ON COMPLETELY PRIME IDEAL WITH RESPECT TO AN ELEMENT OF A NEAR RING المثالية الأولية التامة بالنسبة إلى عنصر في الحلقة القريبة

Assist.prof. Husein Hadi Abbass University of Kufa\ College of Education for girls\ Department of Mathematics <u>Msc_hussien@yahoo.com</u> Mohanad Ali Mohammed University of Kufa\ College of Education for girls\ Department of Mathematics <u>Mohnad974@yahoo.com</u>

Abstract

In this paper, we introduce the notions of completely prime ideal with respect to an element x denoted By (x-C.P.I) of a near ring and the completely prime ideals near ring with respect to an element x.

Also we study the image and inverse image of x-C.P.I under epimomorphism and the direct product of x-C.P.I near ring are studied, and some types of ideals that becomes (x-C.P.I) of a near ring, and the Relationships between the completely prime ideal with respect to an element x of a near ring N and some other types of ideals.

المستخلص:

قدمنا في هذا البحث مفهومين جديدين هما المثالية الاولية التامة بالنسبة لعنصر في الحلقة القريبة والذي يرمز لها -x) قدمنا في هذا البحث مفهومين جديدين هما المثالية الاولية التامة بالنسبة لعنصر في الحلقة القريبة والذي يرمز لها -x) (C.P.I وايضا حلقة المثاليات التامة القريبة بالنسبة لعنصر x كما درسنا الصور المباشرة ومعكوس الصور للمثالية -x) (C.P.I تحت التشاكل الشامل وحاصل الضرب الديكارتي لحلقات المثاليات التامة القريبة بالنسبة لعنصر x. المثالية الاولية التامة بالنسبة لعنصر في الحلقة القريبة وبعض أنواع المثاليات الاخرى .

INTRODUCTION

In 1905 L.E Dickson began the study of near ring and later 1930 Wieland has investigated it .Further, material about a near ring can be found [3]. In 1970 W. L. M. Holcombe was introducing the notions of (0, 1, 2)-prime ideals of a near ring [14]. In 1977 G. Pilz, was introducing the notion of prime ideals of a near ring [3]. In 1988 N.J.Groenewald was introducing the notions of completely (semi) prime ideals of a near ring [8]. In 1990 G. L. Booth, N.J.Groenewald and S. veldsan was introducing the notions of equiprime ideals of a near ring [1]. In 1991 N.J.Groenewald was introducing the notions of 3-(semi) prime ideals of a near ring [9]. In 2011, H.H.abbass, S.M.Ibrahem introduced the concepts of a completely semi prime ideal with respect to an element of a near ring and the completely semi prime ideals near ring with respect to an element of a near ring [5].

1.PRELIMINARIES

In this section we give some basic concepts that we need in the second section.

Definition (1.1) [3]

A left near ring is a set N together with two binary operations "+" and "." such that

(1) (N,+) is a group (not necessarily abelian),

(2) (N, .) is a semi group,

 $(3)(n_1+n_2) \ . \ n_3=n_1 \ . \ n_3+n_2 \ . \ n_3 \ , \ \ for \ all \ n_1, \ n_2, \ n_3, \ \subseteq \ N \ .$

Definition (1.2) [13]

A subgroup N of a group G is said to be anormalsubgroup of G if for every

 $g \in G$ and $n \in N$, $gng^{-1} \in N$ or equivalently if by gNg^{-1} we mean the set of all

 gng^{-1} , $n \in N$ then N is a normal subgroup of G if and only if $gNg^{-1} \in N$ for every

 $g \in G$.

N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$

Definition (1.3) [4]

Let (N,+,.) be a near-ring. Anormal subgroup I of (N,+) is called a left deal of N if (1) I.N \subseteq I.

(2) \forall n, n₁ \in N and for all i \in I, n.(n₁ + i) – n.n₁ \in I.

<u>Remark (1.4</u>)

We will refer that all near rings and ideals in this paper are left .

Definition (1.5) [8]

An ideal I of a near ring N is called a completely semi prime ideal (C.S.P.I) of a near ring N, if $x^2 \in I$ implies $x \in I$ for all $x \in N$.

