ON COMPLETELY CLOSED IDEAL WITH RESPECT TO AN ELEMENT OF A BH-ALGEBRA
 المثثالية المـلقة تماماً بالنسبة إلى عنصر في جبر-BH

By
Assist.prof. Husein Hadi Abbass
University of Kufal
College of Education for girls \backslash
Department of Mathematics
Msc_hussien@yahoo.com

Hayder Abbas Dahham
University of Kufal
College of Education for girls
Department of Mathematics
Hay ad24@yahoo.com

Abstract

In this paper, we introduce the notions of a completely closed ideal and a completely closed ideal with respect to an element of a BH-algebra .Also we study these notions on a BGalgebra and B-algebra, We stated and proved some theorems which determine the relationship between these notions and some other types of ideals of a BH-algebra and a BG-algebra.

المستخلص: قدمنا في هذا البحث مفهومي المثالية المغلقة تمامـا والمثالية المغلقة تماما بالنسبة الى عنصر في جبر -BH,كما درسنا هذا المفهوم في جبر -BG و جبر B كما وضعنا وبر هنا بعض المبر هنات الني تحدد العلاقة بين هذا المفهوم و بعض انواع المثاليـات الاخرى مثل المثالية المغلقة و المثالية المغلقة بالنسبة الى عنصر في جبر- BH.

INTRODUCTION

The notion of a BCK-algebras and a BCI-algebras was formulated first in 1966 [6] by (Y.Imai) and (K.Iseki). In 1983, Hu and Li introduced the wide class of abstract algebras: BCH-algebras[8]. In 1996, (J.Neggers) introduced the notion of d-algebra[5]. In 1998, Y.B.Jun, E.H.Roh and H.S.Kim introduced a new notion, called a BH-algebra[10]. In 2002 ,J.Neggers and H.S.Kim introduced the notion of B-algebra, which is a generalization of a BCK-algebra [4]. In 2008, C.B.Kim and H.S.kim introdeced the notion of BG-algebras, which is a generalization of a Balgebras[2]. In 2011, H.H.Abass and H.M.A.Saeed introduced the notion of a closed ideal with respect to an element of a BCH -algebra[3].
In this paper, we introduced the notions as we mentioned in the abstract.

1.PRELIMINARIES

In this section we give some basic concepts about a B-algebra, a BG-algebra, a BH-algebra, , ideal of a BH-algebra, closed ideal of a BH-algebra, a closed ideal with respect to an element of a BH-algebra, a normal set, with some theorems, propositions and examples which we needed in our work.
Definition (1.1) [4]:
A B-algebra is a non-empty set with a constant 0 and a binary operation "*" satisfying the following axioms:

1) $x * x=0$,
2) $x * 0=x$,
3) $(x * y) * z=x *(z *(0 * y))$, for all x, y, z in X.

Journal of kerbala university , vol. 10 no. 3 scientific . 2012

Definition (1.2) [2]:
A BG-algebra is a non-empty set X with a constant 0 and a binary
operation " * " satisfying the following axioms:

1) $x * x=0$,
2) $x * 0=x$,
3) $(x * y) *(0 * y)=x$, for all $x, y \in X$.

Theorem (1.3) [2]:
If $\left(\mathrm{X},{ }^{*}, 0\right)$ is a B-algebra, then $(\mathrm{X}, *, 0)$ is a BG-algebra.
Definition (1.4) [10]:
A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

1) $x * x=0, \forall x \in X$.
2) $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
3) $x * 0=x, \forall x \in X$.

Proposition (1.5) [2]:

Every BG-algebra is a BH -algebra.
Definition (1.6) [7]:
A nonempty subset S of a $B H$-algebra X is called a BH-Subalgebra or Subalgebra of X if $x * y \in$ S for all $x, y \in S$.
Lemma (1.7) [2]:
Let (X ; *, 0) be a BG-algebra. Then

1) the right cancellation law holds in X, i.e., $x^{*} y=z^{*} y$ implies $x=z$,
2) $0 *(0 * x)=x$ for all $x \in X$,
3) if $x * y=0$, then $x=y$ for any $x, y \in X$,
4) if $0 * x=0 * y$, then $x=y$ for any $x, y \in X$,
5) $(x *(0 * x)) * x=x$ for all $x \in X$.

