ON THEMEASURABLE FAMILIES OF Ŝ- BANACH LATTICE

Zeinab Hassan Abood Prof. Dr. Ali HussainBattor University of Kufa / College of Education for Girls Department of Mathematics

ABSTRACT:

The aim of this paper is to study a measurable families of \hat{S} - Banach lattice and their decomposition of a separable Banach \hat{S} - vector lattice into measurable field of Banach lattice . Moreover there exists a Freudenthal unit in \hat{X} if and only if it exists in X_{τ} .

<u>المستخلص :-</u> يهدف هذا البحث الى در اسة الفصائل القابلة للقياس للحزم المتجه البناخية - \$ وتحللها من الحزم البناخية المتجه المنفصلة - \$ الى الحقول القياسية من تلك الحزم .أضافة الى ذلك وجود الوحدة الفريدنتالية في \$ اذا وفقط كانت في ₄X .

<u>1.Introduction :-</u>

In this paper , we introduce the important definitions and some information about the measurable field of metric space and of Boolean algebras that we needed it in this work . We get the main results about the decomposition of separable BanachŜ- vector lattice into a measurable field of Banach lattice .

2.The preliminaries

We recall the basic definitions and information which are needed in our work .

2.1 Definition: [11]

A mapping $\rho : X \times X \longrightarrow \hat{S}$ is called a *metric* on a set X with values in \hat{S} if

- 1. $\rho(x, y) \ge o$ for any $x, y \in X$ and $\rho(x, y) = 0$ if and only if x=y.
- 2. $\rho(x, y) = \rho(y, x)$ for any $x, y \in X$.
- 3. $\rho(x, y) \le \rho(x, z) + \rho(z, y)$ for any $x, y, z \in X$.

2.2 Remark:[8]

Suppose that *T* is the interval [0,1], let A be the σ - algebra of the Lebesgue measurable subset of *T*, and *P* be the Lebesgue measure on *T*.

We shall denote by \hat{S} the ring of all real measurable functions on [0, 1].

Journal of kerbala university, vol. 10 no.3 scientific . 2012

2.3 Definition: [11]

The space (X, ρ) is called *separable*, if there exists a countable subset $M \subset X$ such that for any $x \in X$, there is $\{z_n\}_{n=1}^{\infty} \subset M$ for which $\rho(x, z_n) \xrightarrow{(t)} 0$. Suppose that (X_{τ}, ρ_{τ}) be a complete separable metric space defined for *P*-almost every $\tau \in T$. **2.4 Definition:** [11]

A *measurable field of metric space* is a pair $\{X, \{X_{\tau}\}_{\tau \in T}\}$ where X is a totality of functions $x: \tau \to x(\tau) \in X_{\tau}$ for P-almost every $\tau \in T$ such that :

- 1. There exists a sequence $\{x_n\}_{n=1}^{\infty} \subset X$ such that $\{x_n(\tau)\}_{n=1}^{\infty}$ is dense in (X_{τ}, ρ_{τ}) for P-almot every $\tau \in T$.
- 2. The function $\tau \to \rho_\tau(x(\tau), y(\tau))$ is measurable on (T, \mathcal{A}, P) for all $x, y \in X$.
- 3. If $\{y_n\}_{n=1}^{\infty} \subset X, y : \tau \to y(\tau) \in X_{\tau}$ for *P*-almost every $\tau \in T$ and $\rho_{\tau}(y_n(\tau), y(\tau)) \to 0$ as $n \to \infty$ for *P*-almost every $\tau \in T$, then $y \in X$.

2.5 Remark:[9,10]

Let $\{X, \{X_{\tau}\}_{\tau \in T}\}$ be a measurable field of metric space and let \hat{X} be the set of all classes for *P*-almost everywhere coinciding elements from *X*.

For any $\hat{x}, \hat{y} \in \hat{X}$, we denote by $\hat{\rho}(\hat{x}, \hat{y})$ the class from \hat{S} containing the function $\rho_{\tau}(x(\tau), y(\tau))$, where $x(\tau)$ and $y(\tau)$ are representatives of the classes \hat{x} and \hat{y} , respectively. Then $(\hat{X}, \hat{\rho})$ is a complete separable space with a \hat{S} - valued metric. **2.6 Definition:** [11]

A measurable field of metric space is said to be *saturated* if the following two conditions are satisfied :

1. $y: \tau \to y(\tau) \in X_{\tau}$ for *P*-almost every $\tau \in T$.

