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Abstract
In this paper , we introduce the notions of completely prime ideal with respect to an
element x denoted By (x-C.P.I) of a near ring and the completely prime ideals near ring with
respect to an element x.
Also we study the image and inverse image of x-C.P.l under epimomorphism and the direct
product of x-C.P.l near ring are studied, and some types of ideals that becomes (x-C.P.I) of a
near ring,and the Relationships between the completely prime ideal with respect to an element
x of a near ring N and some other types of ideals.
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INTRODUCTION

In 1905 L.E Dickson began the study of near ring and later 1930 Wieland has investigated
it .Further, material about a near ring can be found [3]. In 1970 W. L. M. Holcombe was
introducing the notions of (0, 1, 2)-prime ideals of a near ring [14]. In 1977 G. Pilz, was
introducing the notion of prime ideals of a near ring [3]. In 1988 N.J.Groenewald was introducing
the notions of completely (semi) prime ideals of a near ring [8]. In 1990 G. L. Booth,
N.J.Groenewald and S. veldsan was introducing the notions of equiprime ideals of a near ring [1].
In 1991 N.J.Groenewald was introducing the notions of 3-(semi) prime ideals of a near ring [9]. In
2011, H.H.abbass, S.M.Ibrahem introduced the concepts of a completely semi prime ideal with
respect to an element of a near ring and the completely semi prime ideals near ring with respect to
an element of a near ring [5].

1.PRELIMINARIES
In this section we give some basic concepts that we need in the second section.
Definition (1.1) [3]

A left near ring is a set N together with two binary operations “+” and ”.” such that

(1) (N,+) is a group (not necessarily abelian ),

(2) (N, .) is a semi group ,

(3)(ng+nz).ng=ny.nz+ny.nz, forallng, ny nz, & N.
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Definition (1.2) [13]

A subgroup N of a group G is said to be anormalsubgroup of G if for every

g e Gandn e N, gng *eN or equivalently if by gNg* we mean the set of all

gng !, n e N then N is a normal subgroup of G if and only if gNg &N for every
geG.

N is a normal subgroup of G if and only if gNg ™ = N for every g € G

Definition (1.3) [4]

Let (N,+,.) Dbe a near-ring. Anormalsubgroup I of (N,+) is called a left ideal of N if
(1) INC I

(2) VnnENandforalli €1l,n(n+i)—nn < L

Remark (1.4)

We will refer that all near rings and ideals in this paper are left .
Definition (1.5) [8]

An ideal | of a near ring N is called a completely semi prime ideal (C.S.P.l) of anearring N, if

x? e | implies xel forall xeN .
Remark (1.6) [13]
Let I be an ideal of a near ring N.Then the Factor near ring N/I is defined as in case of rings .

Definition (1.7) [8]
Let I be an ideal of a near ring N. Then 1is called a completely prime ideal of N if Vx,yeN,

x.yel implies xel or yel , denoted by C.P.I of N.
Definition (1.8) [5]

Let N be a near ring and xeN .Then 1 is called a completely semi prime ideal with respect to an
element x denoted by (x-C.S.P.1) or ( x- completely semi prime ideal Jof N if forall yeN , x.y* € |
implies yel .

Definition (1.9) [5]

The near ring N is called x- completely semi prime ideal near ring and is denoted by (x- C.S.P.I

near ring ), if every ideal of a near ring N is x- C.S.P.1
of N.
Definition (1.10) [14]

An ideal | of a near-ring N is called a O-prime ideal if for every ideals A,B of N such that A.B < |

implies ASlorBC I,
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Definition (1.11 ) [14]

An ideal | of a near-ring N is called a 1-prime ideal if for every left ideals A,B of N such that A.B
C | implies ASlorBClI.

Definition (1.12 ) [14]

An ideal I of a near-ring N is called a 2-prime ideal if for every subgroups A,B of N such that A.B
C limplies ASlor BS 1.

Definition (1.13) [9]

An ideal I of a near-ring N is called a 3-prime ideal if foralla,b & N,aNb S 1 implies a < | or
bel.
Definition (1.14) [9]

Let I be an ideal of a near ring N is called a 3-semiprime ideal if for ac N,
aNac | implies ael.