Definition (1.8) [10]:
Let I be a nonempty subset of a BH-algebra X . Then I is called an ideal of X if it satisfies:

1) $0 \in I$.
2) $x * y \in I$ and $y \in I$ imply $x \in I$

Definition (1.9) [3]:
An ideal I of a BH-algebra X is called a closed ideal of X if :for every $x \in I$, we have $0^{*} x \in I$.
Definition (1.10) [2]:
A non-empty subset N of a BG-algebra X is said to be normal of X if $(x * a) *(y * b) \in N$ for any $x * y, a * b \in N$.
Definition (1.11) [8]:
Let X be a BH-algebra , a non-empty subset N of X is said to be normal of X if $(x * a) *(y * b) \in N$ for any $x * y, a * b \in N$.
Theorem (1.12) [2].
Every normal subset N of a BG-algebra X is a subalgebra of X .
We generalize this theorem to a BH -algebra
Theorem (1.13):
Every normal subset N of a BH -algebra X is a subalgebra of X .
proof:
Let X be a BH -algebra and N be a normal in X , let $x, y \in N$,
$\Rightarrow \mathrm{x}^{*} 0, \mathrm{y}^{*} 0 \in \mathrm{~N} \quad$ [Since $\mathrm{x} * 0=\mathrm{x}$ and $\mathrm{y}^{*} 0=\mathrm{y}$]
$\Rightarrow x^{*} \mathrm{y}=(\mathrm{x} * \mathrm{y})^{*}(0 * 0) \in \mathrm{N} \quad[$ Since N is a normal]
$\therefore \mathrm{N}$ is a subalgebra of X .

Journal of kerbala university , vol. 10 no. 3 scientific . 2012

Definition (1.14) [3]:
Let X be a BH-algebra and I be an ideal of X . Then I is called a Closed Ideal with respect to an element $b \in X$ (denoted b-closed ideal) if $b^{*}\left(0^{*} x\right) \in I$, for all
$x \in I$.
Remark (1.15) [3]:
In a BH -algebra X , the ideal $\mathrm{I}=\{0\}$ is 0 -closed ideal. Also , the ideal $\mathrm{I}=\mathrm{X}$ is b-closed ideal, $\forall \mathrm{b} \in \mathrm{X}$.
Definition (1.16) [3]:
Let X be a BH-algebra. Then the set $\mathrm{X}_{+}=\{\mathrm{x} \in \mathrm{X}: 0 * \mathrm{x}=0\}$ is called the BCA-part of X .
Definition (1.17) [9]:
Let X and Y be a BH-algebra.A mapping $f: X \rightarrow Y$ of a BG-algebra is called a homomorphism if $f(x * y)=f(x) * f(y)$ for any $x, y \in X$
Remark (1.18) [9]:
The set $\{x \in X: f(x)=0\}$ is called the kernel of the f, denote it by $\operatorname{Ker}(f)$.
Remark (1.19):
If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a homomorphism of BH -algebra, then $\mathrm{f}(0)=0$.
Definition (1.20) [1]:
A BCH-algebra X is called an associative BCH -algebra if:
$(\mathrm{x} * \mathrm{y}) * \mathrm{z}=\mathrm{x} *(\mathrm{y} * \mathrm{z})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.
We generalize the concept of associative to a BH-algebra
Definition (1.21):
A BH-algebra X is called an associative BH-algebra if:
$(x * y) * z=x *(y * z)$, for all $x, y, z \in X$.

2.THE MAIN RESULTS

In this section we define the notions of completely closed ideal and a completely closed ideal with respect to an element of a BH-algebra. For our discussion, we shall link these notions with other notions which mentioned in preliminaries.
Definition (2.1):
An ideal I of a BH-algebras is called a completely closed ideal if $\mathbf{x} * \mathbf{y} \in \mathrm{I}, \forall \mathbf{x}, \mathbf{y} \in \mathrm{I}$.
Remark (2.2):
In any BH -algebra ,the ideals $\mathrm{I}=\{0\}$ and $\mathrm{I}=\mathrm{X}$ are completely closed ideals.
Example (2.3):
Let $\mathrm{X}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}\}$ be a BH -algebras, with binary operation defined by:

$*$	0	1	2	3
0	0	1	0	2
1	1	0	3	0
2	2	2	0	3
3	3	3	3	0

The ideal $\mathrm{I}=\{\mathbf{0}, \mathbf{1}\}$ is a completely closed ideal since:

```
0*0=0 \inI ,0*1=1 =I
1*0}=\mathbf{1}\in\mathbf{I},\mathbf{1}*\mathbf{1}=\mathbf{0}\in\mathbf{I
```

but the ideal $\mathrm{I}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ is not a completely closed ideal since $\mathbf{1}, \mathbf{2} \in \mathbf{I}$ but $\mathbf{1} * \mathbf{2}=\mathbf{3} \notin \mathbf{I}$
Remark (2.4):
Every completely closed ideal is a closed ideal but the converse is not be true, In example(2.3), the ideal $\mathrm{I}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ is a closed ideal but it is not a completely closed ideal.
Theorem (2.5):
If X be an associative BH -algebra , then X is a BG-algebra .

