
equations with initial boundary conditions by modified Riemann—Liouville derivative was solved by
Wu and Lee [2010].

It is interesting to point out that all these researchers obtained the solutions of initial and boundary
value problems by using either initial or boundary conditions only. So we present a reliable framework
by applying a new technique for treatment initial and boundary value problems by mixed initial
conditions with boundary conditions together to obtain a new initial solution at every iteration using
variational iteration method. Such as technique was applied by Ali [2011] for treatment of initial
boundary value problems. In this paper, a new technique is applied to modified treatment of initial
boundary value problems for one dimensional heat-like and wave-like partial differential equations
(ordinary or fractional) to construct a new successive initial solutions which can give a more accurate
solution by Adomian decomposition method, some examples are given in this paper to illustrate the

effectiveness and convenience of this technique.

We give some basic definitions and properties of the fractional calculus theory which are used
further in this paper.

Definition 2.1. Jumarie is defined the fractional derivative [Jumarie, 2009] as the following limit form

A% —f(0
]c(a) — }1112?) [f(x})la f( )] (11)

This definition is close to the standard definition of derivatives, and as a direct result, the ath

derivative of a constant, 0 < a < 1 is zero.
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Definition 2.2. Fractional integral operator of order a > 0 is defined as

I9f(x) = .fx(x - 1) f(t)dr, a<x<b, a>0. (1.2)

1
(@) J,

Where TI'is a gamma function.

Definition 2.3. Fractional derivative of f(x) in the Caputo sense [Caputo,1967] is defined as
) d"‘f(r)
D“f(x)— a)_f (x—7)m " T, m—1<a<mmeNx>0. (1.3)

Definition 2.4. Fractional derivative of compounded functions [Jumarie, 2009] is defined as
d°f =T(1+ a)df, 0 <a <1. (1.4)

Definition 2.5. The integral with respect to (dx)* [Jumarie, 2009] is defined as the solution of the

fractional differential equation
dy = f(x)(dx)*, x>0, y(0)=0, 0<a<1. (1.5)

Lemma 2.1. Let f(x) denote a continuous function [Jumarie, 2009] then the solution of the Eq. (1.5)

is defined as

X

= ff(r)(dr)“ =af(x — 1) f(D)dr, 0<a<1l. (1.6)
0

0
For example f(x) = x" in Eq. (1.6) one obtains

r Tla+DI'y+1)
ffy(df) = Taty+D *

, 0<a<l. (1.7)
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3. Adomian decomposition method

Adomian [1994] has presented and developed a so-called decomposition method for solving linear or
nonlinear problems such as ordinary differential equations. It consists of splitting the given equation
into linear and nonlinear parts, inverting the highest-order derivative operator contained in the linear
operator on both sides, identifying the initial and/or boundary conditions and the terms involving the
independent variable alone as initial approximation, decomposing the unknown function into a series
whose components are to be determined, decomposing the nonlinear function in terms of special
polynomials called Adomian’s polynomials, and finding the successive terms of the series solution by

recurrent relation using Adomian’s polynomials. Consider the equation

F(u(x)) =g(x), (2.1)

where F represents a general nonlinear ordinary differential operator and g is a given function. The
linear terms in F(u(x)) are decomposed into Lu + Ru, where L is an easily invertible operator, which
is taken as the highest order derivative and R is the remainder of the linear operator. Thus, Eq. (2.1) can

be written as

Lu+Ru+Nu=g, (2.2)

where Nu represents the nonlinear terms in F(u(x)). Applying the inverse operator L~! on both sides

yields

u=¢+ L(g) — L' (Ru) — L71(Nuw), (2.3)

where ¢ is the constant of integration satisfies the condition Ly = 0. Now assuming that the solution u

can be represented as infinite series of the form

u = z 0, , (2.4)
n=0

Furthermore, suppose that the nonlinear term Nu can be written as infinite series in terms of the

Adomian polynomials A4,, of the form
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Nu = Z A, (2.5)

where the Adomian polynomials 4,, of Nu are evaluated using the formula

, n=012,.. (2.6)
A1=0

A, = 1 & N i A

Then substituting (2.4) and (2.5) in (2.3) gives

[ee]

Dy = 4L (g) — LR i ) - L‘l(i 4,) 2.7)
n=0 n=0

n=0

Each term of series (2.4) is given by the recurrent relation

uy = ¢ + +L71(g), n=20 (2.8.a)
Uns1 = L7 (Ruy) — L7H(4y), n=0 (2.8.b)

To describe the solution procedure of the fractional Adomian decomposition method, we consider
the following one dimensional heat-like or wave-like partial differential equations

a

0
Wu(x, t) =ux)u,(xt), 0<x<1, t>0, a>0, (2.9)

where u(x) is the differential operator in x such as u(x) :%xz. In an operator form, Eq. (2.9)

becomes
Dfu(x,t) = ux) uy (x,t), (2.10)

where the fractional differential operator D is Df = % so that D is the operator defined (1.3).

