The Q-Smarandache Closed Ideal andQ-Smarandache Fuzzy Closed Ideal With Respect To an Element Of a Q-Smarandache BCH-algebra

المثالية Q – سمرندش المغلقة و المثالية Q – سمرندش الضبابية المغلقة بالنسبة BCH – سمرندش الى عنصر في جبر Q

Assist. prof. Husein Hadi Abbass University of Kufa \College of Education for girls\ Department of Mathematics Msc_hussien@yahoo.com

Abstract

In this paper, we define the concepts of (a Q-smarandache closed ideal with respect to an element, a Q-smarandache fuzzy ideal, a Q-smarandache fuzzy closed ideal, a Q-smarandache fuzzy closed ideal with respect to an element) of a Q-smarandacheBCH-algebra. We stated and proved some theorems which determine the relationship between these notions and theotherideals of aQ-smarandache BCH-algebra.

الخلاصة

عرفنا في هذا البحث المفاهيم (المثالية Q – سمرندش المغلقة بالنسبة الى عنصر و المثاليةQ – سمرندش الضبابية ، المثالية Q – سمرندش الضبابية المغلقة ، المثاليةQ – سمرندش الضبابية المغلقة بالنسبة الى عنصر)في جبر Q-سمرندش BCH . وأعطينا وبر هنا بعض المبر هنات التي تحدد العلاقة بين هذه المفاهيم والمثاليات الاخرى في جبر Q-سمرندش BCH .

INTRODUCTION

The notion of BCK- algebras was formulated first in 1966 [14] by (Y.Imai) and (K.Iseki) as a generalization of the concept of set-theoretic difference and propositional calculus. In the same year (K.Iseki) introduced the notion of BCI –algebra [4], which is a generalization of BCK- algebra. In 1983, (Q.P.Hu) and (X.Li) introduced the notion of BCH-algebra which are a generalization of BCK/BCI-algebras [10]. After that, many mathematical papers have been published investigating some algebraic properties of BCK\BCI\BCH-algebras and their relationship with other universal structures including lattices and Boolean algebras. In 1991, (M. A. Chaudhry), introduced the notion of closed ideal in BCH-algebra[6]. In 2009, (A. B. Saeid) and (A. Namdar), introduced the notion of a smarandache BCH-algebra and Q-smarandache ideal of a smarandache BCH-algebra[2]. In 2011, (H. H. Abass) and (H. M. A. Saeed) introduced the notion of a Closed ideal with respect to an element of a BCH-algebra[3]

On the other hand, we shall mention the development of a fuzzy set.

In 1965, (L. A. Zadeh) introduced the notion of a Fuzzy sets[5]. In 1991, (O. G. Xi) applied the concept of fuzzy sets to the BCK-algebras[9]. In 1993, (Y. B. Jun) introduced the notion of a fuzzy Closed ideals in BCI-algebras[11].In 1999, (Y. B. Jun) introduced the notion of Fuzzy closed ideals in BCH-algebras[12].

In this paper, we introduce the notions of (a Q-smarandache closed ideal with respect to an element , a Q-smarandache fuzzy ideal , a Q-smarandache fuzzy closed ideal , a Q-smarandache fuzzy closed ideal with respect to an element) of a Q-smarandache BCH-algebra. We provesome theorems and give some examples to show that the relation of these notions and other types of ideals of a smarandache BCH-algebra.

1.PRELIMINARIES

In section we give some basic concepts about BCK-algebra , BCI-algebra , BCH-algebra, subalgebra, ideals of BCH-algebra, closed ideals of BCH-algebra, smarandache BCH-algebra, and Q-smarandache ideal of a smarandache BCH-algebra, with some theorems, propositions and examples.

Also we review some fuzzy preliminaries about fuzzy set, a level subset of a fuzzy set, a fuzzy subalgebra of a BCH-algebra, fuzzy ideals of a BCH-algebra, fuzzy closed ideals of a BCH-algebra with some theorems, propositions and examples which we needed later.