Remark (1.6) [13]

Let I be an ideal of a near ring N.Then the Factor near ring N/I $\,$ is defined as in case of rings .

Definition (1.7) [8]

Let I be an ideal of a near ring N. Then I is called a completely prime ideal of N if $\forall x, y \in N$,

 $x.y{\in}I \text{ implies } x{\in}I \text{ or } y{\in}I \ , \text{ denoted by } C.P.I \text{ of } N.$

Definition (1.8) [5]

Let N be a near ring and $x \in N$. Then I is called a completely semi prime ideal with respect to an

element x denoted by (x-C.S.P.I) or (x- completely semi prime ideal) of N if for all $y \in N$, $x.y^2 \in I$ implies $y \in I$.

Definition (1.9) [5]

The near ring N is called x- completely semi prime ideal near ring and is denoted by (x- C.S.P.I near ring), if every ideal of a near ring N is x- C.S.P.I

of N.

Definition (1.10) [14]

An ideal I of a near-ring N is called a 0-prime ideal if for every ideals A,B of N such that $A.B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$.

Definition (1.11) [14]

An ideal I of a near-ring N is called a 1-prime ideal if for every left ideals A,B of N such that A.B

 \subseteq I implies A \subseteq I or B \subseteq I.

Definition (1.12) [14]

An ideal I of a near-ring N is called a 2-prime ideal if for every subgroups A,B of N such that A.B \subseteq I implies A \subseteq I or B \subseteq I.

Definition (1.13) [9]

An ideal I of a near-ring N is called a 3-prime ideal if for all $a, b \in N$, $aNb \subseteq I$ implies $a \in I$ or

 $b \in I$.

Definition (1.14) [9]

Let I be an ideal of a near ring N is called a 3-semiprime ideal if for $a \in N$, $aNa \subseteq I$ implies $a \in I$.

Corollary (1.15)

Every 3-prime ideal of a near ring N is a 3-semi prime .

Proof :

Let I be a 3-prime ideal of N and $a \in N$ such that aNa \subseteq I \therefore $a \in I$ [Since I is a 3-prime ideal of N by definition(1.13)] \therefore I is a 3-semi prime ideal of N. [By definition (1.14)]

Definition (1.16) [1]

An ideal I of a near-ring N is called equiprime ideal, if $a \in N \setminus I$ and $x, y \in N$ such that $anx - any \in I$ for all $n \in N$, then $x - y \in I$.

Remark(1.17) [12]

I is completely prime \Rightarrow I is 3-prime \Rightarrow I is 2-prime ,and I is 1-prime \Rightarrow I is 0-prime and I is 2-prime \Rightarrow I is 1-prime Remark (1.18) [3]

If the zero ideal of N is v-prime (v = 0, 3, completely, equi), then N is called a v-prime near-ring. <u>Remark (1.19) [11]</u> An ideal I of N is called left (right) symmetric if $x.y.z \in I$ implies $y.x.z \in I$ (x.z.y $\in I$). <u>Definition (1.20) [13]</u>

Let $\{N_j\}_{j\in J}$ be a family of near rings , J is an index set and

 $\prod_{j=1}^{j} N_j = \{ (x_j) : x_j \in N_j \text{, for all } j \in J \} \text{ be the directed product of } N_j \text{ with the } I \in J \}$

component wise defined operations '+' and '.', is called the direct product near ring of the near rings $N_{\rm j}$.

Definition (1.21) [2]

If I_1 and I_2 are ideals of a near ring N then $I_1 \cdot I_2 = \{ i_1 \cdot i_2 : i_1 \in I_1, i_2 \in I_2 \}.$

Definition (1.22) [13]

A near ring N is called an integral domain if N has non -zero divisors .

Definition (1.23) [6]

Let (N_1 , +, .) and (N_2 , +', .') be two near-rings. The mapping

 $f: N_1 \rightarrow N_2$ is called a near-ring homomorphism if for all m, $n \in N_1$

f(m + n) = f(m) + f(n) and $f(m, n) = f(m) \cdot f(n)$.

Theorem (1.24) [7]

Let $f:(N_1, +, .) \rightarrow (N_2, +', .')$ is a homomorphism

(1) If I is an ideal of a near ring N_1 , then f(I) is an ideal of a near ring N_2 .