Where the Caputo time-fractional derivative operator of order « > 0 is defined as
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D¢ =
u(x, 1) = 3oa
amu(x T) fora =m €N,
(2.11)
1 0Mu(x,7) _
kr(m a)f(t )M ——dr, form—1<a<m.

Operating with I* = I§ on both sides of Eq. (2.9) and using the initial conditions yields

< ok th
u(x, t) = Z S 0%) o+ 1) (1, D], (2.12)

k=0

where the function u(x,t) is a assumed to be a causal function of time, i.e., vanishing for t < 0.
According to the Adomian decomposition method [Adomian (1994), Momani (2005)], assuming that
the solution u can be represented as infinite series as the form (2.4). Substituting Eq. (2.4) into both of
Eq. (2.12) gives

[ee) m-—

Zu(xt) Z u(x0+) +I“

e (Z (un t»xx)], (2.13)

n=0

Each term of series (2.4) is given by the recurrent relation
u(x,t) = Z Wu(x O+)— (2.14.2)

Uppq(x,t) =1 [u(x)(un(x, t))xx], n = 0. (2.14.b)

The convergence of the decomposition series have investigated by several authors [Cherrualt (1989),
Cherrualt and Adomian (1993)].

3. New technique for solving one dimensional heat-like and wave-like equations (ordinary
or fractional) using VIM
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To convey the basic idea for modified treatment of initial boundary value problems by Adomian
decomposition method to solve one dimensional heat-like and wave-like equation of the form

14 1 2

—u(x,t) = =x?

o Sxio—, t>0, 0<x<1, a>0, (3.1)

the initial conditions associated with Eq. (3.1) are of the form

ou(x,0)

u(x,0) = fo(x), 5t = fi1(x), , 0<x<1, (3.2)

and the boundary conditions are given by

u(0,t) = go(t), u(1,t) =g4(t), t>0, (3.3)

where fy(x), fi(x),go(t) and g,(t) are given functions. The initial solution can be written as

U (x,t) = fo(x) + tfi (x).

The initial values are usually used for selecting the zeroth approximation u, but in this paper, we
accredit to modified a new technique to calculate the zeroth approximation ugy by construct a new
initial solutions u,, by mixed initial conditions in Eq. (3.2) with boundary conditions in Eq. (3.3) at

every iteration as follows [Ali (2011)]

up (%, 1) = uy (%, 8) + (1 = 0)[go(t) — u, (0, )] + x[g1 (1) — u, (L, )], n20. (3.4)

It is obvious that the new successive initial solutions w;, in Eq. (3.4) satisfying the initial and boundary

conditions together as follows

if x=0 then u;(0,t) = g(t),

if x=1then u;(1,t) =g.(t),

if t=0 then u,(x,0)=u,(x,0). (3.5)

The second and third terms in right side of Eqg. (3.4) well be vanish when we applying the second
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derivative by x which is used in the right side of Eq. (2.8.b) or Eq. (2.14.b), so to establish these terms

we can be modified Eqg. (3.4) and rewritten in a new formulation as

U (1) = u, (6, 8) + (1= xH)[go () — un (0, 0] + x*[g1(8) —un (1,0)], n2>0. (3.6)

Eq. (2.14.b) associated with Egs. (3.1) and (3.6) can be rewritten in a new formulation as

i1 (5.6) = 3221505 (6, )], 20, 3.7)

Such as treatment is a very effective as shown in this paper.
4. Applications and results
Example 1: Consider the following one-dimensional heat-like problem

ou_1 262u_0 0<x<1,t>0 4.1
at 2% ax2 xsHt=20 (1)

subject to the initial conditions

u(x,0) = x?, 0<x<1, (4.2)

and the boundary conditions
u(0,t) =0, u(l,t)=e', t>0. (4.3)
The initial approximation is
uy(x, t) = x2. (4.4)