Journal of kerbala university , vol. 10 no. 3 scientific . 2012

Proof:
Let X be associative BH -algebra, then

1) $x * x=0$
[Definition(1.6)(1)]
2) $x * 0=x$
3) $\left(x^{*} y\right) *(0 * y)=((x * y) * 0) * y$
[Definition(1.6)(3)]
[Since X is an associative]
$=\left(x^{*} y\right) * y$
$=x *(y * y) \quad$ [Since X is an associative]

$$
=x * 0
$$

=x
Then X is a BG-algebra.
Remark (2.6) :
the converse of above theorem is not be true, as in the following example.
Example (2.7):
Consider the BG-algebra ($\mathrm{X},{ }^{*}, 0$) where $\mathrm{X}=\{0,1,2\}$ and ${ }^{*}$ defined by

$*$	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

is not associative Since $1 *(2 * 1)=1 \neq 0=(1 * 2)^{*} 1$
Proposition (2.8):
Let X be a BG-algebra and $y \in X$, then $\mathbf{x} * \mathbf{y}$ are distinct $\forall \mathbf{x} \in \mathbf{X}$.
Proof:
Suppose $\mathbf{x}, \mathbf{z} \in \mathbf{X}$ such that
$\mathbf{x} * \mathbf{y}=\mathbf{z} * \mathbf{y}$,
$\Rightarrow \mathbf{x}=\mathbf{z} \quad[\operatorname{Lemma}(1.7)(1)]$
Proposition (2.9):
Let X be a BG-algebra then the elements $0 * \mathrm{x}$ are distinct $\forall \mathbf{x} \in \mathbf{X}$.
Proof:
Suppose $\exists \mathrm{x}, \mathrm{z} \in \mathrm{X}$ suchthat $0^{*} \mathrm{x}=0$ * z
$\Rightarrow \mathbf{x}=\mathbf{z}$
[By lemma(1.7)(4)]
Theorem (2.10):
Let X be an associative BH -algebra, then every normal subalgebra is a completely closed ideal of X.

Proof:
Let X be associative a BH -algebra, and let N be a normal subalgebra
To prove N is an ideal

1) Since N is a non empty,
$\Rightarrow \exists \mathrm{x} \in \mathrm{N}$
$\Rightarrow \mathrm{x} * \mathrm{x} \in \mathrm{N} \quad$ [Since N is a normal subalgebra. Theorem(1.13)]
$\Rightarrow 0 \in \mathrm{~N}$
2) let $x * y \in N$ and $y \in N$
$\Rightarrow(\mathrm{x} * \mathrm{y}) * \mathrm{y} \in \mathrm{N} \quad$ [Since N is a normal subalgebra. Theorem(1.13)]
$\Rightarrow x^{*}\left(y^{*} y\right) \in N \quad[$ Since X is associative BH-algebra. Theorem(1.13)]
$\Rightarrow x^{*} 0 \in \mathrm{~N}$
$\Rightarrow \mathrm{x} \in \mathrm{N}$
$\therefore \mathrm{N}$ is an ideal.
3)let $x, y \in N$
$\Rightarrow x^{*} y \in N \quad[$ Since N is a normal subalgebra. Theorem(1.13)]

Journal of kerbala university, vol. 10 no. 3 scientific . 2012

$\therefore \mathrm{N}$ is a completely closed ideal.
Theorem (2.11):
Let X be a BH-algebras, then every completely closed ideal in X with the same binary operation on X and the constant 0 , is a BH -algebra.
Proof:
Let X be a BH-algebra , and let I be a completely closed ideal
1)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} * \mathbf{x}=\mathbf{0} \quad$ [Since X is a BH-algebra definition(1.4)(1)]
2)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} * \mathbf{0}=\mathbf{x} \quad$ [Since X is a BH-algebra definition(1.4)(3)]
3)Let $x, y \in I$, and $x * y=0 \wedge y * x=0$
$\Rightarrow \mathbf{x}, \mathrm{y} \in \mathrm{X}$, and $\mathrm{x} * \mathbf{y}=\mathbf{0}, \mathbf{y} * \mathbf{x}=\mathbf{0}$
$\Rightarrow \mathbf{x}=\mathbf{y}$
[Since X is a BH-algebra]
Then I is a BH-algebra
Remark (2.12):
If I is not a completely closed ideal then I may be not a BH-algebra, as in the following example.
Example (2.13):
Consider the BH-algebra ($\mathrm{X}, *, 0$) where $\mathrm{X}=\{0,1,2,3\}$. Define * as follows:

$*$	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

,then the ideal $\mathrm{I}=\{\mathbf{0}, \mathbf{1}\}$ is not a BH-algebra, since $0^{*} 1=3 \notin \mathrm{I}$
$\Rightarrow I$ is not closed under ${ }^{*} *$ ".
Theorem (2.14):
Let X be a BG-algebras, then every ideal in X with the same binary operation on X and the constant 0 , is a BG -algebra.
Proof:
Let X be a BG-algebra , and let I be an ideal
1)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} * \mathbf{x}=\mathbf{0}$ [Since X is a BG-algebra]
2)Let $\mathbf{x} \in \mathbf{I} \Rightarrow \mathbf{x} \in \mathbf{X} \Rightarrow \mathbf{x} * \mathbf{0}=\mathbf{x} \quad$ [Since X is a BG-algebra]
3)Let $\mathbf{x}, \mathbf{y} \in \mathbf{I}$,
$\Rightarrow \mathbf{x}, \mathbf{y} \in \mathbf{X}$,
$\Rightarrow(\mathbf{x} * \mathbf{y}) *(\mathbf{0} * \mathbf{y})=\mathbf{x} \quad$ [Since X is a BG-algebra]
Then I is a BG-algebra
Remark (2.15):
1)Every ideal in BG-algebra is a BH -algebra.
2) Every ideal in B -algebra is a BH -algebra.

