On the b-separation axioms

EnaamHadiAbd Department of Computer College of Sciences Karbala University Karbala, Iraq

Abstract:

In this paper we present b-separation axioms by using b-open set and proved some related theorems .Where we consider T_0 , T_1 , T_2 and T_3 spaces also regular and normal spaces .

درسنا في هذا الموضوع بديهيات الفصل من النوع b وذلك بأستخدام المجموعات المفتوحة من النوعbوقمنا بأثباتوتوضيح بعض النظريات المتعلقة بها كما درسنا فضاءاتT0و T1 وT2 وأيضا T3 وكذلك الفضاءات المنتظمة والسوية .

1. Introduction

Andrijevi'c [2] introduced a new class of generalized open sets called b-open sets into the field of topology. This class is a subset of the class of semi-preopen sets [3], i.e. a subset of atopological space which is contained in the closure of the interior of its closure. Also the class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set which is contained in the closure of its interior, and the class of locally dense sets [5] or preopen sets [1], i.e. aset which is contained in the interior of its closure. Andrijevi'c studied several fundamental and interesting properties of b-open sets.

Definition (1.1):[2]

A subset A of a space X is called b-open if $A \subset cl(intA) \cup int(cl A)$. The class of all b-open sets in X will be denoted by B(X).

Example(1.2):[2]

Consider the set R of real numbers with the usual topology, and let $A = [0,1] \cup [((1,2) \cap Q)]$ where Q stands for the set of rational numbers. Then A is b-open.

Proposition(1.3):

(a) The union of any family of b-open sets is a b-open set.

(b) The intersection of an open and a b-open set is a b-open set.

Proof:

The statements are proved by using the same method as in proving the corresponding results for the other three classes of generalized open sets. (see [3])

Definition (1.4): [2]

A subset A of a space X is called b-closed if X-A is b-open. Thus A is b-closed iff int(cl A) \cap cl(intA) \subset A.

Definition (1.5):[2]

If A is a subset of a space X the b-closure of A, denoted bybcl(A), is bcl(A)= \cap {F:F b-closed, F \supset A}. The b-interior of A, denoted bybint(A), is bint(A)= \cup {G:G b-open, G \subset A}.

Definition (1.6):[4]

Let (X, τ) be a topological space and let $x \in X$, Asubset N of X is said to be **b-nhd**ofx iff there exist a b-open set G such that $x \in G \subset N$.

Definition (1.7): [4]

The point x is a b-accumulation point of A if \forall b-nhd N of x , $N \cap A \neq \emptyset$.Then b-drive set defined by $D(A) = \{x:x \text{ is a b-accumulation point }\}$

Theorem(1.8):[6]

A subset of atopological space (X, τ) is b-open iff it isb-nhdof eachof its points.

Proof:

let G be a b-open subset of X. Then for every $x \in G$, $x \in G \subset G$ and therefore G is ab-nhd of each of its points.

Conversely, let G be b – nhd of each of its point. if $G = \emptyset$, it is b-open, If $G \neq \emptyset$, Then to each $x \in G$ there exist b-open set G_x such that $x \in G_x \subset G$ it follows That $G = \bigcup \{G_x : x \in G\}$. Hence G is b-open being a union of b-open sets.

2. <u>b-T_o space</u> Definition(2.1):

Atopological space (X, τ) is said to be b-T₀ iff given any pairof distinct pointsx, y of X, there exist bnhd of one of them not containing the other .that is iffthere exist a b-open set G such that $x \in G, y \notin G$.

Example(2.2):

Let (X,D) be a discrete topological space and let x,y be distinct points of X. Since the space is discrete, $\{x\}$ is a b-opennhd of x which does not contain y. It follows that (X,D) is a b-T₀ space.

Theorem (2.3):

If W subspace of X (where W is open subset of X), Then W is $b-T_0$ if X is $b-T_0$ space.

Proof:

Let $x,y \in W$, Then $x,y \in X$. Since X is b-T₀space, Then $\exists G b$ -open set $\exists x \in G \ y \notin G$. E=G $\cap W$ is b-open set in W $x \in G \cap W = E$, $y \notin G \cap W = E$ Hence W is b-T₀ space.