(2) If J is an ideal of a near ring N_2 , then $f^{-1}(J)$ is an ideal of a near ring N_1 .

Definition (1.25) [10]

An ideal I, of near ring N is said to be prime ideal if for any two ideals I_1 , I_2 of N such that I_1 . $I_2 \subset I$ then $I_1 \subset I \lor I_2 \subset I$.

2.The main result:

In this section we introduce the concepts of a completely prime ideal with respect to an element x and completely prime ideals near ring with respect to an element x.

Definition (2.1) :

Let N be a near ring ,I is an ideal of N and $x \in N$. Then I is called a completely prime ideal with respect to an element x denoted By (x-C.P.I) or(x- completely prime ideal) of N if for all $y,z \in N$,

 $x.y.z \in I$ implies $y \in I$ or $z \in I$.

Example (2.2) :

Consider the near ring $N = \{0,a,b,c\}$ with addition and multiplication defined By the following tables .

+	0	a	b	с
0	0	a	b	с
a	a	0	с	b
b	b	c	0	a
с	c	b	a	0

	0	a	b	с
0	0	0	0	0
a	0	а	a	0
b	0	a	b	c
с	0	0	с	с

The ideal I = {0,a} is a completely prime ideal of the near ring N, I is c - C.P.I of a near ring N, but it is not a-C.P.I, of a near ring N. Since $a.(b.c)=0\in I$ but $b\notin I \wedge c\notin I$.

Proposition (2.3) :

Let N be a near ring and $x \in N$. Then every completely prime ideal with respect to an element x of N is completely semi prime ideal with respect to an element x.

Proof :

Let I be a x - C.P.I and $y \in N$ such that $x \cdot y^2 \in I$, $x \cdot y^2 = x \cdot y \cdot y \in I$ $\Rightarrow y \in I$ [Since I is x - C.P.I by definition (2.1)] $\Rightarrow I$ is x - C.S.P.I of N [By definition (1.8)]

<u>Remark (2.4) :</u>

The Converse of the proposition (2.3) may be not true as in the following example .

Example (2.5) :

Consider the near ring $N = \{ 0, a, b, c \}$ with addition and multiplication defined By the following tables .

+	0	a	b	с
0	0	a	b	с
а	a	0	c	b
b	b	с	0	а
c	c	b	а	0

•	0	а	b	с
0	0	0	0	0
a	0	а	b	c
b	0	0	0	0
с	0	0	b	с

The ideal I = { 0, b } is a a-C.S.P.I of near ring N, Since $a \cdot (0)^2 = 0 \in I \implies 0 \in I$, $a \cdot (b)^2 = 0 \in I \implies b \in I$, But I is not a-C.P.I of near ring, Since $a \cdot (c.a) = a \cdot (0) = 0 \in I$ but $c \notin I$ and $a \notin I$.

Proposition (2.6) :

If I is a left symmetric ideal of a near ring N ,then I is a 3-prime ideal of a near ring N if and only if I is a x-C.P.I of N for all $x \in N$.

Proof:

 \Rightarrow Let $y, z \in N$ and $x \in N$ such that $x.(y.z) \in I$, $x.(y.z) = y.(x.z) \in I$ [Since I a left symmetric by definition(1.17)] $\therefore y.N.z \subseteq I \implies y \in I \text{ or } z \in I$ [Since I is a 3-prime by definition(1.13)] \therefore I is a x-C.P.I of N for all $x \in N$. [By definition(2.1)] \Leftarrow Let $y, z \in N$ such that $y.N.z \subseteq I$, \therefore y.(x.z) \in I \forall x \in N [Since I is a left symmetric by definition(1.17)] \therefore x.(y.z) \in I [Since I is a x-C.P.I of N by definition(2.1)] \therefore y \in I or z \in I \therefore I is a 3-prime ideal of N . [By definition(1.13)]

<u>Theorem (2.7) :</u>

If I is a left symmetric ideal of a near ring N ,then I is an equiprime ideal of N if and only if I is an x-C.P.I of N for all $x \in N$.