2. The function $\tau \to \rho_\tau(x(\tau), y(\tau))$ is measurable on (T, \mathcal{A}, P) for any $x \in X$, imply $y \in X$

2.7 Remark: [11]

Suppose that in the definition of saturated measurable field of metric space all X_{τ} coincide and are equal to (Z, ρ_{τ}) .

We shall denoted by S(T,Z) the set of measurable mapping from (T, \mathcal{A}, P) into Z and by $\hat{S}(T,Z)$ the set of the classes of *P*-almost everywhere coinciding function from S(T,Z).

A \hat{S} - valued metric $\hat{\rho}(\hat{x}, \hat{y}) = \rho_{\tau}(x(\tau), y(\tau))$ is naturally defined on $\hat{S}(T, Z)$. In [8] it is shown that $\hat{S}(T, Z)$ is \hat{S} - isometric to \hat{X} .

<u> 2.8 Remark: [11]</u>

Let (U, d) be a universal metric space of Uryson (one can consider that U=C[0,1] with the uniform metric.

In [9] it is shown that any complete separable space X with an \hat{S} -valued metric is \hat{S} -isometric to some closed subset of $\hat{S}(T, Z)$.

Now, let $\{X, \{X_{\tau}\}_{\tau \in T}\}$ be a measurable field of metric space, and let A_{τ} be closed subset of X_{τ} for P-almost every $\tau \in T$.

2.9 Definition: [9]

A *measurable field of closed sets* is a pair $\{A, \{A_{\tau}\}_{\tau \in T}\}$ where $A \in X$ and

- 1. If $x \in A$, then $x(\tau) \in A_{\tau}$ for *P*-almost every $\tau \in T$.
- 2. There exists $\{x_n\}_{n=1}^{\infty} \subset A$ such that $\{x_n(\tau)\}_{n=1}^{\infty}$ is dense in A_{τ} for *P*-almost every $\tau \in T$.
- 3. If $\{y_n\}_{n=1}^{\infty} \subset A$, $y \in X$ and $\rho_{\tau}(y_n(\tau), y(\tau)) \to 0$ as $n \to \infty$ for *P* almost every $\tau \in T$, then $y \in A$.

2.10 Remark:[10]

We say that X be a bimodule over $\hat{S} = [0,1]$, i.e.X is abelian group with respect to addition operation (+) and right and left multiplication by element from \hat{S} are defined on X having the properties:

1. $\lambda(x + y) = \lambda x + \lambda y$, $(x + y)\lambda = x\lambda + y\lambda$ 2. $(\lambda + \mu)x = \lambda x + \mu x$, $x(\lambda + \mu) = x\lambda + x\mu$ 3. $\lambda(\mu x) = (\lambda \mu)x$, $(x\lambda)\mu = x(\lambda \mu)$ 4. $\hat{1} \cdot x = x \cdot \hat{1}$, for all $x, y \in X, \lambda, \mu \in \hat{S}$

2.11 Definition: [2, 4, 7]

The collection B of Borel sets of a topological space X is the smallest σ - algebra containing all open sets of X. That is, in addition to containing open sets, B must be closed under complement and countable intersections (and, thus, is also closed under countable unions).

2.12 Definition: [12, 13]

A **Borel mapping** is a mapping such that the inverse image of every Borel set is Borel. It is called Borel function.

2.13 Definition:[3]

A set $C \subseteq R^n$ is called *convex* if for all $x, y \in C$, we have $\lambda x + (1-\lambda)y \in C$ for all $\lambda \in [0, 1]$.

2.14 Definition:[5]

A **Banach** space is a normed linear space in which every Cauchy sequence is convergent.

We cite now example of *S**-vector lattices 2.15 Example:[10]

Let *P* be the Lebesgue measure on $\nabla(S^*)$, $L_1(\nabla(S^*), P)$ be the Banach space of all *P*- integrable functions on ([0,1], p), ∇_1 be a σ - subalgebra of $\nabla(S^*)$ isomorphic to $\nabla(S^*)$, $E: L_1(\nabla(S^*), P) \to L_1(\nabla_1, m)$ be the conditional expectation.