Theorem(2.4):

A topological space (X, τ) is b-T_oiff for any distinct arbitrarypoints x,yof X, the b-closures of $\{x\}, \{y\}$ are distinct.

Proof:

⇐Let (X, τ) be b-*T_o* space and let x,y be two distinct points of X .then we haveto show that $bcl{x}\neq bcl{y}$.since the space is b-*T_o*,there exist a b-open set G Containing one of them say x but notcontaining y .by definition $bcl{y}$ is intersection of all b-closed sets containing $\{y\}$. it follows that $bcl{y}\subset X$ -G .hence $x \notin X$ -G .implies that $x \notin bcl{y}$.thus $x \in bcl{x}$ but $x \notin bcl{y}$.it follows $bcl{x}\neq bcl{y}$.thus it is shown that in b-T_o space distinct points have distinct closure.

3. <u>b-T₁ space</u> Definition(3.1):

Atopological spaces (X, τ) is said to be a b-T₁ spaceiffgiven anypair of distinct points x , y of X there exist two b-open sets one containingy but not x, that is , there exist b-open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

<u>Theorem (3.2):</u>

If W subspace of X (where W is open subset of X), Then W is $b-T_1$ if X is $b-T_1$ space. **Proof**:

<u>Proof:</u>

Let $x, y \in W$, Then $x, y \in X$. So $\exists B_1, B_2$ b-open sets in $X \ni x \in B_1$ but $y \notin B_1$ and $y \in B_2$ but $x \notin B_2$. $E_1 = B_1 \cap W$, $E_2 = B_2 \cap W$ So E_1, E_2 are b-open set in W. Then $x \in E_1$, $y \in E_2$ & $x \notin E_2$, $y \notin E_1$ therefore W is b-T₁ space.

Remark (3.3):

Every $b-T_1$ space is $b-T_o$ space.

Proof :

Let (X, τ) is b-T₁space and let x,y any pair of distinct points of X , Then there exists there exist two b-open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. That is

 $H-\{x\}$ is b-open nhd of x containing y ,and $G-\{y\}$ is b-open nhd of y containing x, it follows that (X, τ) is b-T_o space.

Remark (3.4):

Every T_1 space is b- T_1 space.

Proof:

Let (X, τ) is said to be a T₁space, Thengiven anypair of distinct points x, y of X there exist two open sets one containingy but not x, that is, there exist open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. And since every open set is b-open set, Hence every T₁ space is b-T₁ space.

Theorem(3.5):

A topological space (X,τ) is b-T₁ space iff every singleton subset {x} of X is b-closed.

Proof:

 \leftarrow Let every singleton subset {x} of X be b-closed we have to show that the space is

b-T₁.let x,y be any two distinct point of X, then X-{x} is ab-open which contains y but does not contains x. similarly X-{y} is b-open which contains x but does not contains y Hence the space(X, τ) is b-T₁.

⇒let the space beb-T₁ and let x be any point of X.We want to show that{x} isb-closed, that is X-{x} is b-open, Let $y \in X$ -{x} then $y \neq x$ since X is b-T₁, there existab-open set G_y such that $y \in G_y$ but $x \notin G_y$ it follows that $y \in G_y \subset X$ -{x} hence bytheorem(1.8), X-{x} isb-open, {x} is b-closed.

4. <u>b-T₂ space</u> Definition(4.1):

A topological space (X, τ) is said to be a b- T_2 space iff forevery pair of distinct points x,y of X there exist disjoint b-nhds N and M of x and y respectively such that $N \cap M = \emptyset$.

Theorem (4.2):

If W subspace of X (where W is open subset of X), Then W is $b-T_2$ if X is $b-T_2$ space.