Proof : \Rightarrow Let $y,z \in N$ and $x \in N$ such that x.y.z∈ I $x.y.z = x.y.z - x.y.0 \in I$ $\therefore z - 0 = z \in I$ [Since I is a equiprime by definition(1.16)] \therefore I is a x-C.P.I of N [By definition(2.1)] \Leftarrow Let $x, y, z \in N$ and $a \in N \setminus I$ such that $a.x.y-a.x.z \in I$ [Since I is a left symmetric by definition(1.17)] a.x.y-a.x.z=a.x.(y-z)=x.a.(y-z)[Since I is a x-C.P.I and $a \notin I$ by definition(2.1)] \therefore (y-z) \in I \therefore I is a equiprime ideal of N. [By definition(1.16)]

Corollary (2.8) :

Every x-C.P.I a left symmetric ideal of a near ring N is a v-prime ideal of N (v=0,1,2) ,for all $x \in N$. <u>Proof :</u>

Let I be a x-C.P.I left symmetry	etric ideal of N ,where $x \in N$	
\therefore I is a 3-prime ideal of N		[By proposition (2.6)]
\therefore I is a v-prime ideal of N .	(v=0,1,2)	[By remark (1.17)]

Corollary (2.9) :

Every a 3-prime left symmetric ideal is a x-C.S.P.I of N , for all $x \in N$. Proof :

Let I is a left symmetric and a 3	-prime ideal,
∴ I is a x-C.P.I of N	[By proposition (2.6)]
\Rightarrow I is a x-C.S.P.I of N	[By proposition (2.3)]

Remark (2.10):

The Converse of the corollary (2.9) may be not true as in the following example .

Example (2.11):

Consider the near ring N in example (2.5), the left symmetric ideal $I = \{0, b\}$ is a-C.S.P.I of N. But I is not a-C.P.I of N Since a.(c.a)=a.(0)=0 \in I but c \notin I and a \notin I. \Rightarrow I is not 3-prime ideal of N. [By proposition (2.6)]

<u>Corollary (2.12) :</u>

Every a equiprime ideal of a near ring N is a x-C.S.P.I of N.

Proof :

Let I is an equiprime ideal of a near ring N, ∴ I is a x-C.P.I of N [By proposition (2.7)] ∴ I is a x-C.S.P.I of N [By proposition (2.3)]

Remark (2.13):

The Converse of the corollary (2.12) may be not true as in the following example.

Example (2.14):

Consider the near ring N in example (2.5), the left symmetric ideal $I = \{0,b\}$, is a-C.S.P.I of N. But I is not a-C.P.I of N Since a.(c.a)=a.(0)=0 \in I but $c \notin I$ and $a \notin I$. \Rightarrow I is not equiprime ideal of N. [By proposition (2.7)]

Definition (2.15):

The near ring N is called x- completely prime ideals near ring and is denoted by (x- C.P.I near

ring), if every ideal of a near ring N is x- C.P.I of N ,where $x\!\in\!N$.

Example (2.16):

Consider the near ring $N = \{ 0, a, b, c, d, e \}$ with addition and multiplication defined by the following tables .

+	0	a	b	c	d	e
0	0	a	b	с	d	e
a	a	b	с	d	e	0
b	b	с	d	e	0	a
с	с	d	e	0	a	b
d	d	e	0	a	b	с
e	e	0	a	b	с	d

	0	a	b	c	d	e
0	0	0	0	0	0	0
a	с	а	e	с	а	e
b	0	b	d	0	b	d
с	c	с	с	с	с	c
d	0	d	b	0	d	b
e	c	e	e	c	e	a

The ideals of N are $I_1=N$, $I_2=\{0\}$ and $I_3=\{0,c\}$ are a-C.P.I of N Since $\forall y,z \in N$, a.y. $z \in N$ implies $y \in I_i$ or $z \in I_i$ and $i \in \{1,2,3\}$ then N is a-C.P.I near ring

Proposition (2.17):

Proposition (2.18) :

Every ideal of a x-C.P.I near ring is a x-C.S.P.I of N. <u>Proof</u>:

Let I is ideal of a x-C.P.I near ring, \therefore I is a x-C.P.I of N \Rightarrow I is a x-C.S.P.I of N

[By definition (2.15)] [By proposition (2.3)]

If N is a x-C.P.I near ring , then N is a x-C.S.P.I near ring . <u>Proof :</u>

Let N is a x-C.P.I near ring , \Rightarrow every ideal of N is a x-C.S.P.I of N , \therefore N is a x-C.S.P.I near ring .