Corollary (1.15)

Every 3-prime ideal of a near ring N is a 3-semi prime .

Proof :

Let I be a 3-prime ideal of N and aeN such that

aNa c |

soael [Since I is a 3-prime ideal of N by definition(1.13) ]

. l'is a3-semi prime ideal of N.  [By definition (1.14)]

Definition (1.16) [1]

An ideal | of a near-ring N is called equiprime ideal, if a= N\l and X,y & N such that anx —
any €1 forall n € N, then x—-y e 1.

Remark(1.17) [12]

I is completely prime = 1is 3-prime = I is 2-prime ,and
lis 1-prime = lis O-prime and |is 2-prime = lis 1-prime
Remark (1.18) [3]

If the zero ideal of N is v-prime (v =0, 3, completely, equi), then N is called a

v-prime near-ring.

Remark (1.19) [11]

An ideal | of N is called left (right) symmetric if x.y.z & | implies y.x.z €1 (xzye ).
Definition (11.20) [13]

Let {N;}jc; be a family of near rings, J is an index setand
1_[ N;={(Xj):x; € Nj, forall jeJ } be the directed product of N;with the
isJ
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component wise defined operations ‘+’ and °.’, is called the direct product near ring of the near
rings N; .

Definition (1.21) [2]

If Iy and I, areideals of anearring Nthenl;. lb,={i1.i2:11€ I3, Ibel> }.

Definition (1.22) [13]

A near ring N is called an integral domain if N has non -zero divisors .

Definition (1.23) [6]

Let (N1, +,.) and (N2, +',.") be two near-rings. The mapping

f : N1 =N is called a near-ring homomorphism if for all m, n &N

f(m+n)=f(m) + f(n) and f(m.n) = f(m) - f(n).
Theorem (1.24) [7]

Let f:(Ny,+,.) > (Nz,+',.") isahomomorphism
(1) If I isanideal of a near ring N, then f(I) is an ideal of a near ring N.
(2) If J is an ideal of a near ring N , thenf™(J) is an ideal of a near ring N.
Definition (1.25) [10]

An ideal I, of near ring N is said to be prime ideal if for any two ideals I, I, of N such that | .

lbcl then licl v bcl.

2.The main result:

In this section we introduce the concepts of a completely prime ideal with respect to an element
x and completely prime ideals near ring with respect to an element x .

Definition (2.1) :

Let N be a near ring ,l is an ideal of N and xeN .Then I is called a completely prime ideal with
respect to an element x denoted By (x-C.P.I) or( x- completely prime ideal )of N if forall y,zeN,

x.y.zel implies yel or zel.
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Example (2.2) :

Consider the near ring N ={0,a,b,c} with addition and multiplication defined By the following

tables .

o| o
o| T
ol O O

The ideal 1={0,a} is a completely prime ideal of the nearring N, lisc - C.P.I of anearring N,
butitisnot a-C.P.l, of anearring N.Since a.(b.c)=0Oelbutbgla cgl

Proposition (2.3) :

Let N be anear ring and xeN . Then every completely prime ideal with respect to an element x of
N is completely semi prime ideal with respect to an element x.

Proof :

Letlbeax—C.P.land y € Nsuchthat x.y* e I,

X.yY'=x.y.yel

=>vyel [ Since I is x — C.P.I by definition (2.1) ]
= lisx—C.S.P.I of N [By definition (1.8) ]

Remark (2.4) :

The Converse of the proposition (2.3) may be not true as in the following example .

Example (2.5) :

Consider the nearring N={0, a, b, ¢ } with addition and multiplication defined By the
following tables .
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C C b a 0

0 a b C
0 |0 0 0 0
a 0 a b C
b |0 0 0 0
C 0 0 b C

Theideal 1={0,b}isa a-C.S.P.I ofnearring N, Since
a.(0’=0el =>0el,

a.(b?’=0el=bel,

But I isnot a— C.P.I of nearring,

Since a.(c.a)=a.(0)=0el Dbut cgl and agl .

