ON COMPLETELY CLOSED IDEAL WITH RESPECT TO AN ELEMENT OF A BH-ALGEBRA المثالية المغلقة تماماً بالنسبة إلى عنصر في جبر-BH

By

Assist.prof. Husein Hadi Abbass University of Kufa\ College of Education for girls\ Department of Mathematics <u>Msc_hussien@yahoo.com</u>

Hayder Abbas Dahham University of Kufa\ College of Education for girls\ Department of Mathematics <u>Hay_ad24@yahoo.com</u>

Abstract

In this paper, we introduce the notions of a completely closed ideal and a completely closed ideal with respect to an element of a BH-algebra .Also we study these notions on a BG-algebra and B-algebra, We stated and proved some theorems which determine the relationship between these notions and some other types of ideals of a BH-algebra and a BG-algebra.

المستخلص: قدمنا في هذا البحث مفهومي المثالية المغلقة تماما والمثالية المغلقة تماما بالنسبة الى عنصر في جبر BH₋كما درسنا هذا المفهوم في جبر BG و جبر B كما وضعنا وبر هنا بعض المبر هنات التي تحدد العلاقة بين هذا المفهوم و بعض انواع المثاليات الاخرى مثل المثالية المغلقة والمثالية المغلقة بالنسبة الى عنصر في جبر - BH.

INTRODUCTION

The notion of a BCK-algebras and a BCI-algebras was formulated first in 1966 [6] by (Y.Imai) and (K.Iseki). In 1983, Hu and Li introduced the wide class of abstract algebras: BCH–algebras[8]. In 1996, (J.Neggers) introduced the notion of d-algebra[5]. In 1998, Y.B.Jun, E.H.Roh and H.S.Kim introduced a new notion, called a BH-algebra[10]. In 2002 ,J.Neggers and H.S.Kim introduced the notion of B-algebra, which is a generalization of a BCK-algebra [4]. In 2008, C.B.Kim and H.S.kim introduced the notion of BG-algebras, which is a generalization of a B-algebras[2]. In 2011, H.H.Abass and H.M.A.Saeed introduced the notion of a closed ideal with respect to an element of a BCH-algebra[3].

In this paper, we introduced the notions as we mentioned in the abstract.

1.PRELIMINARIES

In this section we give some basic concepts about a B-algebra , a BG-algebra , a BH-algebra, , ideal of a BH-algebra , closed ideal of a BH-algebra , a closed ideal with respect to an element of a BH-algebra , a normal set , with some theorems, propositions and examples which we needed in our work.

Definition (1.1) [4]:

A B-algebra is a non-empty set with a constant 0 and a binary operation "*" satisfying the following axioms:

1) x * x = 0, 2) x * 0 = x, 3) (x * y) * z = x * (z * (0 * y)), for all x, y,z in X.

Definition (1.2) [2] : A BG-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: 1) x * x = 0, 2) x * 0 = x, 3) (x * y) * (0 * y) = x, for all $x, y \in X$. Theorem (1.3) [2]: If (X, *, 0) is a B-algebra, then (X, *, 0) is a BG-algebra. Definition (1.4) [10] : A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions: 1) $x * x = 0, \forall x \in X$. 2) x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$. 3) x *0 = x, $\forall x \in X$. Proposition (1.5) [2]: Every BG-algebra is a BH-algebra. Definition (1.6) [7] : A nonempty subset S of a BH-algebra X is called a BH-Subalgebra or Subalgebra of X if $x * y \in$ S for all $x, y \in S$. Lemma (1.7) [2]: Let (X; *, 0) be a BG-algebra. Then 1) the right cancellation law holds in X, i.e., $x^*y = z^*y$ implies x = z, 2) 0 * (0 * x) = x for all $x \in X$, 3) if x * y = 0, then x = y for any $x, y \in X$, 4) if 0 * x = 0 * y, then x = y for any $x, y \in X$, 5) (x * (0 * x)) * x = x for all $x \in X$. Definition (1.8) [10] : Let I be a nonempty subset of a BH-algebra X. Then I is called an ideal of X if it satisfies: 1)0∈I. 2) $x^*y \in I$ and $y \in I$ imply $x \in I$ Definition (<u>1.9</u>) [3] : An ideal I of a BH-algebra X is called a closed ideal of X if : for every $x \in I$, we have $0 * x \in I$. Definition (1.10) [2]: A non-empty subset N of a BG-algebra X is said to be normal of X if $(x * a) * (y * b) \in N$ for any x * y, $a * b \in N$. Definition (1.11) [8]: Let X be a BH-algebra, a non-empty subset N of X is said to be normal of X if $(x * a) * (y * b) \in N$ for any x * y, $a * b \in N$. Theorem (1.12) [2]. Every normal subset N of a BG-algebra X is a subalgebra of X. We generalize this theorem to a BH-algebra Theorem (1.13): Every normal subset N of a BH-algebra X is a subalgebra of X. proof: Let X be a BH-algebra and N be a normal in X, let $x, y \in N$, $\Rightarrow x*0, y*0 \in \mathbb{N}$ [Since x*0=x and y*0=y] $\Rightarrow x^*y = (x^*y)^*(0^*0) \in \mathbb{N}$ [Since N is a normal] \therefore N is a subalgebra of X.