By applying a new approximations u; in Eq. (3.6) we have

wi(x,t) = u, (x,t) + (1 = x2)[0 —u, (0,t)] + x*[e' —u,(1,t)], n=0,1.2,... (4.5)

To begin with a new initial approximation ug we applying Eq. (4.5) at n = 0 such as
ug(x,t) = x? et (4.6)

According to the Adomian decomposition method, we have an operater form for Eq.(4.1) as

93



Basrah Journal of Science (A) Vol.30(2),86-105, 2012

L —1262u 0<x<1,t>0 4.7
u—zx axz' X ) ) ()

where the differential operator is L = aa_t , so that L1 is integral operator

t
L) = f ()dt. (4.8)
0
By operating with L~'on both sides of Eq.(4.7) and using a new technique of initial solutions u;, we
have
F (1 , 0%uy, (x, t)
Up1(x,t) = f <§x T) dt. (4.9)

0
By Eg. (4.6), so as soon we have

w (x,t) = x% (e’ — 1). (4.10)
We can readily check
u(x;%t) :uO(x!y!t)-I_ul(x:y't) :xz et- (411)

Which yields an exact solution of Eq. (4.1).

Example 2: We next consider the one-dimensional wave-like equation

0%u 1 2azu—o 0<x<1,t>0 412
dt2 Zx ox2 x ’ ’ (4.12)

subject to the initial conditions

du(x,0)

2, 0<x<1, 4.13
ot x x (4.13)

u(x,0) = x,

and the boundary conditions
u(0,t) =0 , u(1,t) =1+ sinht, t>0., (4.14)
The initial approximation is
uy(x,t) = x + x°t. (4.15)
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By applying a new approximations u; in Eq. (3.6) we have
w6 t) = u, (x,t) + (1 —x2)[0 —u,(0,t)] + x?[1 + sinht —u, (1,t)], n =0,1,2, ... (4.16)

To begin with a new initial approximation u, we applying Eq. (4.16) at n = 0 such as
uy(x,t) = x + x?sinht. (4.17)
By Adomian decomposition method , we have an operator form for Eq.(4.12) as

L _1 Zazu 0<x<1,t>0 418
u—zx dx2 "’ X ’ ’ (4.18)

2
where the differential operator is L = a% , so that L~ is a two-fold integral operator

t t
1) = f j(.)dtdt. (4.19)
00
By operating with L~ on both sides of (4.18) and using a new technique of initial solutions u, we
have
tt
Zu (x t)
Uy 11(x,t) = ff dtdt, n=0. (4.20)
0

By Eq. (4.17), so as soon we have

uy (x,t) = x% (sinht — t). (4.21)
We can readily check

u(x,y,t) =uglx,y,t) +u (x,y,t) =x + x% sinht. (4.22)
Which yields an exact solution of Eq. (4.12).

Example 3: Consider the following one-dimensional fractional heat-like problem

0%u 1 262u
e 53X a5 =0, 0<x<1 0<a<Lt>0, (4.23)

subject to the initial conditions
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u(x,0) =x%, 0<x<1, (4.24)

and the boundary conditions
u(0,t) =0, u(l,t)=e", t>0. (4.25)

The exact solution is [Momani (2005), Yulita Molliq et.al (2009)]

u(x,t) = x2E, (t%), (4.26)
where
m tk(X
O =1 _. 4.27
Ea (t) nlﬂi‘&;m T ka) (%27)

The initial approximation is

uo(x,t) = x2. (4.28)
By applying a new approximations u; in Eq. (3.6) we have

w,(x,t) = u, (x,t) + (1 — x2)[0 —u, (0,t)] + x?[e* —u, (1,1)], n=012,... (4.29)

At n = 0, we begin with a new initial approximation wu; as

u(x,t) = x? et

Y SO 4.30
= <+m+@+ > (4.30)

We choose m = 1 in Eq. (2.14.a)

ug(x, t) = Z T u(x O)— = x?, (4.31)

by Eq. (3.7) and Eq. (1.2) we have
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1
ul(x' t) = —x?° [(US(X, t))xx]

2
_ llea 9% (x%et)
2 dx?