Definition(1.1) :[4]

A *BCI-algebra* is an algebra (X, *, 0), where X is a nonempty set, * is a binary operation and 0 is a constant ,satisfying the following axioms:

- 1. $((x * y) * (x * z)) * (z * y) = 0, \forall x, y, z \in X.$
- 2. $(x * (x * y)) * y = 0, \forall x, y \in X.$
- 3. $x * x = 0, \forall x \in X$

4. x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$ **Definition(1.2):[14]**

A *BCK-algebra* X is a BCI-algebra satisfying the axiom: 0 * x = 0 for all $x \in X$. **Definition(1.3):[10]**

A *BCH-algebra* is an algebra (X, *, 0), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms:

- 1. $x * x = 0, \forall x \in X$.
- 2. x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$.
- 3. $(x * y) * z = (x * z) * y, \forall x, y, z \in X.$ **Proposition(1.4):[7]**

In a BCH-algebra X, the following holds for all $x, y, z \in X$,

- 1. x * 0 = x,
- 2. (x * (x * y)) * y = 0,
- 3. 0 * (x * y) = (0 * x) * (0 * y),
- 4. 0 * (0 * (0 * x)) = 0 * x, **Remark(1 5):** [7]

Remark(1.5): [7]

It is known that every BCI-algebra is a BCH-algebra but not conversely, where a BCH-algebra X is called proper if it is not a BCI-algebra.

Definition(1.6) :[1]

A BCH-algebra X is called an*associativeBCH-algebra* if:(x*y)*z=x*(y*z), $\forall x, y, z \in X$. **Definition**(**1.7**): [6]

Let S be a subset of a BCH-algebra X. Then S is called a*subalgebra* if $x^*y \in S, \forall x, y \in S$. **Definition**(**1.8**): [7]

Let I be a nonempty subset of a BCH-algebra X. Then I is called an *ideal* of X if it satisfies

- i. 0∈I.
- ii. $x^*y \in I$ and $y \in I$. Then $x \in I$.

Definition(1.9):[7]

An ideal I of a BCH-algebra X is called a *closed ideal* of Xif $0^*x \in I$ for all $x \in I$.

Definition(1.10):[3]

Let X be a BCH-algebra and I be an ideal of X. Then I is called a *closed ideal with respect to an element* $b \in X$ (denoted *b-closed ideal*) if $b^*(0^*x) \in I$, for all $x \in I$.

Remark(1.11) :[3]

In a smarandache BCH-algebra X , the ideal $I=\{0\}$ is a 0-closed ideal and the ideal I=X is a b-closed ideal, $\forall b\!\in\! X.$

Definition (1.12) : [2]

A *Smarandache BCH-algebra* is defined to be a BCH-algebra X in which there exists a proper subset Q of X such that

i. $0 \in Q$ and $|Q| \ge 2$.

ii. Q is a BCK-algebra under the operation of X.

Definition (1.13) :[2]

A nonempty subset I of X is called a Smarandache ideal of X related to Q (or briefly, Q-Smarandacheideal of X) if it satisfies:

i. $0 \in I$.

ii. $\forall y \in I \text{ and } x^*y \in I \Longrightarrow x \in I, \forall x \in Q.$

Remark (1.14) : [2]

If I is a Smarandache ideal of X related to every BCK-algebra contained in X, we simply say that I is a Smarandache ideal of X.

Proposition (1.15) : [2]

Any ideal of a smarandache BCH-algebraX is a Q-Smarandache ideal of X.

Definition (1.16) :[5]

Let X be a non-empty set and I be the closed interval [0, 1] of the real line (real numbers). A *fuzzy* set A in X (a *fuzzy subset of X*) is a function from X into I.

Definition(1.17) :[8]

Let A be a fuzzy subset in X, for all $t \in [0, 1]$, the set $A_t = \{x \in X, A(x) \ge t\}$ is called a *level subset* of A.Note that, A_t is a subset of X in the ordinary sense.

Definition (1.18) :[13]

A fuzzy set B in a BCH-algebra X is said to be a *fuzzy subalgebra* of X if it satisfies: $B(x*y) \ge \min\{B(x), B(y)\}, \forall x, y \in X.$

Definition (1.19) : [13]

A fuzzy subset A of a BCH-algebra X is said to be a *fuzzy ideal* if and only if:

- i. $A(0) \ge A(x), \forall x \in X.$
- ii. $A(x) \ge \min\{A(x^*y), A(y)\}, \forall x, y \in X.$

Definition (1.20) :[12]

A *fuzzy ideal* A of a BCH-algebra X is said to be *closed* if $A(0*x) \ge A(x)$, $\forall x \in X$. **Definition** (1.21) : [3]

A *fuzzy ideal* A of a BCH-algebra X is said to be *closed with respect to an element* $b \in X$ (denoted by a *fuzzy b-closed ideal*) if A(b*(0*x)) \geq A(x), for all $x \in X$.