Theorem (2.16):
Let X be a BG-algebra then every ideal in X is a completely closed ideal.

Journal of kerbala university , vol. 10 no. 3 scientific . 2012

Proof:

Let X be a BG-algebra and let I be an ideal of X suppose I is not a completely closed ideal,
$\Rightarrow \exists \mathrm{x}, \mathrm{y} \in \mathrm{I}$ suchthat $\mathrm{x} * \mathrm{y} \notin \mathrm{I}$
$\Rightarrow \exists \mathrm{z} \notin \mathrm{I}$ suchthat $\mathrm{z} * \mathbf{y} \in \mathbf{I}$
and this contradiction
[By lemma (2.8)]
[Since I is an ideal]

Remark (2.17):
Let X be a B -algebra then every ideal in X is a completely closed ideal.
Theorem (2.18):
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BH-homomorphism ,then $\operatorname{ker}(\mathrm{f})$ is a completely closed ideal.
Proof:
1-Since $f(0)=0$, then $\mathbf{0} \in \mathbf{k e r}(\mathbf{f})$
2-Let $\mathbf{x} * \mathbf{y} \in \operatorname{ker}(f)$ and $\mathbf{y} \in \operatorname{ker}(f)$
$\Rightarrow f(x * y)=0$ and $f(y)=0$,
$\Rightarrow 0=\mathrm{f}(\mathrm{x} * \mathrm{y})=\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{x}) * 0=\mathrm{f}(\mathrm{x})$
$\Rightarrow \mathbf{x} \in \mathbf{k e r}(\mathbf{f})$
$\therefore \operatorname{ker}(\mathrm{f})$ is an ideal.
3- Let $\mathbf{x}, \mathbf{y} \in \operatorname{ker}(\mathbf{f})$
$\Rightarrow \mathbf{f}(\mathbf{x})=\mathbf{0}$ and $\mathbf{f}(\mathbf{y})=\mathbf{0}$
$\Rightarrow \mathrm{f}(\mathrm{x} * \mathrm{y})=\mathbf{f}(\mathrm{x}) * \mathbf{f}(\mathrm{y})=0 * 0=0$
$\Rightarrow x^{*} \mathrm{y} \in \operatorname{ker}(\mathrm{f})$
$\therefore \operatorname{ker}(\mathrm{f})$ is a completely closed ideal .
Proposition (2.19):
Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of an ideals of a BH-algebra X, then $\bigcap_{i \in \lambda} I_{i}$ is an_ideal .
Proof:

```
1) Since \(\mathbf{0} \in \mathbf{I}_{\mathrm{i}} \forall \mathbf{i} \in \boldsymbol{\lambda} \Rightarrow \mathbf{0} \in \bigcap_{i \in \lambda} I_{i}\)
2)Let \(\mathbf{x} * \mathbf{y} \in \bigcap_{i \in \lambda} I_{i}, \mathbf{y} \in \bigcap_{i \in \lambda} I_{i}\)
    \(\Rightarrow \mathbf{x} * \mathbf{y} \in \mathbf{I}_{\mathrm{i}}\) and \(\mathbf{y} \in \mathbf{I}_{\mathrm{i}}, \forall \mathbf{i} \in \boldsymbol{\lambda}\)
    \(\Rightarrow \mathbf{x} \in \mathbf{I}_{\mathrm{i}} \quad \forall \mathbf{i} \in \boldsymbol{\lambda} \quad\) [since \(\mathrm{I}_{\mathrm{i}}\) is an ideal \(\forall \mathbf{i} \in \boldsymbol{\lambda}\) ]
    \(\Rightarrow \mathbf{x} \in \bigcap_{i \in \lambda} I_{i}\)
then \(\bigcap_{i \in \lambda} I_{i}\) is an ideal.
```

Proposition (2.20):
Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of a completely closed ideals of a BH-algebra X, then $\bigcap_{i \in \lambda} I_{i}$ is a completely closed ideal.
Proof:
Since I_{i} is a completely closed ideal $\forall \mathbf{i} \in \boldsymbol{\lambda}$
$\Rightarrow \mathrm{I}_{\mathrm{i}}$ is an ideal $\forall \mathbf{i} \in \boldsymbol{\lambda} \quad$ [By definition (2.1)]
then $\bigcap_{i=1} I_{i}$ is an ideal [By theorem (2.19)]