[By proposition (2.17)] [By definition (1.9)]

<u>Remark (2.19) :</u>

The Converse of the proposition (2.18) may be not true as in the following example .

Example (2.20):

Consider the near ring $N = \{0,a,b,c\}$ with addition and multiplication defined by the following tables .

+	0	a	b	с
0	0	a	b	с
a	a	0	с	b
b	b	с	0	a
c	с	b	a	0

-				
	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	a	b	с
c	a	0	c	b

The ideals of N are $I_1 = \{0,a\}$, $I_2 = N$, $I_3 = \{0\}$ are b - C.S.P.I of N since $\forall y \in N$, $b \in N$, $b.y^2 \in I_i$ implies $y \in I_i$ and $i \in \{1,2,3\}$ then N is b-C.S.P.I near ring.

But I_3 is not b-C.P.I since b.c.a= $0 \in I_3$ implies $c \notin I_3$ and $a \notin I_3$, then N is not

b-C.P.I near ring .

Proposition (2.21) :

Every a left symmetric ideal of a x-C.P.I near ring is a 3-prime ideal of N ,where $x \in N$. <u>Proof</u>:

Let I be a left symmetric ideal of a x-C.P.I near ring , ∴ I is a x-C.P.I of N [By definition (2.15)] ⇒ I is a 3-prime ideal of N [Since I is a left symmetric by proposition (2.6)]

Proposition (2.22) :

Every left symmetric ideal of a x-C.P.I near ring is a 3-sime prime ideal of N , where $x \in N$. <u>Proof :</u>

Let I be a left symmetric ideal of a x-C.P.I near ring,

\Rightarrow I is a x-C.P.I of N	[By definition (2.15)]
\Rightarrow I is a 3-prime ideal of N	[Since I is a left symmetric by
	proposition (2.6)]
\Rightarrow I is a 3-simeprime ideal of N	[By corollary (1.15)]

Proposition (2.23) :

Every a left symmetric ideal of a x-C.P.I near ring is a v-prime ideal of N (v=0,1,2). <u>Proof :</u>

Let I is a left symmetric ideal of	a x-C.P.I near ring,
\Rightarrow I is a x-C.P.I of N	[By definition (2.15)]
\Rightarrow I is a 3-prime ideal of N	[Since I is a left symmetric by proposition
	(2.6)]
\Rightarrow I is a v-prime ideal of N (v=0)	(1.17), [By remark (1.17)]

<u>Corollary (2.24) :</u>

Every left symmetric ideal of a x-C.P.I near ring is a equiprime ideal of N ,where $x \in N$. <u>Proof :</u>

Let I is a left symmetric ideal of a x-C.P.I near ring,

\Rightarrow I is a x-C.P.I of N	[By definition (2.15)]
\Rightarrow I is a equiprime ideal of N	[Since I is a left symmetric by
proposition(2.7)]	

Proposition (2.25) :

Let $x \in N$ and $\{I_j\}_{j \in J}$ be a family of x-C.P.I of a near ring N for all $j \in J$. Then $\bigcap_{j \in J} I_j$ is a x-C.P.I.

Proof:

Let $y,z \in N$ such that $x.(y,z) \in \bigcap_{J \in J} I_j$, this implies $x.(y,z) \in Ij, \forall j \in J$ $\Rightarrow y \in Ij \text{ or } z \in Ij, \forall j \in J$ [Since each Ij is a x-C.P.I $\forall j \in J$] $\bigcap_{J \in J} \Rightarrow y \in \bigcap_{J \in J} I_j \text{ or } z \in I_j$ $\Rightarrow \bigcap_{J \in J} I_j \text{ is a x-C.P.I of } N.$ [By definition (2.1)]

Remark (2.26) :

Let $\{I_j\}_{j\in J}$ be a chain of ideals of near ring N, then $\bigcup_{i\in J} I_j$ is an ideal of near ring N.