Then $\mu(e) = E(e)$ is a strictly positive measure on $\nabla(S^*)$ with values in the σ - complete sublattice S_1 of all functions from S^* which are measurable with respect to ∇_1 (it is clear that S_1 can be identified with S^* , since ∇_1 is isomorphic to $\nabla(S^*)$.

In addition, $\mu(eg) = e\mu(g)$ for any $e \in \nabla_1$, $g \in \nabla(S^*)$.

Journal of kerbala university, vol. 10 no.3 scientific . 2012

It is clear that S^* is a normal S_1 - module.

Denote by $\hat{\mu}$ the integral constructed with respect to the measure μ . For every number $P \ge 1$ we set

$$L_P(\nabla(S^*), \mu) = \{x \in S^* : \hat{\mu}(|x|^P) \in S\}$$

And

$$||x||_{P} = (\hat{\mu} |x|^{P})^{\frac{1}{P}}$$

It is shown in [3,4] that $L_P(\nabla(S^*), \mu, \|.\|_P)$ is a Banach S_1 -vector lattice.

<u>3. The Main Results :</u>

This section is devoted to the main results concerning the measurable families of Banach lattice and decomposition of separable Banach \hat{S} -vector lattice of ordinary Banach lattices.

We begin with the useful information that used in our paper .

<u> 3.1 Definition : [10]</u>

A measurable field X of Banach spaces $(X_{\tau}, \|.\|_{\tau}), \tau \in T = ([0,1]), P$ is a set of functions $x: \tau \to x(\tau) \in X_{\tau}$ defined p- almost everywhere on T and such that

- 1. The function $\tau \to ||x_{\tau}||_{\tau}$ is measurable on T for all $x \in X$;
- 2. If $x, y \in X$, $\propto, \beta \in \hat{S}$, then the function $\propto (\tau)x(\tau) + \beta(\tau)y(\tau)$ also belongs to X.
- 3. There exists a sequence $\{x_n\} \subset X$ such that the set $\{x_n(\tau)\}$ is dense in X_{τ} for p almost every $\tau \in T$.
- 4. If $\{y_n\} \subset X$ and $y: \tau \to y(\tau) \in X_\tau$ is a function and

 $||y_n(\tau) - y(\tau)||_{\tau} \to 0$ as $n \to \infty$ for p – almost every $\tau \in T$, then $y \in X$.

It is clear that a measurable field Banach space X is also a measurable field metric space $(X_{\tau}, d_{\tau}), \tau \in T$, where

$$d_{\tau}(X(\tau), y(\tau)) = \|x(\tau) - y(\tau)\|_{\tau}, \ x(\tau), y(\tau) \in X_{\tau}.$$

3.2Note:[10]

A measurable field Banach space $(X_{\tau}, \|.\|_{\tau})$ with property (1,2) of definition (2.1) is said to be *saturated*.

In the sequel the record $\{X, \{X_{\tau}\}_{\tau \in T}\}$ will mean that X is a measurable field Banach space $(X_{\tau}, \|.\|_{\tau})$.

Now, for any measurable field Banach space X denoted by \hat{X} the set of all classes \hat{x} of p-almost everywhere equal functions $x: \tau \to x(\tau)$ from X.

The pointwise operations :-

$$x + y: \tau \to x(\tau) + y(\tau),$$
$$\alpha x: \tau \to \alpha(\tau) x(\tau),$$
$$x \alpha: \tau \to x(\tau) \alpha(\tau),$$

 $x, y \in X, \alpha \in \hat{S}$ and the function $\|.\|: \tau \to \|x(\tau)\|_{\tau}$, $x \in X$, determine on \hat{X} a structure of a bimodule over \hat{S} with the \hat{S} – valued norm $\|.\|_{\hat{X}}$. In addition, $(\hat{X}, \|.\|_{\hat{X}})$ is a separable bimodule, i.e. there exists a countable set $\{\hat{X}_n\} \subset \hat{X}$ such that, for any

 $\hat{x} \in \hat{X}$ there exists a subsequence $\{\hat{X}_{n_k}\}$ for which $\|\hat{x} - \hat{x}_{n_k}\|_{\hat{x}} \stackrel{(o)}{\to} 0$.

3.3 Remark :[12]

Suppose \hat{X} be a separable Banach \hat{S} – module with partial order in which represents a lattice coincide with the norm in \hat{X} . From $|\hat{x}| \leq |\hat{y}|$ imply that $||\hat{x}|| \leq ||\hat{y}||$ for each $\hat{x}, \hat{y} \in \hat{X}$.