Proof:

Let $x,y \in W$, Then $x,y \in X$. So $\exists B_1, B_2$ such that $B_1 \cap B_2 = \emptyset \& x \in B_1$, $y \in B_2$. Where B_1, B_2 are b-open sets in X.

$$\begin{split} E_1 = & B_1 \cap W \ , \ E_2 = & B_2 \cap W \ \text{are b-open subsets in } W \ . \\ And \ x \in & E_1, \ y \in & E_2 \\ & E_1 \cap & E_2 = (B_1 \cap W) \cap (B_2 \cap W) \\ = & (B_1 \cap & B_2) \cap & W = & \varnothing \cap & W = & \varnothing \\ & \text{Hence } W \ \text{is } b \text{-} & T_2 \text{-space } . \end{split}$$

<u>Theorem(4.3):</u>

Each singleton subset of $b-T_2$ space is b-closed.

<u> Proof</u> :

Let X be a b- T_2 space and let $x \in X$ to show that $\{x\}$ is closed. let y be anarbitrary point of X distinct from x since the space is b- T_2 space, there exist b-nhd N of y such that $x \notin N$. It follows that y is not b- accumulation of $\{x\}$ and consequently $D(\{x\})=\emptyset$, hence $bcl\{x\}=\{x\}$ then $\{x\}$ is b-closed.

Remark (4.4):

Every T_2 space is a b-T₂space.

Proof :

Let (X, τ) is said to be a T_2 space iff forevery pair of distinct points x,y of X there exist disjointnhds N and M of x and y respectively such that $N \cap M = \emptyset$.since N ,M arenhds , Then contain two open sets G ,H respectivelyand since every open set is b-open set ,Then G,H are b-open sets impilies N,M are b-nhds,HenceEvery T_2 space is a b- T_2 space .

Theorem(4.5):

Everyb- T_2 space is b- T_1 space.

Proof:

Let (X, τ) bea b-T₂ space and let x,y be any two distinct points of X, since the

space is b-T₂ space, there exist b-nhd Nof x and b-nhd Mof y such that $N \cap M = \emptyset$.this implies that $x \in N$ but $y \notin N$ and $y \in M$ but $x \notin N$ hence is b-T₁ space.

But the converse of Theorem(4.5) is not true in general as the following example shows:

Example (4.6):

Consider the co-finite topology τ on an infinite set X. Then the space (X, τ) is $b-T_1$. For if x is any arbitrary point of X, then by definition of τ , X-{x} is b-open (being the complement of finite set) and consequently {x} is b-closed. Thus every singleton subset of X is b-closed and hence the space is $b-T_1$. But This space is not $b-T_2$. For this topology no two b-open sets can be disjoints subsets of X so that $G \cap H = \emptyset$. Hence

$$(G \cap H)' = \emptyset' = X$$

 \rightarrow G' \cup H' = X . [De-Morgan Law]

But G' and H' are finite sets and so their union is also finite which is a contradiction since X is infinite . Hence no two distinct points can be separated by b-open sets . Accordingly this space is not $b-T_2$.

<u>Theorem(4.7)</u>:

Let (X, τ) be b-topological space .then the following statements areEquivalent :

a) τ is b-*T*₂ topology for X,

b) the intersection of all b-closed nhds of each point of X is singleton.

Proof:

(a) \Leftrightarrow (b) .let (X, τ) be b- T_2 space and let x, y be any two points of X there exist

b-open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$.since $G \cap H = \emptyset$; $x \in G \subset X$ -H hence X-H isb-closed nhd of x which does not contain y.since y is arbitrary ,the intersection of all b-closed nhds is the singleton {x}.

Conversely, let {x} be the intersection of all b-closednhds of arbitrary point $x \in X$. let y be any point of X different from x. since y does not belong to the intersection, Theremust existb-closed nhd Nof x such that $y \notin N$ since N is b-nhd of x, There existsb-open set G such that $x \notin G \subset N$. Thus G and X-N are b-open sets such that $x \notin G$, $y \notin X$ -N and $G \cap (X-N) = \emptyset$. It follows that the space is $b-T_2$ space.

Definition(4.8):

Let (X, τ) and (Y,v) be two b-topological spaces and let f be a mapping of XintoYthen f is said to be b-open mapping ifff[G] is b-open in Ywhenever G isb-open in X.