Proposition (2.6) :

If I isa left symmetric ideal of a near ring N ,then l'isa 3-prime ideal of anearring N if and
only if I isa x-C.P.1 of N for all xeN .

Proof:

=

Let y,z e Nand xeN such that x.(y.z) € I,

X.(y.2) =y.(x.2) € | [ Since I a left symmetric by definition(1.17) ]
~YNzcl = yel or zel [ Since I is a 3-prime by definition(1.13)]
- lisax-C.P.l of N for all xeN . [By definition(2.1) ]
<~

Let y,z e Nsuchthaty.N.zc I,
~y.(Xz2) e | VxeN

SoX(yz) el [Since 1 is a left symmetric by definition(1.17)]
Syelor zel [Since I is a x-C.P.1 of N by definition(2.1)]
- lisa 3-prime ideal of N . [By definition(1.13)]

Theorem (2.7) :

If 1 isa left symmetric ideal of a near ring N ,then I is an equiprime ideal of N if and only if I is an
x-C.P.l of N for all xeN .
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Proof :

=

Let y,zeN and xeN such that

x.y.ze |

Xyz=xyz-xy0 el

~.z-0=ze | [Since I is a equiprime by definition(1.16)]

o lisax-C.P.lof N [By definition(2.1) ]

<~

Let x,y,zeN and aeN\I such that

ax.y-ax.z el

a.x.y-a.x.z=a.x.(y-z)=x.a.(y-z) [Since I is a left symmetric by definition(1.17)]
S(y-9)el [Since I is a x-C.P.l and ag | by definition(2.1)]
. I isa equiprime ideal of N. [By definition(1.16)]

Corollary (2.8) :

Every x-C.P.I a left symmetric ideal of a near ring N is a v-prime ideal of N (v=0,1,2) ,for all xeN .
Proof :

Let I be a x-C.P.1 left symmetric ideal of N ,where xeN
. lisa 3-prime ideal of N [By proposition (2.6)]
o lisav-primeideal of N. (v=0,1,2) [By remark (1.17)]

Corollary (2.9) :

Every a 3-prime left symmetric ideal is a x-C.S.P.1 of N ,for all xeN .

Proof :

Let I is a left symmetric and a 3-prime ideal ,

s lisax-C.P.1of N [By proposition (2.6) ]
= lisax-C.S.P.Iof N [BYy proposition (2.3) ]

Remark (2.10):

The Converse of the corollary (2.9) may be not true as in the following example .

Example (2.11):

Consider the near ring N in example (2.5), the left symmetric ideal 1 ={0,b} is
a-C.S.P.I of N.

But I is not a-C.P.I of N

Since a.(c.a)=a.(0)=0 € I but c¢l and agl .

= lis not 3-prime ideal of N . [By proposition (2.6) ]

Corollary (2.12) :

Every a equiprime ideal of a near ring N isax-C.S.P.I1 of N .
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Proof :

Let | isanequiprime ideal of a near ring N,

. Iisax-C.P.lof N [By proposition (2.7) ]
. | isax-C.S.P.lof N [By proposition (2.3) ]

Remark (2.13):

The Converse of the corollary (2.12) may be not true as in the following example.

Example (2.14):

Consider the near ring N in example (2.5), the left symmetric ideal 1={0,b}, is a-C.S.P.I of N.
But I is not a-C.P.1 of N

Since a.(c.a)=a.(0)=0 < I but c¢l and agl .

= | is not equiprime ideal of N . [By proposition (2.7) ]

Definition (2.15):

The near ring N is called x- completely prime ideals near ring and is denoted by (x- C.P.I near

ring ), if every ideal of a near ring N is x- C.P.I of N ,where xeN.

Example (2.16):

Consider the nearring N={0,a, b, c,d, e } with addition and multiplication defined by the
following tables .