Journal of kerbala university , vol. 10 no. 3 scientific . 2012

Now,
Let $\mathbf{x}, \mathbf{y} \in \bigcap_{i \in \lambda} I_{i}$
$\Rightarrow \mathbf{x}, \mathbf{y} \in \mathbf{I}_{\mathrm{i}} \forall \mathbf{i} \in \boldsymbol{\lambda}$.
$\Rightarrow \mathbf{x} * \mathbf{y} \in \mathbf{I}_{\mathrm{i}} \forall \mathbf{i} \in \boldsymbol{\lambda} \quad$ [Since I_{i} is a completely closed ideal $\forall \mathbf{i} \in \boldsymbol{\lambda}$]
$\Rightarrow \mathbf{x} * \mathbf{y} \in \bigcap_{i \in \lambda} I_{i}$
Therefore $\bigcap_{i \in \lambda} I_{i}$ is a completely closed ideal.
Proposition (2.21):
Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a chain of an ideals of a BH-algebra X. then $\bigcup_{i \in \lambda} I_{i}$ is an ideal of X.

Proof:

1) $0 \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \lambda$
[Since each I_{i} is an ideal of $\mathrm{X}, \forall \mathrm{i} \in \lambda$]
$\Rightarrow 0 \in \bigcup_{i \in \lambda} I_{i}$
2) let $\mathrm{x} * \mathrm{y} \in \bigcup_{i \in \lambda} I_{i}$ and $\mathrm{y} \in \bigcup_{i \in \lambda} I_{i}$
$\Rightarrow \exists I_{i}, I_{k} \in\left\{I_{i}\right\} i \in \boldsymbol{\lambda}$, such that $x * y \in I_{i}$ and $y \in I_{k}$,
\Rightarrow either $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{I}_{\mathrm{k}}$ or $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{i}}$
[Since $\left\{\mathrm{I}_{\mathrm{i}}\right\} \mathrm{i} \in \boldsymbol{\lambda}$ is a chain]
If $\mathrm{I}_{\mathrm{i} \subseteq} \subseteq \mathrm{I}_{\mathrm{k}}$
$\Rightarrow \mathrm{x}^{*} \mathrm{y} \in \mathrm{I}_{\mathrm{k}}$ and $\mathrm{y} \in \mathrm{I}_{\mathrm{k}}$
$\Rightarrow \mathrm{x} \in \mathrm{I}_{\mathrm{i}} \quad$ [Since I_{i} is an ideal]
$\Rightarrow \mathrm{x} \in \bigcup_{i \in \lambda} I_{i}$
Similarity,
If $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{i}}$,
Therefore $\bigcup_{i \in \lambda} I_{i}$ is an ideal.
Proposition (2.22):
Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a chain of a completely closed ideals of a BH-algebra X. then $\bigcup_{i \in \lambda} I_{i}$ is a completely closed ideal of X .
Proof:
Since I_{i} is a completely closed ideal of $\mathrm{X}, \forall \mathrm{i} \in \lambda$
$\Rightarrow \mathrm{I}_{\mathrm{i}}$ is an ideal of $\mathrm{X}, \forall \mathrm{i} \in \lambda \quad$ [By definition (2.1)]
Therefore $\bigcup_{i \in \lambda} I_{i}$ is an ideal. [By theorem (2.21)]
Now,
let $\mathrm{x}, \mathrm{y} \in \bigcup_{i \in \lambda} I_{i}$
$\Rightarrow \exists \mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{k}} \in\left\{\mathrm{I}_{\mathrm{i}}\right\} \mathrm{i} \in \lambda$, such that $\mathrm{x} \in \mathrm{I}_{\mathrm{i}}, \mathrm{y} \in \mathrm{I}_{\mathrm{k}}$
\Rightarrow either $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{I}_{\mathrm{k}}$ or $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{i}} \quad$ [Since $\left\{\mathrm{I}_{\mathrm{i}}\right\} \mathrm{i} \in \lambda$ is a chain]
If $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{I}_{\mathrm{k}}$
$\Rightarrow \mathrm{x}, \mathrm{y} \in \mathrm{I}_{\mathrm{k}}$
$\Rightarrow \mathrm{x} * \mathrm{y} \in \mathrm{I}_{\mathrm{k}} \quad$ [Since I_{k} is a completely closed ideals]
Similarity,
if $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{i}}$
$\Rightarrow \mathrm{x} * \mathrm{y} \in \bigcup_{i \in \lambda} I_{i}$
Therefore $\bigcup_{i \in \lambda} I_{i}$ is a completely closed ideal.
Definition (2.23):
Let I be an ideal of a BH-algebra X and $b \in X$ then I is called a completely closed ideal with respect to b (denoted b -completely closed ideal)if $\mathbf{b} *(\mathbf{x} * \mathbf{y})$

$\in \mathbf{I} \forall \mathbf{x}, \mathbf{y} \in \mathbf{I}$.