3.4 Definition :[6]

A vector lattice X is Archimedean whenever the relation $0 \le nx \le y$, $n \in N$, imply that x = 0. 3.5 Proposition:

<u>3.5 Proposition:</u>

Let \hat{X} be the set of all classes for P- almost everywhere coinciding elements from X, The Archimedean condition is satisfied in \hat{X} . **Proof**:-

Let $\hat{x} \ge 0$ and $n\hat{x} \le \hat{y}$, $n = \overline{1, \infty}$

Then $||n\hat{x}|| \le ||\hat{y}||$, or $||\hat{x}|| \le \frac{1}{n} ||\hat{y}|| \to 0$ as $n \to \infty$

i.e. $\hat{x} = 0$

Therefore

$$|x \vee z - y \vee z| \le |x - y| \dots \dots (1)$$

3.6 Definition:[14]

Let X be a vector space over the real field R. A nonempty convex subset P of X is called a *cone* if $\lambda P \subset P$ for all $\lambda \ge 0$.

3.7 Theorem:

Let $\{X, \{X_{\tau}\}_{\tau \in T}\}$ be a measurable field Banach space generating \hat{X} , then for almost everywhere $\tau \in T$ we can define a Banach Lattice on X_{τ} such that , the order in X_{τ} for almost everywhere $\tau \in T$ induces the order in \hat{X} .

<u> Proof</u> :

let \hat{G} be a countable dense subset of \hat{K} such that :

- 1- $\hat{G} + \hat{G} \le \hat{G}$.
- 2- $r\hat{G} \leq \hat{G}$ for all rational numbers $r \geq 0$.
- $3-\hat{G}\cap(-\hat{G})=0.$

Now, suppose that $\{G_{\tau}\}_{\tau \in T}$ generated \hat{G} , such that, for almost everywhere countable dense subset G_{τ} of \hat{K}_{τ} .

Since \hat{G} and G_{τ} are countable for almost everywhere $\tau \in T$, then the properties (1 - 3) are satisfied in G_{τ} for almost everywhere $\tau \in T$.

Thus, K_{τ} is a cone for each $\tau \in T$.

In fact, we need to prove $\propto K_{\tau} \subseteq K_{\tau}$ for each $\propto \in R_{+}$ but, that is clear when we use the property (2) and consider the fact that K_{τ} is closed.

Thus , for almost everywhere $\tau \in T$, we can define a partial order induced the same order in \hat{X} .

Now, we need to prove that X_{τ} is a Banach lattice for that order, i.e. there exist $X_{\tau} \lor y_{\tau}$ for any $x_{\tau}, y_{\tau} \in X_{\tau}$.

From $|x_{\tau}| \le |y_{\tau}|$ we have $||x_{\tau}||_{\tau} \le ||y_{\tau}||_{\tau}$.

Let $\hat{\Gamma}$ be a countably densely subset of \hat{X} such that $\hat{\Gamma} \vee \hat{\Gamma} \subseteq \hat{\Gamma}$ and let $\{\Gamma_{\tau}\}_{\tau \in T}$ be a family of a countable dense set in X_{τ} , for almost everywhere $\tau \in T$ generating $\hat{\Gamma}$.

Therefore almost everywhere $\tau \in T$ and for all $x_{\tau}, y_{\tau} \in \Gamma_{\tau}$, we can define $x_{\tau} \vee y_{\tau}$ such that $\Gamma_{\tau} \vee \Gamma_{\tau} \subseteq \Gamma_{\tau}$ and therefore the relation (1) and the order conditions are satisfied on Γ_{τ} .

Let $y_{\tau} \in \Gamma_{\tau}$, $x_{\tau} \in X_{\tau}$ and $\{x_n^{\tau}\}_{n=1}^{\infty} \subseteq \Gamma_{\tau}$, $x_{n=1}^{\tau} \to x_{\tau}$ as $n \to \infty$

Then

$$|\mathbf{x}_n^{\tau} \vee \mathbf{y}_{\tau} - \mathbf{x}_m^{\tau} \vee \mathbf{y}_{\tau}| \le |\mathbf{x}_n^{\tau} - \mathbf{x}_m^{t}|$$

i.e. $\{x_n^{\tau} \lor y_{\tau}\}_{n=1}^{\infty}$ is a fundamental sequence and it is easy to prove that is convergent to $x_{\tau} \lor y_{\tau}$.