Theorem(4.9):

The property of a space being a $b-T_2$ space is preserved by one-to-one ,onto,and b-open mapping.

Proof:

Let (X, τ) be b- T_2 space and let *f* be one-to-one, b-open mapping of (X, τ) onto

another space(Y,v). we shall show that (Y,v) is b- T_2 space, let y_1, y_2 be two distinct points of Y. since f is one-to-one onto map , there exist distinct point x_1, x_2 of X such that $f(x_1)=y_1, f(x_2)=y_2$, since (X, τ) isb- T_2 space , there exist b-opensets G and H such that $x_1 \in G, x_2 \in H$ and $G \cap H = \emptyset$. Again since f is an b-open mapping f[G] and f[H] are b-open in Y such that

$$y_1 = f(x_1) \in f[G]$$

 $y_2 = f(x_2) \in f[H]$ and $f[G] \cap f[H] = f[G \cap H] = f[\mathcal{O}] = \mathcal{O}$

Since *f* is one-to-one ,we have $f[G] \cap f[H] = f[G \cap H]$ it follows that (Y,v) is also b-T₂ space.

5. <u>b-regular space</u> <u>Definition (5.1):</u>

Let (X, τ) be a topological space, then X is called **b-regular space**, if for each $x \in X$ and F b-closed subset of X such that $x \notin F$ there exist two b-open sets say U and V such that $x \in U, F \subseteq V$ and U $\cap V = \emptyset$.

Remark (5.2):

Every regular space is a b-regular.

Proof:

Let (X, τ) be aregular space, Then for each $x \in X$ and F closed subset of X such that $x \notin F$ there exist two open sets say U and V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$. and because every open set is b-open set ,Then every regular is b-regular.

But the converse of remark (5.2) is not true in general as the following example shows:

Example (5.3):

Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\}$ PO(X) = {X, Ø, {a, b}, {a}, {b}, {a, c}, {b, c}} PC(X) = {X, Ø, {c}, {b, c}, {a, c}, {b}, {a}} (X, τ) is a b-regular space, but (X, τ) is not a regular space.

Theorem (5.4):

A topological space X is b-regular iff for every point $x \in X$ and every b-nhdNof x, there exists a b-nhd Mof x such that $bcl(M) \subset N$. In other words, a topological space isb-regulariff the collection of all b-closed nhds of x from a local base at x.

Proof :

It is enough to prove the theorem for b-open nhds . Let N be any b-nhd of x . Then there exist b-open set G such that $x \in G \subset N$. Since G' is

b-closed and $x \notin G'$, by definition there exist b-open sets L and M such that $G' \subset L$, $x \in M$ and $L \cap M = \emptyset$ so that $M \subset L'$.

It follows that

 $bcl(M) \subset bcl(L') = L'$

Also $G' \subset L \to L' \subset G \subset N.$

From (1) and (2), we get $bcl(M) \subset N$.

Let the condition hold .Let F be any b-closed set and let $x \notin F$. Then $x \in F'$. Since F' is a b-open set containing x, by hypothesis there exist a b-open set M such that $x \in M$ and $bcl(M) \subset F' \rightarrow F \subset [bcl(M)]'$. Then [bcl(M)]' is a b-open set containing F. Also

 $M \cap M' = \varnothing \rightarrow M \cap [bcl(M)]' = \varnothing$

Hence the space is b-regular.

Definition (5.5):

A topological space (X, τ) is called **b-T₃space**, if X is a b-T₁ and b-regular space.

Remark (5.6):

- 1. Every $b-T_3$ space is a $b-T_2$ space.
- 2. Every T_3 space is a b- T_3 space.

Proof :

1-Let (X,τ) be a b-T₃ space and let x,y be two distinct points of X. Now by definition, X is also a b-T₁ space and so $\{x\}$ is a b-closed set .Also $y \notin \{x\}$. Since (X,τ) is a b-regular space, There exist b-open sets G and H such that

 $\{x\} \subset G, y \in H \text{ and } G \cap H = \emptyset$.