Definition (1.14) [3]: Let X be a BH-algebra and I be an ideal of X. Then I is called a Closed Ideal with respect to an element $b \in X$ (denoted b-closed ideal) if $b^*(0^*x) \in I$, for all $x \in I$. Remark (1.15) [3] : In a BH-algebra X, the ideal $I = \{0\}$ is 0-closed ideal. Also, the ideal I = X is b-closed ideal, $\forall b \in X.$ Definition (1.16) [3]: Let X be a BH-algebra . Then the set $X_+ = \{ x \in X : 0 * x = 0 \}$ is called the BCA-part of X. Definition (1.17) [9]: Let X and Y be a BH-algebra. A mapping f: $X \rightarrow Y$ of a BG-algebra is called a homomorphism if $f(x^*y) = f(x)^*f(y)$ for any $x, y \in X$ Remark (1.18) [9]: The set $\{x \in X: f(x)=0\}$ is called the kernel of the f, denote it by Ker(f). Remark (1.19): If f: $X \rightarrow Y$ is a homomorphism of BH-algebra, then f(0) = 0. Definition (1.20) [1]: A BCH-algebra X is called an associative BCH-algebra if: (x * y) * z = x * (y * z), for all x, y, $z \in X$. We generalize the concept of associative to a BH-algebra Definition (1.21): A BH-algebra X is called an associative BH-algebra if: (x * y) * z = x * (y * z), for all x, y, $z \in X$. 2. THE MAIN RESULTS In this section we define the notions of completely closed ideal and a completely closed ideal with respect to an element of a BH-algebra. For our discussion, we shall link these notions with other notions which mentioned in preliminaries. Definition (2.1): An ideal I of a BH-algebras is called a completely closed ideal if $\mathbf{x} * \mathbf{y} \in \mathbf{I}$, $\forall \mathbf{x}, \mathbf{y} \in \mathbf{I}$. Remark (2.2): In any BH-algebra, the ideals $I=\{0\}$ and I=X are completely closed ideals. Example (2.3): Let X={0, 1, 2, 3} be a BH-algebras, with binary operation defined by: * 0 1 2 3 0 0 1 0 2 3 1 1 0 0 2 2 2 3 0 3 3 0 3 3

The ideal I={0, 1} is a completely closed ideal since:

$$\mathbf{0}*\mathbf{0}=\mathbf{0}\in\mathbf{I} \ ,\mathbf{0}*\mathbf{1}=\mathbf{1}\in\mathbf{I}$$

$\mathbf{1}*\mathbf{0}=\mathbf{1}\in \mathbf{I}$, $\mathbf{1}*\mathbf{1}=\mathbf{0}\in \mathbf{I}$

but the ideal I= $\{0, 1, 2\}$ is not a completely closed ideal since $1, 2 \in I$ but $1 * 2 = 3 \notin I$ Remark (2.4):

Every completely closed ideal is a closed ideal but the converse is not be true, In example(2.3), the ideal $I=\{0, 1, 2\}$ is a closed ideal but it is not a completely closed ideal.