X2 rt B - 72
r«ofo“‘” 1(”@*@*"‘)‘“’

2

B Bq g0 B(a,2)t*t!  B(a,3)t*+?
_F(a)< A 6 BT ) )

5 ta tll+1 ta+2
- ), 432
x <F(a+1)+F(a+2)+F(a+3)+ ) (4.32)

We can readily check

2 te ta+1 ta+2
u(x,t) =uglx, t) +u;(x,t) =x (1 + @il + rein T e + ) (4.33)
Let « = 1, EQ.(4.33) becomes
t?2 3
u(x, t) = x? <1+t+§+§+--->=x2et. (4.34)

Which yields an exact solution of Eq. (4.23) when « = 1. But, generally the solution (4.33) is not

exactly for Eq. (4.23), because it doesn’t satisfying of vinery equation. In the other hand the boundary

conditions (4.25) is not corresponding to the exact solution (4.26) which were given in [Momani
(2005), Yulita Mollig et.al (2009)], that’s mean the boundary conditions (4.25) are be not true for this

problem. So, in the following example we present a reliable framework by applying another boundary

conditions which can be satisfying by exact solution (4.26).

Example 4: Consider the following one-dimensional fractional heat-like problem

0“u 1 ,0%u
ata—ix ﬁ:0,0<x<1,0<a<1,t>0, (435)

subject to the initial conditions
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u(x,0) =x%, 0<x<1, (4.36)

and the boundary conditions

u(0,t) =0, u(1,t)=E,(t%, t>0, (4.37)
where
m tk(X
B (t) = lim ' = 4,
«(t) = limy L T(1 +ka) (4:38)

The initial approximation is

uo(x,t) = x2. (4.39)

By applying a new approximations u;, in Eq. (3.6) we have

w, (6, t) = u, (x, t) + (1 —x2)[0 —u,(0,t)] + x*[E, (t*) —u, (1,)], n=0,12,... (4.40)

At n = 0, we begin with a new initial approximation wu; as

ug(x,t) = x®E, (t%)

ta tZa
— .2
x <1+r(a+1)+r(2a+1)+ ) (4.41)
We choose m = 1 in Eq. (2.15.a)
up(x, t) = Z Py u(x 0)— = x?, (4.42)
by Eq. (3.7) and Eq. (1.2) we have

1
w (6 =521, )]

1, [PROE ()
_ExZI l 0x? l
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xZ t vt ) ¢ .L.Za d
r(a)fo(t_f) ( +r(1+a)+r(2a+1)+"'> K

xZ

I'(a)

B(a,a + 1)t%* N B(a, 2a + 1)t3¢
I'(a+1) rQa +1)

<B (a, Dt* +

ta tZa t3a
_ 2 Y 4.43
x <F(a+1)+F(2a+1)+F(3a+1)+ ) (4.43)

where B is beta function. We can readily check

t® t2a t3a
(e, 6) = ug(x,y,6) +u (6, y,6) = 22 (1+ et rens T rean T ). (4.44)

Which yields an exact solution of Eq. (4.35), it is the same result which is writing by [Momani (2005),
Yulita Mollig et.al (2009)] where are using initial conditions only.

Example 5: Consider the one-dimensional fractional wave-like equation

0°u 1 ,0%u
S 5% 57 =0 0<x<11<a<2t>0, (4.45)

subject to the initial conditions

du(x,0) )
=Xx 0<x<1, (4.46)

’0 = ) )
u(x,0) =x 5t

and the boundary conditions
u(0,t) =0, wu(l,t)=1+sinht, t>0, (4.47)

The exact solution is [Momani (2005), Yulita Mollig et.al (2009)]

u(x,t) = x + x2t Eg o (t), (4.48)
where
m tk(X
- 1
E, . (t%) = HllllrgOkZO—F(z T (4.49)

The initial approximation is
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uo(x,t) = x + x°t. (4.50)

By applying a new approximations w;; in Eq. (3.6) we obtain
w,(x,t) = u, (x,t) + (1 —x2)[0 —u,(0,t)] + x*[1 + sinht —u,(1,t)], n=0,1,2,... (4.51)

To begin with a new initial approximation u, we applying Eq. (4.51) at n = 0 such as
ug(x,t) = x + x% sinh t. (4.52)
We choose m = 1 in Eq. (2.14.a)

gk th ,
ug(x, t) = Z ﬁu(x, 0) i x + x°t, (4.53)
k=0 '

by Eq. (3.7) and Eq. (1.2) we have

1
U (x,t) = Elea [(US(X, t))xx]

= 2]
X Jdx?