Also $\{x\}\}\subset G \to x \in G$. Thus x,y belong respectively to disjoint b-open sets G and H. Accordingly (X,τ) is a b-T₂space.

2- Let (X,τ) be a T₃space, Then X is a T₁ and regular space. And from remark(3.4)

every T_1 space is b-T₁ and remark(5.2) every regular space is b-regular ,Then every T_3 space is b-T₃.

Corollary (5.7):

Every T₃-space is a b-T₂space.

Proof :

From remark(5.6-2) every T_3 space is b-T₃ and from remark(5.6-1) every b-T₃ space is a b-T₂ space , Then every T₃-space is a b-T₂ space .

Remark (5.8):

Every $b-T_3$ space is a b-regular space.

Proof :

From definition(5.5) let (X, τ) is a b-T₃ space, Then X is a b-T₁ and b-regular space . Hence X is b-regular space , Hence everyb-T₃ space is a b-regular space .

6. <u>b-normal space</u> Definition (6.1):

Let (X, τ) be a topological space is called **b-normal**, if for each F_1 and F_2 two b-closed sets such that $F_1 \cap F_2 = \emptyset$, there exist two b-open sets say U and V such that $F_1 \subseteq U$, $F_2 \subseteq V$ and $U \cap V = \emptyset$.

Example (6.3):

Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{b, c, d\}, \{a, c, d\}, \{c, d\}\}$, Then (X, τ) is a b-normal space. **Remark (6.2):**

Every normal space is a b-normal space.

Proof :

Let (X, τ) is a normal space, Thenfor each F_1 and F_2 two closed sets such that $F_1 \cap F_2 = \emptyset$, there exist two open sets say U and V such that $F_1 \subseteq U$, $F_2 \subseteq V$ and $U \cap V = \emptyset$. And since every open set is a bound open ,Hence every normal space is a b-normal space .

Theorem(6.3):

 (X, τ) is a b-normal space, iff for each b-closed set F and for each b-open set Esuch that $F \subset E$, there exists a b-open set V such that $F \subset V \subset bcl(V) \subset E$.

Proof :

Let X be a b-normal space and let F be any b-closed set and E a b-open set such that

 $F \subset E$. Then E' is a b-closed set such that $F \cap E' = \emptyset$

Thus E' and F are disjoint b-closed subsets of X. Since the space is b-normal, there exist b-open sets U and V such that $E' \subset U$, $F \subset V$ and $U \cap V = \emptyset$ so that $V \subset U'$

But $V \subset U' \rightarrow bcl(V) \subset bcl(U') = U$ [since U' is b-closed](1) Also $E' \subset U \rightarrow U' \subset E$ (2)

From (1) and (2), we get $bcl(V) \subset E$. Thus there exists a b-open set V such that $F \subset V$ and $bcl(V) \subset E$.

Let the condition hold .Let N and M be b-closed subsets of X such that

 $N \cap M = \emptyset$ so that $N \subset M'$

Thus the b-closed set N is contained in the b-open set M'. By hypothesis there exists a b-open set V such that

 $N \subset V$ and $bcl(V) \subset M'$ which implies $M \subset [bcl(V)]'$

Also $V \cap [bcl(V)]' = \emptyset$

Thus V and [bcl(V)]' are two disjoint b-open sets such that

 $N \subset V$ and $M \subset [bcl(V)]'$

Implies that the space is b-normal.

References:

- [1] A.S.Mashhour, M.E.Abd El-Monsef and S. N. El-Deeb, Onprecontinuous and Weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- [2] D. Andrijevi'c, On b-open sets, Mat. Vesnik 48(1996), 59-64.
- [3] D. Andrijevi'c, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32.
- [4] G. B. Navalagi"Definition Bank In General Topology", Topology Atlas Survey Articles Section URL: http://dx.ca/t/a/i/c/32htm, 2000
- [5] H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J.Math. 8(1964), 351-360.
- [6]J. N. Sharma," topology", meerut ,1976.
- [7] N. Levine, Semi-open sets and semi-continuity in topologyical spaces, Amer. Math.Monthly 70(1963), 36-41.