<u>Theorem (2.5):</u>

If X be an associative BH-algebra ,then X is a BG-algebra .

```
Proof:
Let X be associative BH-algebra, then
                                       [Definition(1.6)(1)]
1)x*x=0
2)x*0=x
                                       [Definition(1.6)(3)]
3) (x*y)*(0*y)=((x*y)*0)*y
                                       [Since X is an associative]
                  =(x*y)*y
                  =x^{*}(y^{*}y)
                                      [Since X is an associative]
                  =x*0
                  =x
Then X is a BG-algebra.
Remark (2.6) :
the converse of above theorem is not be true, as in the following example.
Example (2.7):
Consider the BG-algebra (X,*,0) where X = \{0,1,2\} and * defined by
   *
              0
                                    2
                         1
   0
                                    2
              0
                         1
   1
              1
                         0
                                    1
   2
              2
                         2
                                    0
is not associative Since
                            1*(2*1)=1\neq 0=(1*2)*1
Proposition (2.8):
  Let X be a BG-algebra and y \in X, then x * y are distinct \forall x \in X.
Proof:
  Suppose x, z ∈ X such that
\mathbf{x} * \mathbf{y} = \mathbf{z} * \mathbf{y}
\Rightarrow \mathbf{x} = \mathbf{z}
                                                 [Lemma(1.7)(1)]
Proposition (2.9):
  Let X be a BG-algebra then the elements 0^*x are distinct \forall x \in X.
Proof:
  Suppose \exists x, z \in X such that 0 x = 0 z
\Rightarrow \mathbf{x} = \mathbf{z}
                                              [By lemma(1.7)(4)]
Theorem (2.10):
 Let X be an associative BH-algebra, then every normal subalgebra is a completely closed ideal of
Х.
Proof:
  Let X be associative a BH-algebra, and let N be a normal subalgebra
To prove N is an ideal
1)Since N is a non empty,
  \Rightarrow \exists x \in N
  \Rightarrow x^*x \in N
                            [Since N is a normal subalgebra. Theorem(1.13)]
  \Rightarrow 0 \in \mathbb{N}
2) let x^*y \in N and y \in N
  \Rightarrow(x*y)*y\inN
                              [Since N is a normal subalgebra. Theorem(1.13)]
                              [Since X is associative BH-algebra. Theorem(1.13)]
  \Rightarrow x^*(y^*y) \in N
  \Rightarrow x*0 \in N
  \Rightarrow x \in N
\therefore N is an ideal.
3) let x, y \in N
  \Rightarrow x^*y \in N
                              [Since N is a normal subalgebra. Theorem(1.13)]
```

 \therefore N is a completely closed ideal.

Theorem (2.11):

Let X be a BH-algebras, then every completely closed ideal in X with the same binary operation on X and the constant 0, is a BH-algebra.

Proof:

Let X be a BH-algebra ,and let I be a completely closed ideal

1)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} \ast \mathbf{x} = \mathbf{0}$ [Since X is a BH-algebra definition(1.4)(1)] 2)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} \ast \mathbf{0} = \mathbf{x}$ [Since X is a BH-algebra definition(1.4)(3)] 3)Let $\mathbf{x}, \mathbf{y} \in \mathbf{I}$, and $\mathbf{x} \ast \mathbf{y} = \mathbf{0} \land \mathbf{y} \ast \mathbf{x} = \mathbf{0}$

 \Rightarrow x, y \in X, and x* y = 0, y* x = 0

$$\Rightarrow \mathbf{x} = \mathbf{y}$$

[Since X is a BH-algebra]

Then I is a BH-algebra Remark (2.12):

If I is not a completely closed ideal then I may be not a BH-algebra, as in the following example. Example (2.13):

Consider the BH-algebra (X,*,0) where $X = \{0, 1, 2, 3\}$. Define * as follows:

*	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

,then the ideal I={0, 1} is not a BH-algebra, since $0*1=3 \notin I$

 \Rightarrow I is not closed under "*".

Theorem (2.14):

Let X be a BG-algebras, then every ideal in X with the same binary operation on X and the constant 0, is a BG-algebra.

Proof:

Let X be a BG-algebra ,and let I be an ideal

1)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} * \mathbf{x} = \mathbf{0}$ [Since X is a BG-algebra] 2)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} * \mathbf{0} = \mathbf{x}$ [Since X is a BG-algebra] 3)Let $\mathbf{x}, \mathbf{y} \in \mathbf{I}$, $\Rightarrow \mathbf{x}, \mathbf{y} \in \mathbf{X}$, $\Rightarrow (\mathbf{x} * \mathbf{y}) * (\mathbf{0} * \mathbf{y}) = \mathbf{x}$ [Since X is a BG-algebra] Then I is a BG-algebra <u>Remark (2.15):</u> 1)Every ideal in BG-algebra is a BH-algebra. 2)Every ideal in B-algebra is a BH-algebra. <u>Theorem (2.16):</u> Let X be a BC algebra then every ideal in X is a completely algo

Let X be a BG-algebra then every ideal in X is a completely closed ideal.