Journal of kerbala university, vol. 10 no.3 scientific . 2012

Thus, the operations will be defined for all pair x_{τ}, y_{τ} such that $x_{\tau} \in X_{\tau}, y_{\tau} \in \Gamma_{\tau}$. In the similar way this operation can be extended to all X_{τ} , and there is no difficult to show that the order condition can be extended with Γ_{τ} on X_{τ} .

3.8 Definition :[1]

An element from X_+ is called a *Freudenthal* unit and denoted by \hat{i} , if it follows from $x \in X$, $x \land \hat{i} = 0$, that x = 0.

3.9 Proposition :

There exists a Freudenthal unit in \hat{X} if and only if it exists in X_{τ} almost everywhere $\tau \in T$. <u>*Proof*</u>:

Let $\hat{e} \in \hat{X}$ be a Freudenthal unit. Then from the equality $\hat{e} \wedge \hat{x} = 0$, we deduce that $\hat{x} = 0$. Moreover for all $\hat{x} \in \hat{G}$, we have $e(\tau) \wedge x_{\tau} = 0$, implay that $x_{\tau} = 0$ for all $x_{\tau} \in G_{\tau}$.

Since G_{τ} is dense in K_{τ} , then, we get that is true for all $x_{\tau} \ge 0$. It means that $e(\tau)$ is a Freudenthal unit in X_{τ} for almost everywhere $\tau \in T$.

Conversely, let $\{X_{\tau}\}_{\tau \in T} \subseteq S^*(T, U)$, where U is the Uneversal space, $\{X_n(\tau)\}_{n=1}^{\infty} = G_{\tau}$ for almost everywhere $\tau \in T$ and $x_n(\tau)$ be a Borel representation of elements $\inf \hat{G}$, Then the set

 $A = \bigcap_{n=1}^{\infty} \{ (e, \tau) : \|x_n(\tau) \wedge e\|_{\tau} = 0 \text{ and } \|x_n(\tau)\|_{\tau} = 0 \}$ is a Borelset, so since hypothesis

 $A_{\tau} = \{e: e \text{ is a freudenthal unit in } X_{\tau}\} = \{e: (e, \tau) \in A\} \neq \emptyset$ for almost everywhere $\tau \in T$, then, there exist $e(\tau)$ such that $(e(\tau), \tau) \in A$ for almost everywhere $\tau \in T$. It is clear that, $e = e(\tau)^n$ is a freudenthal unit in \widehat{X} .

References :-

[1] B. Z. Vulih; Introduction to the Theory of Partially Ordered Set, Moscow, 1961.

- [2] C. Wu, T. Wang; Orlicz Spaces and Their Applications, Harbin China, 1983.
- [3] D.Mishra ; Introduction to Convex Sets With Applications to Economics ,2011
- [4] H. L. Royden ; Real Analysis , second edition , Stanford University, 1988 .
- [5] I. Swanson ; Functional Analysis , Reed College , 2011
- [6] J. Harm Van der Walt ; Order Convergence on Archimedean Vector Lattices and Applications , University of Pretoria , 2006 .
- [7] K. L. Kuttler ; Real and Abstract Analysis , Cambridge University press, 2011 .
- [8] L. L. Dornhoff; Applied Modern Algebra, New York, London, -265 p., 1978.
- [9] M.V. Podorozyi ; Spaces with S- Valued Metric , In book : Math. Anal. Algebra and Probability Theory , 1982.
- [10] M. V. Podoroznyi ; Banach Modules Over Rings of Measurable Functions , In book : Applied Mathematics and Mechanics , Proc. Tashkent Univ. ,- N.670 , (1981) 41- 43 .
- [11] O. Ya. Benderskii ; B. A. Rubshtein ; Universal Measurable Fields of Metric Space , Thesis of reports , International Conf. Baku . , part II , 40p. (Russian), 1987.
- [12] P. R. Halmos, M. Rabin; Borel Structures for Function Spaces, Illinois Journal of Mathematics, (1961) 614-630.
- [13] S.K. Berberian; Borel Space, The University of Texas at Austin, 84p., 1988.
- [14] Z. Kadelburg ;S. Jankovic ;S. Stonjan ; On Cone Metric Spaces : A survey , University of Belgrade ,2010 .