+ |0 a b Cc d e
0 0 a b Cc d e
a a b c d e 0
b b c d e 0 a
Cc c d e 0 a b
d d e 0 a b c
e e 0 a b c d

0 a b Cc d e
0 0 0 0 0 0 0
a c a e c a e
b 0 b d 0 b d
Cc c c c c c c
d 0 d b 0 d b
e c e e c e a

The ideals of N are 1,=N,I,={0} and 15={0,c} are a-C.P.l of N Since Vy,zeN ,a.y.zeN implies
yel; or zel; and ie{1,2,3} then N is a-C.P.I near ring
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Proposition (2.17) :

Every ideal of a x-C.P.I near ring is a x-C.S.P.1 of N .

Proof :

Let | isideal of a x-C.P.l near ring,

. lisa x-C.P.1of N [By definition (2.15) ]
=1 isa x-C.S.P.1of N [By proposition (2.3) ]

Proposition (2.18) :

If N is a x-C.P.I near ring , then N is a x-C.S.P.I near ring .

Proof :

Let N is a x-C.P.I near ring ,

= every ideal of Nisax-C.S.P.Iof N, [By proposition (2.17) ]
.. Nisax-C.S.P.l near ring . [By definition (1.9)]

Remark (2.19) :

The Converse of the proposition (2.18) may be not true as in the following example .

Example ( 2.20):

Consider the near ring N ={0,a,b,c} with addition and multiplication defined by the following

tables .

c a 0 c b

The ideals of N are 1,={0,a} ,1,=N ,1s={0} are b - C.S.P.I of N since V¥ yeN , beN, b.y’e |;
implies ye I; and ie{1,2,3} then N is b-C.S.P.I near ring.
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But I3is not b-C.P.I since b.c.a=0<l3 implies c I3 and ag I3 ,then N is not
b-C.P.I near ring .
Proposition (2.21) :

Every a left symmetric ideal of a x-C.P.I near ring is a 3-prime ideal of N ,where Xe N .
Proof :

Let I be a left symmetric ideal of a x-C.P.I near ring ,
o lisax-C.P.lof N [By definition (2.15) ]
= lisa 3-prime ideal of N [Since | is a left symmetric by proposition (2.6)]

Proposition (2.22) :

Every left symmetric ideal of a x-C.P.1 near ring is a 3-simeprime ideal of N ,where xe N .
Proof :

Let | be a left symmetric ideal of a x-C.P.I near ring ,

= | isax-C.P.Iof N [By definition (2.15) ]

= | isa 3-prime ideal of N [Since I is a left symmetric by
proposition (2.6)]

= | is a 3-simeprime ideal of N [By corollary (1.15) ]

Proposition (2.23) :

Every a left symmetric ideal of a x-C.P.I near ring is a v-prime ideal of N (v=0,1,2).
Proof :

Let Iisa left symmetric ideal of a x-C.P.l near ring ,
=l isa x-C.P.1of N [By definition (2.15)]
= | isa 3-prime ideal of N [Since I is a left symmetric by proposition

(2.6)]
= | isav-primeideal of N (v=0,1,2). [Byremark (1.17)]
Corollary (2.24) :

Every left symmetric ideal of a x-C.P.I near ring is a equiprime ideal of N ,where xe N .
Proof :

Let I is a left symmetric ideal of a x-C.P.I near ring ,

= lisax-C.P.I of N [By definition (2.15) ]
= lis aequiprime ideal of N [Since I is a left symmetric by
proposition(2.7)]

Proposition (2.25) :

LetxeN and {l;}jc; beafamily of x-C.P.I of anearring N for all jeJ. Then
lj is a x-C.P.Il.

i<t

294



Journal of kerbala university , vol. 10 no.3 scientific . 2012

Proof:
Let y,zeN such that x.(y.z) ﬂlj this implies
x.(y.2)elj Vjel "
= yeljorzelj, Vjel [Sinceeachljisa x-C.P.lI Vjel]
ﬂ :yeﬂlj or ze |

i<y

=[] isax-CP.IofN. [By definition (2.1)]

f<)

Remark (2.26) :

Let { I;}j<; be a chain of ideals of near ring N , then UI,— is an ideal of near ring N .