Proof: Let X be a BG-algebra and let I be an ideal of X suppose I is not a completely closed ideal, $\Rightarrow \exists x, y \in I \text{ such that } x^* y \notin I$ $\Rightarrow \exists z \notin I$ such that $z * y \in I$ [By lemma (2.8)] and this contradiction [Since I is an ideal] Remark (2.17): Let X be a B-algebra then every ideal in X is a completely closed ideal. Theorem (2.18): Let $f:X \rightarrow Y$ be a BH-homomorphism ,then ker(f) is a completely closed ideal. Proof: 1-Since f(0)=0, then $0 \in ker(f)$ 2-Let $\mathbf{x} * \mathbf{y} \in \mathbf{ker}(\mathbf{f})$ and $\mathbf{y} \in \mathbf{ker}(\mathbf{f})$ \Rightarrow f(x*y)=0 and f(y)=0, $\Rightarrow 0=f(x*y)=f(x)*f(y)=f(x)*0=f(x)$ $\Rightarrow x \in ker(f)$ ∴ ker(f) is an ideal. 3- Let $\mathbf{x}, \mathbf{y} \in \mathbf{ker}(\mathbf{f})$ \Rightarrow f(x) = 0 and f(y) = 0 $\Rightarrow f(x^*y) = f(x)^*f(y) = 0^*0 = 0$ $\Rightarrow x^*y \in ker(f)$ \therefore ker(f) is a completely closed ideal. Proposition (2.19):

Let { $I_i, i \in \lambda$ } be a family of an ideals of a BH-algebra X, then $\bigcap I_i$ is an ideal.

Proof:

1)Since $\mathbf{0} \in \mathbf{I}_i \forall \mathbf{i} \in \boldsymbol{\lambda} \Rightarrow \mathbf{0} \in \bigcap_{i \in \lambda} I_i$ 2)Let $\mathbf{x} * \mathbf{y} \in \bigcap_{i \in \lambda} I_i$, $\mathbf{y} \in \bigcap_{i \in \lambda} I_i$ $\Rightarrow \mathbf{x} * \mathbf{y} \in \mathbf{I}_i$ and $\mathbf{y} \in \mathbf{I}_i$, $\forall \mathbf{i} \in \boldsymbol{\lambda}$ $\Rightarrow \mathbf{x} \in \mathbf{I}_i \quad \forall \mathbf{i} \in \boldsymbol{\lambda}$ [since \mathbf{I}_i is an ideal $\forall \mathbf{i} \in \boldsymbol{\lambda}$] $\Rightarrow \mathbf{x} \in \bigcap_{i \in \lambda} I_i$ then $\bigcap_{i \in \lambda} I_i$ is an ideal.

Proposition (2.20):

Let { $I_i, i \in \lambda$ } be a family of a completely closed ideals of a BH-algebra X, then $\bigcap I_i$ is a

completely closed ideal . <u>Proof:</u> Since I_i is a completely closed ideal $\forall i \in \lambda$ $\Rightarrow I_i$ is an ideal $\forall i \in \lambda$ [By definition (2.1)] then $\bigcap_{i \in \lambda} I_i$ is an ideal [By theorem (2.19)]