2.THE MAIN ORDINARY RESULTS

In thissection we define the notion of a Q-smarandache closed ideal with respect to an element b of a smarandache BCH-algebra. For our discussion, we shall link these notionswith other types of Q-smarandache ideals which mentioned in the ordinary preliminaries.

Definition(2.1):

Let X be a Smarandache BCH-algebra, I be a Q-smarandache ideal of X and $b \in X$. Then we call that I is a *Q*-smarandacheclosed ideal with respect to an element b (denoted by a *Q*-smarandacheb-closed ideal) if $: b^*(0^*x) \in I$, for all $x \in I$.

Example (2.2):

Consider the BCH-algebra $X = \{0, 1, 2, 3, 4\}$ with the following operation table

*	0	1	2	3	4
0	0	0	0	0	4
1	1	0	0	1	4
2	2	2	0	0	4
3	3	3	3	0	4
4	4	4	4	4	0

The BCK-algebra $Q = \{0, 1, 2, 3\}$, is a properly contained in X. Then (X,*,0) is a Smarandache BCH-algebra.

The Q-smarandache ideal I= $\{0, 1\}$ is a Q-smarandache 0, 1-closed ideal of X,Since $0^*(0^*x) \in I$ and $1^*(0^*x) \in I$, $\forall x \in I \Rightarrow I$ is an 1-closed ideal.

Remark(2.3) :

In a smarandache BCH-algebra X , the Q-smarandache ideal I = $\{0\}$ is a Q-smarandache 0-closed ideal of X.

Theorem(2.4) :

Let X be a Smarandache BCH-algebra. Then every b-closed ideal of X , $b\!\in\!X,$ is a Q-Smarandacheb-closed ideal of X.

Proof

Let I be a b-closed ideal of $X \Rightarrow I$ is an ideal of X [By definition(1.10)]

 \Rightarrow By proposition(1.15) we get I is a Q-Smarandache ideal of X.

and $b^*(0^*x) \in I, \forall x \in I$

 \Rightarrow By definition(2.1) we get

I is a Q-smarandache b-closed ideal of X.■

Remark(2.5) :

The converse of theorem(2.4) is not necessarily to be true as in the following example.

Example (2.6):

 $\label{eq:consider} Consider the smarandache BCH-algebra X=\{0,a,b,c,d,e,f,g,h,i,j,k,l,m,n\} with the following operation table.$

*	0	a	b	С	d	e	f	g	h	i	j	k	l	m	n
0	0	0	0	0	0	0	0	0	h	h	h	h	1	1	n
a	a	0	a	0	а	0	a	0	h	h	h	h	m	1	n
b	b	b	0	0	f	f	f	f	i	h	k	k	1	1	n
С	с	b	a	0	g	f	g	f	i	h	k	k	m	1	n
d	d	d	0	0	0	0	d	d	j	h	h	j	1	1	n
e	e	e	a	0	а	0	e	d	j	h	h	j	m	1	n
f	f	f	0	0	0	0	0	0	k	h	h	h	1	1	n
g	g	f	a	0	а	0	a	0	k	h	h	h	а	1	n
h	h	h	h	h	h	h	h	h	0	0	0	0	n	n	1
i	i	i	h	h	k	k	k	k	b	0	f	f	n	n	1
j	j	j	h	h	h	h	j	j	d	0	0	d	n	n	1
k	k	k	h	h	h	h	h	h	f	0	0	0	n	n	1
l	1	1	1	1	1	1	1	1	n	n	n	n	0	0	h
m	m	1	m	1	m	1	m	1	n	n	n	n	а	0	h
n	n	n	n	n	n	n	n	n	1	1	h	1	h	h	0

And $Q = \{0, a\}$ is a BCK-algebra of X. The Q-Smarandache ideal $I = \{0, a, b\}$ is a Q-smarandache b-closed ideal since $0 \in I$, $\forall y \in I$ and $x^*y \in I \Rightarrow x \in I$, $\forall x \in Q$ and $b^*(0^*x) \in I$, $\forall x \in X$.