Example (2.24):
Consider the BH-algebra X in example(2.13), then the ideal $\mathrm{I}=\{\mathbf{0}, \mathbf{1}\}$ is the 1-completely closed ideal. Since
$1 *(0 * 0)=1 \in \mathbf{I}$,
$1 *(0 * 1)=0 \in I$
$1 *(1 * 0)=0 \in I$
$\mathbf{1} *(\mathbf{1} * \mathbf{1})=\mathbf{1} \in \mathbf{I}$
But it is not 0-completely closed ideal since $\mathbf{0} *(\mathbf{0} * \mathbf{1})=\mathbf{0} * \mathbf{3}=\mathbf{2} \notin \mathbf{I}$ Proposition (2.25):
Every ideal in BH-algebra is not b-completely closed ideal, $\forall \mathrm{b} \notin \mathrm{I}$.
Proof:
Let $\mathrm{b} \notin \mathrm{I} \Rightarrow \boldsymbol{b} *(\mathbf{0} * \mathbf{0})=\boldsymbol{b} * \mathbf{0}=\mathrm{b} \notin \mathrm{I}$
Remark (2.26)
In a BH-algebra every b-completely closed ideal is a b-closed ideal.
Proposition (2.27):
Let $\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of a b-completely closed ideals of a BH-algebra X Then $\bigcap_{i \in \lambda} I_{i}$ is a bcompletely closed ideal.
Proof:
let X be a BH -algebra, and let I_{i} be a b-completely closed ideal $\forall \mathbf{i} \in \boldsymbol{\lambda}$.
$\Rightarrow \mathrm{I}_{\mathrm{i}}$ is an ideal $\forall \mathbf{i} \in \boldsymbol{\lambda} \quad$ [By definition (2.23)]
$\Rightarrow \bigcap_{i \in \lambda} I_{i}$ is an ideal $\quad[B y$ proposition (2.19)]
Now,
let $\mathbf{x}, \mathbf{y} \in \bigcap_{i \in \lambda} I_{i}$
$\Rightarrow \mathbf{x}, \mathbf{y} \in \mathbf{I}_{\mathrm{i}} \quad \forall \mathbf{i} \in \boldsymbol{\lambda}$
$\Rightarrow \mathbf{b} *(\mathbf{x} * \mathbf{y}) \in \mathbf{I}_{\mathrm{i}} \quad \forall \mathbf{i} \in \boldsymbol{\lambda} \quad$ [Since I_{i} is a b-completely closed ideal $\forall \mathbf{i} \in \boldsymbol{\lambda}$]
$\Rightarrow \mathbf{b} *(\mathbf{x} * \mathbf{y}) \in \bigcap_{i \in \lambda} I_{i}$
Therefore $\bigcap_{i \in \lambda} I_{i}$ is a b-completely closed ideal.
Proposition (2.28):
Let $\left\{I_{i}, i \in \lambda\right\}$ be a chain of a b-completely closed ideals of a BH-algebra X. then

Since each I_{i} is a b-completely closed ideal of $\mathrm{X}, \forall \mathrm{i} \in \lambda$
$\Rightarrow I_{i}$ is an ideal of $X, \forall \mathrm{i} \in \lambda$
[By definition (2.23)]
$\Rightarrow \bigcup_{i \in \lambda} I_{i}$ is an ideal
Now,
let $\mathrm{x}, \mathrm{y} \in \bigcup_{i \in \lambda} I_{i}$
$\Rightarrow \exists \mathrm{I}_{\mathrm{i}}, \mathrm{I}_{\mathrm{k}} \in\left\{\mathrm{I}_{\mathrm{i}}\right\} \mathrm{i} \in \lambda$, such that $\mathrm{x} \in \mathrm{I}_{\mathrm{i}}, \mathrm{y} \in \mathrm{I}_{\mathrm{k}}$,
\Rightarrow either $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{I}_{\mathrm{k}} \quad$ or $\mathrm{I}_{\mathrm{k}} \subseteq \mathrm{I}_{\mathrm{i}} \quad$ [Since $\left\{\mathrm{I}_{\mathrm{i}}\right\} \mathrm{i} \in \lambda$ is a chain]
If $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{I}_{\mathrm{k}}$
$\Rightarrow \mathrm{x}^{*} \mathrm{y} \in \mathrm{I}_{\mathrm{k}}$
\Rightarrow either $b^{*}\left(x^{*} y\right) \in I_{i}$ or $b^{*}\left(x^{*} y\right) \in I_{k} \quad\left[\right.$ Since I_{i} and I_{k} are a b-completely closed ideals]

$$
\Rightarrow \mathrm{b}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right) \in \bigcup_{i \in \lambda} I_{i}
$$

Therefore $\bigcup_{i \in \lambda} I_{i}$ is a b-completely closed ideal.