1, [62(x+x2 sinh t )l
2

xZ t w1 T3 TS p
F(a)-];)(t—‘[) (T+m+m+"'> T,

2

B(a, Ht*3  B(a, 6)t*+>
<B(a, 2)t**t 4 (@9 (@6) )

T r(4) r(6)
+ 1 a+ 1 a+
= (F(a+2)t 1+I‘(0{+4)t 3+F(a+6)t S+ ) (4:54)

We can readily check

u(x, t) = uglx, t) + uy(x, t)

1 1
e+l 4 tet3 4~ patd 4 ) (455)

:x+x2(t+r(a+2) T(a+ 4) [(a +6)

Let a = 2, EQ. (4.55) becomes

100



Elaf Jaafar Ali Modified treatment of ....

t3 > t7
u(x, t) =x+x2(t+—+—+—+---)=x+xzsinht. (4.56)

31 5! 6!
Which yields an exact solution of Eq. (4.45) when a = 1. But, generally the solution (4.55) is not
exactly for Eq. (4.45), because it doesn’t satisfying of vinery equation. In the other hand the boundary
conditions (4.47) is not corresponding to the exact solution (4.48) which were given in [Momani
(2005), Yulita Mollig et.al (2009)], that’s mean the boundary conditions (4.47) are be not true. So, in
the following example we present a reliable framework by applying another boundary conditions which

can be satisfying by exact solution (4.48).
Example 6: Consider the one-dimensional fractional wave-like equation

1 262u_0 0<x<ll<a<2,t>0 4,57
2x axz— ) X ) a ) ) ( )

0%u
ot

subject to the initial conditions

ou(x,0) )
5t =x°, 0<x<1, (4.58)

u(x,0) = x,

and the boundary conditions

u(0,t) =0, u(l,t)=1+tE. (%), t>0, (4.59)
where
m tk(X
E =1l Z— : 4,
o,2 (t ) ml_r)lgo L F(Z + kO() ( 60)

The initial approximation is
uo(x, t) = x + x%t. (4.61)

By applying a new approximations w; in Eq. (3.6) we obtain

wh (1) = u, (3, 6) + (1 — x)[0 =1, (0, )] + x2[1 + tEq 5 (t%) —u, (1, 1)],n = 0,1,2,.. (4.62) At

n = 0, the new initial approximation uy is
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uf(x, t) = x + xt Eg o (t%)

=x+x%t|{1+ t + e + 4.63
sxTX r2+a) TQ2+2a) ' (4.63)

We choose m = 1in Eq. (2.14.a)
<L tk
— _ i 2
ug(x, t) = Z PTG u(x, 0) o x + x°t, (4.64)
k=0
by Eq. (3.7) and Eq. (1.2) we have

1
ul(x' t) = Elea [(US(X, t))xx]

B dx2

3 llea laz(x + x%t B, (t%) )
2

X2 t ,l.a+1 T2a+1
j t-0* !+ + + - )dt
I'(a) J, Fa+2) TQRa+?2) ’
2

T

tO{+1 t2a+1 t3a+1
= x? < ) (4.65)

B(a,a + 2)t** !t B(a,2a + 2)t3¢*! )

<B(“’ 2t + (e +2) [(2a + 2)

fa+2) 'Ta+2) TGa+t2)
We can readily check

u(x, t) = uglx, t) + uy(x, t)

=x+x%t(1+ a + a + i +
—xTX f@+2) TQa+2) TGa+2)

= x + x2t Eo o (t%). (4.66)

Which yields an exact solution of Eq. (4.57), it is the same result which is writing by [Momani (2005),

Yulita Molliqg et.al (2009)] whrer are using initial conditions only.
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5. Conclusions

Very effective to construct a new initial successive solutions u,, by mixed initial and boundary
conditions together which explained in formula (3.6) and used it to find successive approximations u,,
of the solution u by applying Adomian decomposition method to solve initial boundary value problems
for one dimensional heat-like and wave-like partial differential equations (ordinary or fractional). Some
examples are given in this paper to illustrate the effectiveness and convenience of a new technique. It is
important and obvious to show that the exact solutions have found directly from a first iteration of
these examples by applying a new technique which is determined in this paper, but if used initial
conditions only [Momani (2005), Yulita Molliq et.al (2009)] or applied formula of Eq. (3.4) [Ali
(2011)] we will have exact solution by calculating infinite successive solutions u,, which closed form
by Eq. (2.4). In the other hand we note that the first a new initial approximation u; are appearing in the

same exact solution.
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