But I is not a b-closed ideal, $\forall b \in X$, because I is not an ideal of X, since

 $d^*b = 0 \in I$ and $b \in I$, but $d \notin I$.

Proposition (2.7) :

Let X be a Smarandache BCH-algebra and I be a Q-Smarandache ideal of X such that I is a subset of a BCK-algebra Q. Then I is a b-closed ideal of X, $\forall b \in I$.

Proof

Let b∈I

To prove that I is a b-closed ideal of X

Let $x \in I$

 $b^*(0^*x) = b^*0$ [Since I $\subseteq Q \Rightarrow x \in Q \Rightarrow 0^*x = 0$, By definition(1.2) of a BCK-algebra]

= b [proposition(1.4)] \Rightarrow b*(0*x) \in I.

Therefore, I is a b-closed ideal of X, $\forall b \in I.\blacksquare$

Proposition (2.8) :

Let X be a associative BCH-algebra, I be a Q-Smarandache ideal of X and $b \in X$. Then I is a Q-smarandache b-closed ideal of X if and only if $b^*x \in I$, for all $x \in I$.

Proof

Let I be a Q-smarandache b-closed ideal and $x \in I$. $\Rightarrow b^*(0^*x) \in I$ [By definition(1.10)] But $b^*(0^*x) = (b^*0)^*x$ [Since X is an associative BCH-algebra. By definition(1.6)] $= b^*x$ [Since $x^*0 = x, \forall x \in X$. By proposition(1.4)] $\Rightarrow b^*x \in I$

Conversely

To prove that I is a b-closed ideal Let $x \in I$ such that $b^*x \in I$. Then we have

b*x = (b*0)*x [Since x*0 = x, $\forall x \in I$. By proposition(1.4)] But (b*0)*x = b*(0*x) [Since X is an associative BCH-algebra. By definition(1.6)] ⇒b*(0*x) ∈ I, $\forall x \in I$ ⇒ I is a Q-smarandache b-closed ideal. ■ **Proposition (2.9) :**

Let X be an associative smarandache BCH-algebra and I be a Q-Smarandache ideal of X. Then I is a Q-smarandache 0-closed ideal of X if and only if I is a Q-smarandache closed ideal of X.

Proof

By proposition(2.8) we have

I is Q-smarandache 0-closed ideal if and only if $0*x \in I$

⇒ I is a Q-smarandache 0-closed ideal if and only if I is a Q-smarandache closed ideal. ■

3.THE MAIN FUZZY RESULTS

In this section we define the notions of(a Q-smarandache fuzzyideal, a Q-smarandache fuzzy closed ideal, a Q-smarandache fuzzy closed ideal with respect to an element) a Q-smarandache BCH-algebra. For our discussion, we will link this notions with other types of fuzzy ideals which mentioned in the fuzzy preliminaries.

Definition (3.1) :

A fuzzy subset A of a smarandache BCH-algebra X is said to be a *Q-smarandachefuzzy ideal* if and only if:

i. $A(0) \ge A(x), \forall x \in X.$

ii. $A(x) \ge \min\{A(x^*y), A(y)\}, \forall x \in Q, y \in X.$

Example(3.2) :

Consider the smarandache BCH-algebra X in example(2.2). The fuzzy set A which is defined by

$$A(x) = \begin{cases} 0.5, & \text{if } x = 0, 4\\ 0, & \text{if } x = 1, 2, 3 \end{cases}$$

is a Q-smarandache fuzzy ideal of X. Since

i. $A(0) \ge A(x), \forall x \in X$.

ii. ii.
$$A(x) \ge \min\{A(x^*y), A(y)\}, \forall x \in Q, y \in X.$$

Proposition(3.3) :

Let X be a smarandache BCH-algebra. Then every fuzzy ideal is a Q-smarandache fuzzy ideal of X.