Now, Let $\mathbf{x}, \mathbf{y} \in \bigcap_{i \in J} I_i$ \Rightarrow x, y \in I \forall i \in λ $\Rightarrow \mathbf{x} * \mathbf{y} \in \mathbf{I} \forall \mathbf{i} \in \lambda$ [Since I_i is a completely closed ideal $\forall i \in \lambda$] $\Rightarrow \mathbf{x} * \mathbf{y} \in \bigcap_{i \in \lambda} I_i$ Therefore $\bigcap I_i$ is a completely closed ideal. Proposition (2.21): Let { I_i, i $\in \lambda$ } be a chain of an ideals of a BH-algebra X. then $\bigcup_{i \in \lambda} I_i$ is an ideal of X. Proof: 1) $0 \in I_i$, $\forall i \in \lambda$ [Since each I_i is an ideal of X, $\forall i \in \lambda$] 1) $0 \in \bigcup_{i \in \lambda} I_i$ $\Rightarrow 0 \in \bigcup_{i \in \lambda} I_i$ and $y \in \bigcup_{i \in \lambda} I_i$ 2) let $x^*y \in \bigcup_{i \in \lambda} I_i$ and $y \in \bigcup_{i \in \lambda} I_i$ such that $\Rightarrow \exists I_i, I_k \in \{ I_i \} i \in \lambda$, such that $x^*y \in I_i$ and $y \in I_k$, [Since $\{I_i\}i \in \lambda$ is a chain] \Rightarrow either $I_i \subseteq I_k$ or $I_k \subseteq I_i$ If $I_i \subseteq I_k$ $\Rightarrow x^*y \in I_k$ and $y \in I_k$ [Since I_i is an ideal] $\Rightarrow x \in I_i$ $\Rightarrow \mathbf{x} \in \bigcup I_i$ Similarity, If $I_k \subseteq I_i$, Therefore $\bigcup_{i \in \lambda} I_i$ is an ideal. Proposition (2.22): Let { I_i , $i \in \lambda$ } be a chain of a completely closed ideals of a BH-algebra X. then $\bigcup_{i \in \lambda} I_i$ is a completely closed ideal of X. Proof: Since I_i is a completely closed ideal of X, $\forall i \in \lambda$ \Rightarrow I_i is an ideal of X, $\forall i \in \lambda$ [By definition (2.1)] Therefore $\bigcup I_i$ is an ideal. [By theorem (2.21)] i∈λ Now, let x, y $\in \bigcup I_i$ \Rightarrow \exists I_i , $I_k \in$ { I_i }i $\in \lambda$, such that x \in I_i , y \in I_k \Rightarrow either $I_i \subseteq I_k$ or $I_k \subseteq I_i$ [Since $\{I_i\}i \in \lambda$ is a chain] If $I_i \subseteq I_k$ \Rightarrow x,y \in I_k $\Rightarrow x^*y \in I_k$ [Since I_k is a completely closed ideals] Similarity, if $I_k \subseteq I_i$

 $\Rightarrow x^*y \in \bigcup_{i=1}^{n} I_i$

Therefore $\bigcup I_i$ is a completely closed ideal.

Definition (2.23):

Let I be an ideal of a BH-algebra X and $b \in X$ then I is called a completely closed ideal with respect to b(denoted b-completely closed ideal)if **b** * (**x** * **y**)

$\in \mathbf{I} \forall \mathbf{x}, \mathbf{y} \in \mathbf{I}$

Example (2.24):

Consider the BH-algebra X in example(2.13), then the ideal $I=\{0, 1\}$ is the 1-completely closed ideal. Since

 $1 * (0 * 0) = 1 \in I ,$ $1 * (0 * 1) = 0 \in I$ $1 * (1 * 0) = 0 \in I$ $1 * (1 * 1) = 1 \in I$

But it is not 0-completely closed ideal since $\mathbf{0} * (\mathbf{0} * \mathbf{1}) = \mathbf{0} * \mathbf{3} = \mathbf{2} \notin \mathbf{I}$ <u>Proposition (2.25)</u>: Every ideal in BH-algebra is not b-completely closed ideal, $\forall b \notin \mathbf{I}$.

Proof:

Let $b \notin I \Rightarrow \boldsymbol{b} * (\boldsymbol{0} * \boldsymbol{0}) = \boldsymbol{b} * \boldsymbol{0} = b \notin I$ Remark (2.26)

In a BH-algebra every b-completely closed ideal is a b-closed ideal.

Proposition (2.27):

Let { I_i, i $\in \lambda$ } be a family of a b-completely closed ideals of a BH-algebra X Then $\bigcap I_i$ is a b-

completely closed ideal .

Proof:

let X be a BH-algebra, and let I_i be a b-completely closed ideal $\forall i \in \pmb{\lambda}$

 \Rightarrow I_i is an ideal $\forall i \in \lambda$ [By definition (2.23)]

 $\Rightarrow \bigcap I_i \text{ is an ideal} \qquad [By proposition (2.19)]$

Now,

let **x**, **y** $\in \bigcap_{i \in \lambda} I_i$

```
⇒x,y∈I ∀i∈λ
```

```
\Rightarrow \mathbf{b} * (\mathbf{x} * \mathbf{y}) \in \mathbf{I}_i \quad \forall \mathbf{i} \in \boldsymbol{\lambda} \quad [Since I_i is a b-completely closed ideal \forall \mathbf{i} \in \boldsymbol{\lambda}]\Rightarrow \mathbf{b} * (\mathbf{x} * \mathbf{y}) \in \bigcap I_i
```

$$\Rightarrow \mathbf{D} * (\mathbf{x} * \mathbf{y}) \in [1]_{i_1}$$

Therefore $\bigcap I_i$ is a b-completely closed ideal.