Proposition (2.27) :

{ lj}jes be chain of x- C. P . I of near ring N . Then U lj isx-C.P.I of near ring N,where xeN.
Proof:
let {1j}jed be chain of x- C.P.I of near ring

X.(y.z)e U l; then there exist Ice { Ij }je; such that

X.(y.2) elg
= ye lg orze Iy [ Since Ixis x- C.P.I of N]

—ye U ljor ze U l;

= U l; isx-C.P.IofN. [By definition (2.1)]

Remark (2.28)
If 1;and I, be two x-C.P.l of a near ring N then the ideal I,.1, of N may be not x-C.P.1
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Example (2.29) :

Consider the near ring N={ 0,a,b,c} with addition and multiplication defined By the following

tables .

C C b a 0
0 a |b C
0 0 0 |0 0
a 0 a |0 a
b 0 0 |b b
C 0 a |b C

The ideals 1; ={0,b} and 1,={0,a} are c-completely prime ideal of a near ring N.
I1.1 ={0} is not c-completely prime ideal of the near ring N

[ Since c.(a.b)=c.0=0¢€ I..l, butagl..l, and be I1.17]

Proposition (2.30) :

Let N be a near ring with multiplicative identity e then | is € - C.P.I of the near ring N if and
only if lisa C.P.I of N .
Proof:
=

letIbean € - C.P.I of Nand

y,zeN such that y.zel

y.z= e'.y.ZE|

thenyel or zel [ Since lis e- C.P.I1] .
o 1is C.P.I of N . [By definition (1.7)]
=

To prove | is e- CP.I. Let Ibea C.P.I of Nand y,zeN such that
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e|.y.Z€| =Vy.zel
then yel or zel [ Since I'is C.P.1 by definition (1.7) ]
1 is e-CP.I of N. [By definition (2.1)]

Remark (2.31) :

In general not all C.P.I of a near ring N are x- C.P.I of a near ring for all xeN as in the

following example .

Example (2.32) :

Consider the near ring N ={0,a,b,c} with addition and multiplication defined By the following

tables .

C C b a 0

0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
C 0 0 C C

Theideal 1={0,a} is C.P.I ofthe nearring N, butitisnota- C.P.I of anearring N.Since
a.(b.c) =Oel butbgl and cel .

Proposition (2.33) :

If N isanon zero near ring and I={0} then I is not 0-C.P.I of the nearring N.

Proof:
Suppose 1is0-C.P.1 of N , Since N={0} . Then there exist y,ze N such that y=0,z=0
=0.(y.2)=0€l
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=yelorzel [Since I is 0-C.P.I by definition(2.1) ]
= y=0o0r z=0 and this contradiction [Since y=0 and z=0 ]
= lisnot 0-C.P.Iof N.

Proposition (2.34) :

let | be nontrivial ideal of the near ring N then lisnot O-C.P.lof N.

Proof:
Suppose 1isO-C.P.Iof N and lety eN,
= 0.(y.y)=0€l
=vyel [Since l'is 0- C.P.1of N]
=N |

this contradiction [Since | & N] —lisnot0-C.P.I1ofN.

Proposition (2.35) :

Let N; and N; be two near ring, f:N;— N2 be epimomorphism and
| be x-C.P.I of Ny .Then f(I)is f(x)- C.P.I of N, .

Proof:
Letl bex-C.P.I of Ny,
we have f (I)={ f (i) : iel } is an ideal of N, . [By theorem (1.24)]

To proof f(1) is a f(x)-C.P.1 of N,.