Proof

Let A be a fuzzy ideal of X

To prove that A is a Q-smarandache fuzzy ideal

i. Let $x \in Q \Rightarrow x \in X$ [Since $Q \subseteq X$]

 $\Rightarrow A(0) \ge A(x)$ [Since $A(0) \ge A(x)$, $\forall x \in X$. By definition(1.19) of a fuzzy ideal]

 $\Rightarrow A(0) \ge A(x), \forall x \in Q.$

ii. let $x \in Q$, $y \in X \Longrightarrow x \in X$ [Since $Q \subseteq X$]

 $\Rightarrow x, y \in X \Rightarrow A(x) \ge \min\{A(x^*y), A(y)\}$ [Since A is a fuzzy ideal of X. By definition(1.19)] Therefore, A is a Q-smarandache fuzzy ideal of X.

Remark (3.4) :

The converse of the proposition (3.3) is not true as in the following example.

Example(3.5) :

The Q-smarandache fuzzy ideal A of X in example(3.2) is not a fuzzy ideal of X, since $A(1) = 0 < \min\{A(1*4), A(4)\} = A(4) = 0.5$

Definition (3.6) :

A *Q*-smarandachefuzzy ideal A of a smarandache BCH-algebra X is said to be *closed* if $A(0^*x) \ge A(x)$, for all $x \in X$.

Example(3.7) :

The Q-smarandache fuzzy ideal of X in example(3.2) is a Q-smarandache fuzzy closed ideal of X. Since

 $A(0*0) = A(0) \ge A(0)$ $A(0*1) = A(0) \ge A(1)$ $A(0*2) = A(0) \ge A(2)$ $A(0*3) = A(0) \ge A(3)$ $A(0*4) = A(4) \ge A(4)$ Definition (3.8):

Definition (3.8) :

Let X be a Smarandache BCH-algebra, A be a Q-smarandache fuzzy ideal of X and $b \in X$. Then we call that A is a *Q*-smarandachefuzzy closed ideal with respect to an element b (denoted a *Q*-smarandache fuzzy b-closed ideal) if : $A(b^*(0^*x)) \ge A(x)$, for all $x \in X$.

Example(3.9) :

Consider the smarandache BCH-algebra X in example(2.2). The Q-smarandache fuzzy ideal which is defined by:

 $A(x) = \begin{cases} 1, & \text{if } x = 0, 2, 4\\ 0.5, & \text{if } x = 1, 3 \end{cases}$

is a Q-smarandache fuzzy 2-closed ideal of X. Since

1.A is Q-smarandache fuzzy ideal[Since (i)A(0) \geq A(x), $\forall x \in X.(ii) A(x) \geq \min\{A(x^*y), A(y)\}, \forall x \in Q, y \in X$]

2. $A(2^*(0^*x)) = A(2) = 1 \ge A(0) = 1$, $A(2^*(0^*1)) = A(2) = 1 \ge A(1) = 0.5$, $A(2^*(0^*2)) = A(2) = 1 \ge A(2) = 1$, $A(2^*(0^*3)) = A(2) = 1 \ge A(3) = 0.5$, $A(2^*(0^*4)) = A(4) = 1 \ge A(4) = 1$

Proposition(3.10) :

Let X be a smarandache BCH-algebra. Then every fuzzy b-closed ideal is a Q-smarandache fuzzy b-closed ideal of X for all $b \in X$.

Proof

Let A be a fuzzy b-closed ideal \Rightarrow A is a fuzzy ideal of X [Bydefinition(1.21)] \Rightarrow A is a Q-smarandache fuzzy ideal of X [By proposition(3.3)] And if $x \in Q \Rightarrow x \in X$ [Since X is smarandache BCH-algebra $\Rightarrow Q \subseteq X$.[By definition(1.12)] $\Rightarrow A(b^*(0^*x)) \ge A(x)$ [A is a fuzzy b-closed ideal. By definition(1.21)] Therefore, A is a Q-smarandache b-closed ideal of X. **Theorem(3.11) :**

Let X be an associative BCH-algebra . Then every fuzzy subalgebra is a fuzzy ideal of X. $\underline{\textbf{Proof}}$