Theorem (2.29):

Let X be a BH -algebra and I is a completely closed ideal. Then I is a b-completely closed ideal $\forall b \in I$.

Proof:

Let $\mathrm{x}, \mathrm{y} \in \mathrm{I}_{g}$
Then $\mathbf{b} *(\mathbf{x} * \mathbf{y}) \in \mathbf{I} \quad$ [Since I is a completely closed ideal]
Theorem (2.30):
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BH-epimorphism and I is an ideal in X , Then $\mathrm{f}(\mathrm{I})$ is a an ideal in Y .
Proof:
let I be an ideal in X
1)Since $0 \in I \Rightarrow f(0)=0 \in f(I)$.
2)Let $x * y \in f(I)$ and $y \in f(I)$
$\Rightarrow \exists \mathrm{a}, \mathrm{b} \in \mathrm{I}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{x}, \mathrm{f}(\mathrm{b})=\mathrm{y}$,
$\Rightarrow \mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{b}) \in \mathrm{f}(\mathrm{I})$ and $\mathrm{f}(\mathrm{b}) \in \mathrm{f}(\mathrm{I})$,
$\Rightarrow \mathrm{f}\left(\mathrm{a}^{*} \mathrm{~b}\right) \in \mathrm{f}(\mathrm{I})$ and $\mathrm{f}(\mathrm{b}) \in \mathrm{f}(\mathrm{I})$,
$\Rightarrow a^{*} b \in I$ and $b \in I$,
$\Rightarrow \mathrm{a} \in \mathrm{I} \quad$ [Since I is an ideal]
$\Rightarrow \mathrm{f}(\mathrm{a}) \in \mathrm{f}(\mathrm{I})$
$\Rightarrow \mathrm{x} \in \mathrm{f}(\mathrm{I})$.
$\therefore \mathrm{f}(\mathrm{I})$ is an ideal
Theorem (2.31):
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BH-epimorphism and I is a closed ideal in X . Then $\mathrm{f}(\mathrm{I})$ is a closed ideal in Y .
Proof:
Let I be a closed ideal in X ,
Since I is an ideal then $f(I)$ is an ideal [Theorem (2.30)]
Now,
Let $x \in f(I)$
$\Rightarrow \exists \mathrm{a} \in \mathrm{I}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{x}$
$\Rightarrow 0 * \mathrm{x}=0 * \mathrm{f}(\mathrm{a})=\mathrm{f}(0) * \mathrm{f}(\mathrm{a})$ $=f\left(0^{*} a\right) \in f(I)$
[Since $0 * \mathrm{a} \in \mathrm{I}$]
$\therefore \mathrm{f}(\mathrm{I})$ is a closed ideal
Theorem (2.32):
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BH-epimorphism and let I be a completely closed ideal in X . Then $\mathrm{f}(\mathrm{I})$ is a completely closed ideal in Y.

Journal of kerbala university , vol. 10 no. 3 scientific . 2012

Proof:
Let I be a completely closed ideal in X ,
Since I is an ideal then $f(I)$ is an ideal
[Theorem (2.30)]
Let $\mathrm{x}, \mathrm{y} \in \mathrm{f}(\mathrm{I})$
$\Rightarrow \exists \mathrm{a}, \mathrm{b} \in \mathrm{I}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{x}, \mathrm{f}(\mathrm{b})=\mathrm{y}$,
$\Rightarrow x^{*} \mathrm{y}=\mathrm{f}(\mathrm{a}) * \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{a} * \mathrm{~b}) \in \mathrm{f}(\mathrm{I})$
[Since $\mathrm{a}^{*} \mathrm{~b} \in \mathrm{I}$]
$\therefore \mathrm{f}(\mathrm{I})$ is a completely closed ideal
Proposition (2.33):
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BH-epimorphism and let I be a b- closed ideal in X . Then $\mathrm{f}(\mathrm{I})$ is a $\mathrm{f}(\mathrm{b})$ - closed ideal in Y.
Proof:
Let I be a b-closed ideal in X ,
Since I is an ideal then $f(I)$ is an ideal [Theorem (2.30)]
Let $\mathbf{x} \in \mathbf{f}(\mathbf{I}) \Rightarrow \exists \mathbf{a} \in \mathbf{I s . t} \mathbf{f}(\mathbf{a})=\mathbf{x}$
$\mathbf{f}(\mathbf{b}) *(0 * \mathbf{x})=\mathbf{f}(\mathbf{b}) *(\mathbf{f}(\mathbf{0}) * \mathbf{f}(\mathbf{a}))$

$$
=\mathbf{f}(\mathbf{b} *(\mathbf{0} * \mathbf{a})) \in \mathbf{f}(\mathbf{I}) \quad[\text { Since }(\mathbf{b} *(\mathbf{0} * \mathbf{a})) \in \mathbf{I}]
$$