Proposition (2.27) :

Remark (2.28) :

If I_1 and I_2 be two x-C.P.I of a near ring N then the ideal $I_1 \cdot I_2$ of N may be not x-C.P.I

Example (2.29) :

Consider the near ring N={ 0,a,b,c } with addition and multiplication defined By the following tables .

+	0	a	b	c
0	0	a	b	с
a	a	0	с	b
b	b	с	0	а
С	c	b	a	0

	0	a	b	c
0	0	0	0	0
а	0	a	0	a
b	0	0	b	b
с	0	a	b	с

The ideals $I_1 = \{0,b\}$ and $I_2 = \{0,a\}$ are c-completely prime ideal of a near ring N.

 $I_1.I_2 = \{0\}$ is not c-completely prime ideal of the near ring N

[Since c.(a.b) = c.0 = $0 \in I_1.I_2$ but $a \notin I_1.I_2$ and $b \notin I_1.I_2$]

Proposition (2.30) :

Let N be a near ring with multiplicative identity e' then I is e' - C.P.I of the near ring N if and only if I is a C.P.I of N .

Proof:

 \Rightarrow

let I be an e' - C.P.I of N and $y,z \in N$ such that $y,z \in I$ $y.z = e'.y.z \in I$ then $y \in I$ or $z \in I$ [Since I is e' - C.P.I].∴ I is C.P.I of N.(By definition (1.7)]

To prove I is e^{-} C.P.I. Let I be a C.P.I of N and $y,z \in N$ such that

$e'.y.z \in I \Rightarrow y.z \in I$	
then $y \in I$ or $z \in I$	[Since I is C.P.I by definition (1.7)]
\therefore I is e'-C.P.I of N.	[By definition (2.1)]

Remark (2.31) :

In general not all C.P.I of a near ring N are x-C.P.I of a near ring for all $x \in N$ as in the following example.

Example (2.32) :

Consider the near ring $N = \{0,a,b,c\}$ with addition and multiplication defined By the following tables .

+	0	a	b	с
0	0	a	b	с
a	a	0	с	b
b	b	с	0	a
c	с	b	a	0

•	0	a	b	c
0	0	0	0	0
a	0	a	a	0
b	0	a	b	c
c	0	0	c	c

The ideal $I = \{0,a\}$ is C.P.I of the near ring N, but it is not a-C.P.I of a near ring N. Since $a.(b.c) = 0 \in I$ but $b \notin I$ and $c \notin I$.

Proposition (2.33) :

If N is a non zero near ring and $I=\{0\}$ then I is not 0-C.P.I of the near ring N.

Proof:

Suppose I is 0 -C.P.I of N , Since N≠{0} . Then there exist y,z∈N such that y≠0,z≠0 ⇒0.(y.z)=0∈I

\Rightarrow y \in I or z \in I	[Since I is 0-C.P.I by definition(2.1)]
\Rightarrow y = 0 or z = 0 and this contradiction	[Since $y \neq 0$ and $z \neq 0$]
\Rightarrow I is not 0-C.P.I of N.	

Proposition (2.34) :

let I be nontrivial ideal of the near ring N then I is not 0-C.P.I of N.

Proof:

Suppose I is 0 - C.P.I of N and let $y \in N$, $\Rightarrow 0.(y.y)=0\in I$ $\Rightarrow y\in I$ [Since I is 0- C.P.I of N] $\Rightarrow N \subseteq I$ this contradiction [Since $I \subseteq N$] $\Rightarrow I$ is not 0- C.P.I of N.

Proposition (2.35) :

Let N_1 and N_2 be two near ring , $f: N_1 \rightarrow N_2$ be epimomorphism and

I be x-C.P.I of N_1 . Then f(I) is f(x)-C.P.I of N_2 .