Let B be a fuzzy subalgebra of X

To prove that B is a fuzzy ideal of X

i. $B(0) = B(x^*x)$ [Since $x^*x = 0$, $\forall x \in X$. By definition(1.3)] $\geq \min\{B(x), B(x)\} = B(x)$ [Since B is a fuzzy subalgebra. By definition(1.18)] $\Rightarrow B(0) \geq B(x)$, $\forall x \in X$

ii. Let x, $y \in X$. ThenB(x) = B(x*0) [Since x*0 = x, $\forall x \in X$. By proposition(1.4)] = B(x*(y*y)) [Since x*x = 0. By definition(1.3)]= B((x*y)*y) [Since X is an associative. By definition(1.7)] $\geq \min\{B(x*y), B(y)\}$ [Since B is a fuzzy subalgebra. By definition(1.18)] $\Rightarrow B(x) \geq \min\{B(x*y), B(y)\}$. Therefore, B is a fuzzy ideal of X. **Corollary(3.12) :**

Let X be a smarandache BCH-algebra. If X is an associative, then every fuzzy subalgebra is a Q-smarandache fuzzy ideal of X.

Proof

Let B be a fuzzy subalgebra of $X \Rightarrow By$ theorem(3.11) we get B is a fuzzy ideal of $X \Rightarrow By$ proposition(3.3) we get B is a Q-smarandache fuzzy ideal of X.

Theorem(3.13) :

Let X bean associative BCH-algebra. Then every fuzzy subalgebra is a fuzzy 0-closed ideal of X. **Proof**

Let B be a fuzzy subalgebra of $X \Rightarrow By$ theorem(3.11) we get B is a fuzzy ideal of X To prove that B is a fuzzy 0-closed ideal of X

Let $x \in X$. ThenB(0*(0*x)) $\geq \min\{B(0), B(0*x)\}$ [Since B is a fuzzy subalgebra. By definition(1.18)] $\geq \min\{B(0), \min\{B(0), B(x)\}\}$ [Since B is a fuzzy subalgebra. By definition(1.18)] = min{B(0), B(x)}[Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)]= B(x) [Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)]

⇒B(0*(0*x)) ≥ B(x), $\forall x \in X$. Therefore, B is a fuzzy 0-closed ideal of X. Corollary(3.14) :

Let X be a smarandache BCH-algebra. If X is an associative, then every fuzzy subalgebra is a Q-smarandache fuzzy 0-closed ideal of X.

Proof

Let B be a fuzzy subalgebra of $X \Rightarrow$ By theorem(3.13) we get B is a 0-closed ideal of $X \Rightarrow$ By proposition(3.10) we get B is a Q-smarandache fuzzy 0-closed ideal of X. **Theorem(3.15)**:

Let X be an associative BCH-algebra, B be a fuzzy subalgebra of X and $b \in X$ such that B(b) = B(0). Then B is a fuzzy b-closed ideal of X.

Proof

Since B be a fuzzy subalgebra of $X \Rightarrow By$ theorem(3.11) we get B is a fuzzy ideal of X To prove that B is a fuzzy b-closed ideal of X

Let $x \in X$. ThenB(b*(0*x)) $\geq \min\{B(b), B(0*x)\}[$ Since B is a fuzzy subalgebra. By definition(1.18)] $\geq \min\{B(b), \min\{B(0), B(x)\}\} [$ Since B is a fuzzy subalgebra. By definition(1.18)] $= \min\{B(b), B(x)\}[$ Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)] $= \min\{B(0), B(x)\}[$ Since B(b) = B(0)] = B(x) [Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)] $= \min\{B(0), B(x)\}[$ Since B(b) = B(0)] = B(x) [Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)] $= \min\{B(0), B(x)\}[$ Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)] $= \max\{B(0), B(x)\}[$ Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)] $= \max\{B(0), B(x)\}[$ Since B is a fuzzy ideal $\Rightarrow B(0) \geq B(x), \forall x \in X$. By definition(1.19)] $= B(b^*(0^*x)) \geq B(x), \forall x \in X$. Therefore, B is a fuzzy b-closed ideal of X.

Let X bean associative BCH-algebra and B be a fuzzy subalgebra of X such that B(b) = B(0). If X is. ThenB is a Q-smarandache fuzzy b-closed ideal of X, for all $b \in X$.