$\therefore \mathrm{f}(\mathrm{I})$ is a $\mathrm{f}(\mathrm{b})$-closed ideal
Proposition (2.34):
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a BH-epimorphism, if I is a b-completely closed ideal in X , then $\mathrm{f}(\mathrm{I})$ is a $\mathrm{f}(\mathrm{b})$ completely closed ideal inY.
Proof:
Let I be a b- completely closed ideal in X ,then $\mathrm{b} *(\mathbf{a *} \mathbf{c}) \in \mathbf{I} \forall \mathbf{a}, \mathbf{c} \in \mathbf{I}$
Since I is an ideal then $\mathrm{f}(\mathrm{I})$ is an ideal [Theorem (2.30)]
Let $\mathbf{x}, \mathbf{y} \in \mathbf{f}(\mathbf{I}) \Rightarrow \exists \mathbf{g}, \mathbf{h} \in \mathbf{I s} . \mathrm{tf}(\mathbf{g})=\mathbf{x}, \mathbf{f}(\mathbf{h})=\mathbf{y}$
$\mathbf{f}(\mathbf{b}) *(\mathbf{x} * \mathbf{y})=\mathbf{f}(\mathbf{b}) *(\mathbf{f}(\mathbf{g}) * \mathbf{f}(\mathbf{h}))=\mathbf{f}(\mathbf{b}) * \mathbf{f}(\mathbf{g} * \mathbf{h})$
$=\mathbf{f}(\mathbf{b} *(\mathbf{g} * \mathbf{h})) \in \mathbf{f}(\mathbf{I}) \quad[$ Since $\mathbf{b} *(\mathbf{g} * \mathbf{h}) \in \mathbf{I}]$
$\therefore f(\mathrm{I})$ is a $\mathrm{f}(\mathrm{b})$-completely closed ideal
Proposition (2.35):
Let X be a BG-algebra. Then every ideal is a b-completely closed ideal $\forall \mathbf{b} \in \mathbf{I}$.
Proof:
Since every ideal in BG-algebra is a completely closed ideal [Theorem (2.16)]
Then $\mathbf{b} *(\mathbf{x} * \mathbf{y}) \in \mathbf{I} \forall \mathbf{x}, \mathbf{y} \in \mathbf{I}, \mathbf{b} \in \mathbf{I}$
Remark (2.36):
Let X be a B-algebra, then every ideal is a b-completely closed ideal $\forall \mathbf{b} \in \mathbf{I}$.
Proposition (2.37):
Let X be a BG-algebra, then $X_{+}=\{0\}$.
Proof:
Suppose $\mathbf{x} \in \mathbf{X}_{+}$such that $\mathbf{x} \neq \mathbf{0}$
$\Rightarrow \mathbf{0} * \mathbf{x}=\mathbf{0} \Rightarrow \mathbf{0} * \mathbf{x}=\mathbf{0} * \mathbf{0}$
$\Rightarrow \mathbf{x}=\mathbf{0} \quad$ [Lemma(1.7)(4)]
Proposition (2.38):
Let X be a BH-algebra and I be an ideal such that $\mathbf{I} \subseteq \mathbf{x}_{+}$. Then I is a b-closed ideal $\forall \mathbf{b} \in \mathbf{I}$.
Proof:
Let $\mathrm{b} \in \mathbf{I}$ and $\mathbf{I} \subseteq \mathbf{X}_{\mathrm{r}}$. Then
$\mathbf{b} *(\mathbf{0} * \mathbf{x})=\mathbf{b} * \mathbf{0} \quad\left[\right.$ since $\left.\mathbf{I} \subseteq \mathbf{X}_{+}\right]$
$=\mathbf{b} \in \mathbf{I}$

REFERENCES

[1] A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.
[2] C. B. Kim and H. S. Kim, "ON BG-ALGEBRAS", DEMONSTRATIO MATHEMATICA Vol. XLI, No 3, 2008
[3] H. H. Abass and H. M. A. Saeed, The Fuzzy Closed Ideal With Respect To an Element Of a BH-Algebra, thesis, 2011
[4] J. Neggers and H.S. Kim, On B-algebras, Math. Vensik, Vol.54,21-29,2002.
[5] J. Neggers, On d-algebras, Math. Slovaca 49 (1996), 19-26.
[6] K. I s'eki and Y. Imai, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42, 19-20, 1966.
[7] Q. Zhang, E. H. Roh and Y. B. Jun, "On fuzzy BH-algebras", J. Huanggang, Normal Univ. 21(3), 14-19, 2001.
[8] Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, Vol. 11, 313-320, 1983.
[9] S.S.Ahin and H.S.Kim,R-MAPS AND L-MAPS IN BH-ALGEBRAS, JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY,Volume 13,No.2,December 2000.
[10] Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347354, 1998