Proposition (2.28):

Let { $I_i, i \in \lambda$ } be a chain of a b-completely closed ideals of a BH-algebra X. then $\bigcup I_i$ is a b-

completely closed ideal of X.

Proof:

Since each I_i is a b-completely closed ideal of X, $\forall i \in \lambda$

 $\Rightarrow I_i \text{ is an ideal of } X, \forall i \in \lambda \qquad [By \text{ definition } (2.23)]$

 $\Rightarrow \bigcup_{i \in \lambda} I_i \text{ is an ideal}$ [By proposition (2.21)] Now. let x, y $\in \bigcup_{i \in \mathcal{I}} I_i$ $\Rightarrow \exists \ I_i \ , \ I_k \in \{ \ I_i \ \}i \! \in \! \lambda$, such that $x \in I_i \ , \ y \in I_k$, \Rightarrow either $I_i \subseteq I_k$ or $I_k \subseteq I_i$ [Since $\{I_i\}i \in \lambda$ is a chain] If $I_i \subseteq I_k$ $\Rightarrow x^*y \in I_k$ \Rightarrow either b*(x*y) \in I_i or b*(x*y) \in I_k [Since I_i and I_k are a b-completely closed ideals] $\Rightarrow b^*(x^*y) \in \bigcup_{i \in \lambda} I_i$ Therefore $\bigcup I_i$ is a b-completely closed ideal. Theorem (2.29): Let X be a BH-algebra and I is a completely closed ideal. Then I is a b-completely closed ideal ∀b ∈ I. Proof: Let x, $y \in I$, Then $\mathbf{b} * (\mathbf{x} * \mathbf{y}) \in \mathbf{I}$ [Since I is a completely closed ideal] Theorem (2.30): Let $f:X \rightarrow Y$ be a BH-epimorphism and I is an ideal in X, Then f(I) is a an ideal in Y. Proof: let I be an ideal in X 1)Since $0 \in I \Longrightarrow f(0) = 0 \in f(I)$. 2)Let $x^*y \in f(I)$ and $y \in f(I)$ $\Rightarrow \exists a, b \in I \text{ such that } f(a) = x, f(b) = y,$ \Rightarrow f(a)*f(b) \in f(I) and f(b) \in f(I), \Rightarrow f(a*b) \in f(I) and f(b) \in f(I), $\Rightarrow a^*b \in I \text{ and } b \in I$. ⇒a∈I [Since I is an ideal] $\Rightarrow f(a) \in f(I)$ $\Rightarrow x \in f(I).$ \therefore f(I) is an ideal <u>Theorem (2.31):</u> Let $f:X \rightarrow Y$ be a BH-epimorphism and I is a closed ideal in X. Then f(I) is a closed ideal in Y. Proof: Let I be a closed ideal in X, Since I is an ideal then f(I) is an ideal [Theorem (2.30)] Now. Let $x \in f(I)$ $\Rightarrow \exists a \in I \text{ such that } f(a) = x$ $\Rightarrow 0^*x=0^*f(a)=f(0)^*f(a)$ [Since $0^*a \in I$] $=f(0*a)\in f(I)$ \therefore f(I) is a closed ideal Theorem (2.32): Let $f:X \rightarrow Y$ be a BH-epimorphism and let I be a completely closed ideal in X. Then f(I) is a completely closed ideal in Y.