Proof

Let B be a fuzzy subalgebra of $X \Rightarrow By$ theorem(3.15) we get B is a fuzzy b-closed ideal of $X \Rightarrow By$ proposition(3.10) we get B is a Q-smarandache fuzzy b-closed ideal of X. **Theorem(3.17) :**

Let X be a smarandache BCH-algebra. Then A is a Q-smarandache fuzzy ideal of X if and only if A_t is a Q-smarandache ideal of X, for all $t \in [0, \sup A(x)]$

ProofSuppose A is a Q-smarandache fuzzy ideal and $t \in [0, \sup A(x)]$

To prove that A_tis a Q-smarandache ideal

- 1. Since $A(0) \ge A(x), \forall x \in X \Rightarrow A(0) \ge t \Rightarrow 0 \in A_t$
- 2. Let $x \in Q$ and x^*y , $y \in A_t \Rightarrow A(x^*y) \ge t$, $A(y) \ge t$ $\Rightarrow \min\{A(x^*y), A(y)\} \ge t$ But $A(x) \ge \min\{A(x^*y), A(y)\}$ [Since A is a Q smarandache fuzzy ideal] $\Rightarrow A(x) \ge t \Rightarrow x \in A_t$ $\Rightarrow A_t$ is a Q-smarandache ideal

Conversely

To prove that A is a Q-smarandache fuzzy ideal of X

i. Let
$$t = \sup_{x \in X} A(x) \Rightarrow A_t$$
 is a Q-smarandache ideal of X
 $\Rightarrow 0 \in A_t \Rightarrow A(0) \ge t \Rightarrow A(0) \ge A(x)$ [Since $t = \sup A(x)$]

ii. Let $x \in Q$, $y \in Y$ and $t = \min\{A(x^*y), A(y)\}$ $\Rightarrow A(x^*y) \ge t$ and $A(y) \ge t$ $\Rightarrow x^*y \in A_t$ and $y \in A_t \Rightarrow x \in A_t[$ Since A_t is a Q-smarandache ideal of X] $\Rightarrow A(x) \ge t \Rightarrow A(x) \ge \min\{A(x^*y), A(y)\}$ $\Rightarrow A$ is a Q-smarandache fuzzy ideal of X.

Theorem(3.18) :

Let X be a smarandache BCH-algebra. Then A is a Q-smarandache fuzzy b-closed ideal of X if and only if A_t is a Q-smarandache b-closed ideal of X, for all $t \in [0, \sup A(x)]$.

 $x \in X$

Proof

Let $t \in [0, \sup_{x \in X} A(x)]$

To prove that A_t is a Q-smarandache b-closed ideal of X

Since A is a Q-smarandache fuzzy b-closed ideal of X

 \Rightarrow A is a Q-smarandache fuzzy ideal of X

 \Rightarrow A_t is a Q-smarandache ideal of X [By theorem(3.17)]

Now, let $x \in X$

To prove that $b^*(0^*x) \in A_t$

Since A is a Q-smarandache fuzzy b-closed ideal of X

 $\Rightarrow A(b^*(0^*x)) \ge A(x), \forall x \in X$

$$\Rightarrow A(b^*(0^*x)) \ge t \quad [Since t \in [0, \sup_{x \in X} A(x)]]$$

 $\Rightarrow b^*(0^*x) \in A_t$

 \Rightarrow At is a Q-smarandache b-closed ideal of X **Conversely**

To prove that A is a Q-smarandache fuzzy b-closed ideal of X Since A_t is a Q-smarandache b-closed ideal of X \Rightarrow A_t is a Q-smarandache ideal of X \Rightarrow A is a Q-smarandache fuzzy ideal of X [By theorem(3.17)] To prove that A(b*(0*x)) \ge A(x), $\forall x \in$ X let t = sup A(x) $x \in X$

 $\Rightarrow A_t \text{ is a } Q \text{ smarandache b-closed ideal of } X \quad [By hypothesis] \\\Rightarrow b^*(0^*x) \in A_t \Rightarrow A(b^*(0^*x)) \ge t \\\Rightarrow A(b^*(0^*x)) \ge A(x), \forall x \in X. \quad [Since t = \sup_{x \in Y} A(x)]$

 \Rightarrow A is a Q-smarandache fuzzy b-closed ideal of X. **Corollary(3.19)**:

Let X be an associative smarandache BCH-algebra. Then A is a Q-smarandache fuzzy closed ideal of X if and only if A_t is a Q-smarandache closed ideal, $\forall t \in [0, \sup A(x)]$