Let c,v € N, such that f(x).(c.v)ef(I)

J)-ev)=f(x)-(f(¥)-£(2))

FO).(f(y)-f(2)) =f(x)-(f(y-2))

F).(f(y-2))=f(x.y.2)

Where c=f(y) , v=f(z) and y,zeNy, [Since f is an epimomphism ]

X.(y.z)el = yelorzel [Since Iis x-C.P.I of N; by definition(2.1)]
=c=f(y)ef(I) , v=£(2)ef()
= f(I) isa f(x)-C.P.l1 of N,. [By definition(2.1)]
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Proposition (2.36) :

Let N; and N be two near rings, and f:N; — N2  be epiomomorphism andJ bea vy-
C.P.1 of N, .Thenf'(d)is a x-C.P.I of N; where
y=f(x) Ker fc [ Q).
Proof:
£ ={xeN f(x) €J } isanideal of the nearringN;  [By theorem(1.24)]
let z,ueN; such that x.(z.u)ef*J) = f(x.(z.u))ed
f(X).f(z.u) €J= f(X).f(2)-f(u) €]
=Vv.f(2).f(u) €J

=f(z)edorf(u) €J [Since J is y-C.P.1 of Nby definition(2.1)]
= zef')oru e f1()
=/"(J) isx-C.P.1 of Ny [By definition(2.1)]

Proposition (2.37) :

If N is a near ring integral domain , then {0} is x-C.P.I for all xeN \ {0}.
Proof:

Lety,zeN x.(y.z)e{0}

= X.(y.2)=0.

= (y.2)=0 [Since N is integral domain and x = 0 by definition(1.22)]
= y=0o0rz=0 [Since N is integral domain by definition(1.22)]

=ye{0} or ze{0}.

Then {0} isa x- C.P.I forall xeN\{0} .

Proposition (2.38):

Every a near ring integral domain N is v-prime (v = 0, 3,equi) near-ring.

Proof:

Let {0} be a left symmetric ideal of a near ring integral domain N ,

. {0} isa x-C.P.I of N for all xeN\{0} [By proposition (2.37) ]

= {0} is equiprime ideal of N . [Since {0} is left symmetric by proposition (2.7)]
= {0} isa 3-prime ideal of N.  [Since {0} is left symmetric by proposition (2.6)]
—={0} isa 0-prime ideal of N.  [Since {0} is a 3-prime by remark (1.17)]
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= N is a v-prime near ring (v=0,3,e) [Since {0} is a v-prime (v=0,3,e) by
remark(1.23)]
Proposition (2.39)

Let {Nj}jc; be afamily of anearrings, x; € Njand I be x;- C.P.I forall j €J.

Then  []l; is(Xj)- C.P.l of the direct product near ring [N;.
Proof: JEJ

Let (y)).(z)e [1N; and  ().((vp)-@)e [}

5)-(vi-zi)e T1H
(X;. yj.zj) el for all jeJ
yjeljor zjel; [Since I;is ( xj)- C.P.1 forall jeJ]

(yj)e )l;[,li or (Zj)EE[ |j = g |j is (Xj)-C.P.|

Proposition (2.40) :

Let{ Nj}jcs be afamily of x;- C.P.I near rings where XxjeN; for all jeJ .Then the product near
ringg N; is (xj)-C.P.I
Proof:
Let | be an ideal of the product near ring H N; there exist a family of ideals
{1i}je; such 1= [[1; and each I; is an ideal of a near ring N; ,for all jeJ =each I; , x; - C.P.I of
N; ,forall jel. [Since Njis x;j - C.P.l [forall jel
by definition (2.15)],
= lj =lis(x;)- C.P.l of the product near ring H N; [By proposition (2.39)]

:>l_[Nj isa (Xj)-C.P.I nearring [Since ]_Tlis(x,- )- C.P.1 of the
Jjef je

product near ring by definition(2.15)]
Proposition (2.41) :

Let I be an ideal of the x- C.P.1 near ring N. Then the factor near ring N/l is  x+I - C.P.I ring.
Proof:

The natural homomorphism nat; : N — N/I which is defined

By nat, (a) =a+l , forallae N

Isan epimomorphism .

Now let J be an ideal of the factor near ring N/I .

we have nat;*(J) is an ideal of the near ring N. [ By theorem (1.24)]
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= nat;*(J) isa x-C.P.I of N [Since N is x-C.P.I near ring by definition

(2.15)].
—nat(nat,*(J)) = J is nat; (x) -C.P.1 of N/I [By proposition (2.35)]
=J is a x+l-C.P.lI of factor near ring . [Since N/I isa x+1-C.P.l ring].
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