Proof:

Let I be x- C.P.I of N₁, we have $f(I) = \{ f(i) : i \in I \}$ is an ideal of N₂. [By theorem (1.24)] To proof f(I) is a f(x)-C.P.I of N₂. Let c, $v \in N_2$ such that $f(x).(c.v) \in f(I)$ f(x).(c.v)=f(x).(f(y).f(z)) f(x).(f(y).f(z)) = f(x).(f(y.z)) f(x).(f(y.z))=f(x.y.z)Where c=f(y), v=f(z) and $y,z \in N_1$, [Since f is an epimomphism] $x.(y.z) \in I \Rightarrow y \in I$ or $z \in I$ [Since I is x-C.P.I of N₁ by definition(2.1)] $\Rightarrow c=f(y) \in f(I)$, $v=f(z) \in f(I)$ $\Rightarrow f(I)$ is a f(x)-C.P.I of N₂. [By definition(2.1)]

Proposition (2.36) :

Let N_1 and N_2 be two near rings, and $f: N_1 \rightarrow N_2$ be epiomomorphism and J be a y-C.P.I of N_2 . Then $f^{-1}(J)$ is a x- C.P.I of N_1 where y=f(x), Ker $f \subseteq f^{-1}(J)$. <u>Proof:</u> $f^{-1}(J) = \{ x \in N_1: f(x) \in J \}$ is an ideal of the near ring N_1 [By theorem(1.24)] let $z, u \in N_1$ such that $x.(z.u) \in f^{-1}(J) \Rightarrow f(x.(z.u)) \in J$ $f(x).f(z.u) \in J \Rightarrow f(x).f(z).f(u) \in J$ $\Rightarrow y.f(z).f(u) \in J$ [Since J is y-C.P.I of N_2 by definition(2.1)] $\Rightarrow z \in f^{-1}(J)$ or $u \in f^{-1}(J)$ $\Rightarrow f^{-1}(J)$ is x-C.P.I of N_1 [By definition(2.1)]

Proposition (2.37) :

If N is a near ring integral domain , then $\{0\}$ is x-C.P.I for all $x \in N \setminus \{0\}$.

Proof:

```
Let y,z \in N, x.(y,z) \in \{0\}

\Rightarrow x.(y,z)=0.

\Rightarrow (y,z)=0 [Since N is integral domain and x \neq 0 by definition(1.22)]

\Rightarrow y=0 or z=0 [Since N is integral domain by definition(1.22)]

\Rightarrow y\in\{0\} or z\in\{0\}.

Then \{0\} is a x- C.P.I for all x\in N\setminus\{0\}.
```

Proposition (2.38):

Every a near ring integral domain N is v-prime (v = 0, 3, equi) near-ring.

Proof:

Let $\{0\}$ be a left symmetric ideal of a near ring integral domain N ,

- $\therefore \{0\} \text{ is a x-C.P.I of N for all } x \in \mathbb{N} \setminus \{0\} \qquad [By proposition (2.37)]$
- \Rightarrow {0} is equiprime ideal of N. [Since {0} is left symmetric by proposition (2.7)]
- \Rightarrow {0} is a 3-prime ideal of N. [Since {0} is left symmetric by proposition (2.6)]
- \Rightarrow {0} is a 0-prime ideal of N. [Since {0} is a 3-prime by remark (1.17)]

 \Rightarrow N is a v-prime near ring (v=0,3,e)

[Since {0} is a v-prime (v=0,3,e) by remark(1.23)]

Proposition (2.39) :

Let $\{N_j\}_{j \in J}$ be a family of a near rings , $x_j \in N_j$ and I_j be $x_j - C.P.I$ for all $j \in J$. Then $\prod_{j \in J} I_j$ is $(x_j) - C.P.I$ of the direct product near ring $\prod_{j \in J} N_j$. <u>Proof:</u> Let $(y_j), (z_j) \in \prod_{j \in J} N_j$ and $(x_j).((y_j).(z_j)) \in \prod_{j \neq J} I_j$ $(x_j).(y_j.z_j) \in \prod_{j \in J} I_j$ $(x_j, y_j.z_j) \in I_j$ for all $j \in J$ $y_j \in I_j$ or $z_j \in I_j$ [Since I_j is $(x_j) - C.P.I$ for all $j \in J$] $(y_j) \in \prod_{j \in J} I_j$ or $(z_j) \in \prod_{j \in J} I_j$ $\Rightarrow \prod_{j \in J} I_j$ is $(x_j) - C.P.I$.