 $x \in X$

Proof

Let $t \in [0, \sup_{u} A(x)]$

To prove that A_t is a Q-smarandache fuzzy closed ideal of X let $x \in X$, then $0^*x = (0^*0)^*x[Since 0^*0 = 0]$ $= 0^*(0^*x)$ [Since X is an associative BCH-algebra] $\Rightarrow A(0^*(0^*x)) \ge A(0^*x) \ge A(x)$ [Since A is a Q-smarandache fuzzy closed ideal] $\Rightarrow A$ is a Q-smarandache fuzzy 0-closed ideal of X then, by theorem(3.18) we have A_t is a Q-smarandache 0-closed ideal of X $\Rightarrow 0^*(0^*x) = (0^*x) \in A_t$ $\Rightarrow A_t$ is a Q-smarandache closed ideal of X

Conversely

To prove A is a Q-smarandache fuzzy closed ideal of X let $t = \sup_{x \in X} A(x) \Rightarrow A_t$ is a Q-smarandache closed ideal of X [by hypothesis]

 $0^*x \in A_t, \forall x \in X$

But $0^*x = 0^*(0^*x) \in A_t$ [Since $0^*0 = 0$ and X is an associative BCH-algebra] $\Rightarrow A_t$ is a Q-smarandache 0-closed ideal of X, $\forall t \in [0, \sup_{x \in X} A(x)]$

⇒ By theorem(3.18) we have A is a Q-smarandache fuzzy 0-closed ideal ⇒A(0*(0*x)) ≥ A(x)

 $\Rightarrow A(0^*x) \ge A(x), \forall x \in X$ [Since $0^*0 = 0$ and X is an associative BCH-algebra]

 \Rightarrow A is a Q-smarandache fuzzy closed ideal.

Corollary(3.20) :

Let X be an ssociative smarandache BCH-algebra and B be a fuzzy subalgebra of X. Then B_t is a Q-smarandache fuzzy b-closed ideal of X, for all $b \in X$ such that B(0) = B(b).

<u>Proof</u> Is directly from corollary(3.16) and theorem(3.18). \blacksquare

REFERENCES

- [1] A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.
- [2] A. B. Saeid and A. Namdar " Smarandache BCH-Algebras", World Applied Sciences Journal 7 (Special Issue for Applied Math), 77-83, 2009
- [3] H. H. Abass and H. M. A. Saeed, "The Closed BCH-algebra With respect to an element of a BCH-algebra", Kufa Journal of Maths. And Computer science, no. 4, 2011.
- [4] K. ISEKI, "An algebra related with a propositional calculus", Proc. Japan Acad. 42, 26-29, 1966.
- [5] L. A. Zadeh, "Fuzzy Sets", Information and control, Vol. 8, PP. 338-353, 1965.
- [6] M. A. Chaudhry, "On BCH-algebra", Math. Japonica 36, 665-676, 1991.
- [7] M.A. Chaudhry and H. Fakhar-Ud-Din, " Ideals and filters in BCH-algebra", Math. japonica 44, No. 1, 101-112, 1996.
- [8] M. Ganesh, "Introduction to fuzzy sets and fuzzy logic", fourth printing. 2009.
- [9] O. G. Xi, "Fuzzy BCK-algebra", Math. Japonica 36, no. 5, 935–942, 1991.
- [10] Q. P. Hu and X. Li, "On BCH-algebras", Math. Seminar Notes Kobe University No. 2, Part 2, 11: 313-320, 1983.

- [11] Y. B. Jun, "Closed fuzzy ideals in BCI-algebras", Math. Japon.ica 38, no. 1, 199–202, 1993.
- [12] Y. B. Jun, "Fuzzy closed ideals and fuzzy filters in BCH-algebras", J. Fuzzy Math. 7, no. 2, 435–444, 1999.
- [13] Y. B. Jun," Fuzzy closed ideals and fuzzy filters in BCH-algebras", J. Fuzzy Math. 7 (1999), no. 2, 435–444.
- [14] Y. IMAI and K. ISEKI, "On axiom system of propositional calculi XIV", Proc. Japan Acad. 42, 19-20, 1966.