Proof: Let I be a completely closed ideal in X, Since I is an ideal then f(I) is an ideal [Theorem (2.30)] Let $x, y \in f(I)$ $\Rightarrow \exists a, b \in I \text{ such that } f(a) = x, f(b) = y,$ $\Rightarrow x^*y = f(a)^*f(b) = f(a^*b) \in f(I)$ [Since $a^*b \in I$] \therefore f(I) is a completely closed ideal Proposition (2.33): Let $f:X \rightarrow Y$ be a BH-epimorphism and let I be a b- closed ideal in X. Then f(I) is a f(b)- closed ideal in Y. Proof: Let I be a b-closed ideal in X, Since I is an ideal then f(I) is an ideal [Theorem (2.30)] Let $\mathbf{x} \in \mathbf{f}(\mathbf{I}) \Rightarrow \exists \mathbf{a} \in \mathbf{I} \text{ s.t } \mathbf{f}(\mathbf{a}) = \mathbf{x}$ f(b) * (0 * x) = f(b) * (f(0) * f(a)) $= \mathbf{f}(\mathbf{b} * (\mathbf{0} * \mathbf{a})) \in \mathbf{f}(\mathbf{I})$ [Since (**b** * (**0** * **a**))∈**I**] \therefore f(I) is a f(b)-closed ideal Proposition (2.34): Let $f:X \rightarrow Y$ is a BH-epimorphism, if I is a b-completely closed ideal in X, then f(I) is a f(b)completely closed ideal inY. Proof: Let I be a b- completely closed ideal in X, then $b^*(a * c) \in I \forall a, c \in I$ Since I is an ideal then f(I) is an ideal [Theorem (2.30)] Let $\mathbf{x}, \mathbf{y} \in \mathbf{f}(\mathbf{I}) \Rightarrow \exists \mathbf{g}, \mathbf{h} \in \mathbf{I} \text{ s.t } \mathbf{f}(\mathbf{g}) = \mathbf{x}, \mathbf{f}(\mathbf{h}) = \mathbf{y}$ f(b) * (x * y) = f(b) * (f(g) * f(h)) = f(b) * f(g * h) $= \mathbf{f}(\mathbf{b} * (\mathbf{g} * \mathbf{h})) \in \mathbf{f}(\mathbf{I})$ [Since $\mathbf{b} * (\mathbf{g} * \mathbf{h}) \in \mathbf{I}$] \therefore f(I) is a f(b)-completely closed ideal Proposition (2.35): Let X be a BG-algebra. Then every ideal is a b-completely closed ideal $\forall b \in I$. Proof: Since every ideal in BG-algebra is a completely closed ideal [Theorem (2.16)] Then $\mathbf{b} * (\mathbf{x} * \mathbf{y}) \in \mathbf{I} \forall \mathbf{x}, \mathbf{y} \in \mathbf{I}, \mathbf{b} \in \mathbf{I}$ Remark (2.36): Let X be a B-algebra, then every ideal is a b-completely closed ideal $\forall b \in I$. Proposition (2.37): Let X be a BG-algebra, then $X_{+}=\{0\}$. Proof: Suppose $\mathbf{x} \in \mathbf{X}_+$ such that $\mathbf{x} \neq \mathbf{0}$ $\Rightarrow 0 * x = 0 \Rightarrow 0 * x = 0 * 0$ $\Rightarrow \mathbf{x} = \mathbf{0}$ [Lemma(1.7)(4)]Proposition (2.38): Let X be a BH-algebra and I be an ideal such that $\mathbf{I} \subseteq \mathbf{X}_+$. Then I is a b-closed ideal $\forall \mathbf{b} \in \mathbf{I}$. Proof: Let $b \in I$ and $I \subseteq X_+$. Then b * (0 * x) = b * 0[since $\mathbf{I} \subseteq \mathbf{X}_+$] $= \mathbf{b} \in \mathbf{I}$ 311

REFERENCES

- [1] A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.
- [2] C. B. Kim and H. S. Kim, "ON BG-ALGEBRAS", DEMONSTRATIO MATHEMATICA Vol. XLI, No 3, 2008
- [3] H. H. Abass and H. M. A. Saeed, The Fuzzy Closed Ideal With Respect To an Element Of a BH-Algebra, thesis,2011
- [4] J. Neggers and H.S. Kim, On B-algebras, Math. Vensik, Vol.54,21-29,2002.
- [5] J. Neggers, On d-algebras, Math. Slovaca 49 (1996), 19-26.
- [6] K. I s'eki and Y. Imai, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42, 19-20, 1966.
- [7] Q. Zhang, E. H. Roh and Y. B. Jun, "On fuzzy BH-algebras", J. Huanggang, Normal Univ. 21(3), 14–19, 2001.
- [8] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, Vol. 11, 313-320, 1983.
- [9] S.S.Ahin and H.S.Kim,R-MAPS AND L-MAPS IN BH-ALGEBRAS, JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY,Volume 13,No.2,December 2000.
- [10] Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347– 354, 1998