Proposition (2.40) :

Let{ N_j }_{$j \in J$} be a family of x_j - C.P.I near rings where $xj \in N_j$ for all $j \in J$. Then the product near ring $\prod_{j \in J} N_j$ is (xj)- C.P.I. Proof:

Let I be an ideal of the product near ring $\prod_{i=1}^{j} N_i$ there exist a family of ideals

 $\{ I_j \}_{j \in J} \text{ such } I = \prod_{j \in J} I_j \text{ and each } I_j \text{ is an ideal of a near ring } N_j \text{ ,for all } j \in J \implies \text{each } I_j \text{ , } x_j \text{ - C.P.I of } N_j \text{ ,for all } j \in J.$ [Since $N_j \text{ is } x_j \text{ - C.P.I ,for all } j \in J$

by definition (2.15)],

 \Rightarrow I_j = I is (x_j)- C.P.I of the product near ring $\prod_{j \in J} N_j$ [By proposition (2.39)]

$$\Rightarrow \prod_{j \in J} N_j \text{ is a } (x_j) \text{- C.P.I near ring} \qquad [\text{Since } \prod_{j \in J} \text{is } (x_j) \text{- C.P.I of the} \\ \text{product near ring by definition(2.15)]}$$

Proposition (2.41) :

Let I be an ideal of the x- C.P.I near ring N. Then the factor near ring N/I is x+I - C.P.I ring . <u>Proof:</u>

The natural homomorphism $nat_I : N \rightarrow N/I$ which is defined

By $nat_{I}(a) = a+I$, for all $a \in N$

Is an epimomorphism.

Now let J be an ideal of the factor near ring $N\!/\!I~$.

we have $nat_{I}^{-1}(J)$ is an ideal of the near ring N. [By theorem (1.24)]

300

\Rightarrow nat _I ⁻¹ (J) is a x-C.P.I of N [Since N is	x-C.P.I near ring by definition
	(2.15)].
\Rightarrow nat(nat _I ⁻¹ (J)) = J is nat _I (x) -C.P.I of N/I	[By proposition (2.35)]
\Rightarrow J is a x+I-C.P.I of factor near ring .	[Since N/I is a x+I - C.P.I ring].

REFERENCES

1

- [1] G. L. Booth, N. J. Groenewald and S. Veldsman, ["]A Kurosh-Amitsur Prime Radical for Near-rings["], Comm. Algebra, 18 (9) (1990), 3111 3122.
- [2] G.Mason, "Fully Idempotent Near ring And Sheaf Representations", Canda, 1995.
- [3] G.Pilz, "Near ring", North Hollanda Publ.and co., 1977.
- [4] H.A.S.Abujabal, "On Structure And Commutativity Of Near Rings", Antofagasta-Chile, 2000
- [5] H.H.abbass, S.M.Ibrahem , ["] On Fuzzy Completely Semi Prime Ideal With Respect To An Element Of A Near Ring["], Msc thesis,2011
- [6] M.S.Davender, "Fuzzy homorphism Of near rings", Fuzzy Set Systems, vol 45, pp. 83-91, 1992.
- [7] M.S.Davender, "Fuzzy Subfields", Fuzzy Set Systems, vol .37, pp.383-388, 1990.
- [8] N.J.Groenewald," The completely prime radical in near rings", Acta Math .Hung ., vol33,pp.301-305,1988.
- [9] N. J. Groenewald, "Different Prime Ideals in Near-rings", Comm. Algebra, 19 (10) (1991), 2667 - 2675.
- [10] P.Dheena, "Ageneralization Of Strongly Regular Near ring", Indian J.Pureappl. math,vol. 20,(1),pp.58-63,1989.
- [11] P.Dheena and G.Satheesh Kumar, "Completely 2-primal Ideal in near ring", Indid,2007
- [12] S. Veldsman, "On Equiprime Near-rings", Comm. Algebra, 20 (9) (1992), 2569 2587
- [13] W.B.vasantha andasamy, "samarandache near ring"United States of America", pp.20-30, pp.69-71, 158, 2002.
- [14] W. L. M. Holcombe, "Primitive near-rings", Doctoral Dissertation, University of Leeds, 1970.