
Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

233

Scheduling jobs with release dates on identical machines to

minimize weighted completion times function

Hanan Ali Chachan

Mathematical Department / College of Science

University of Mustansiriya / Baghdad; Iraq.

Abstract:-
This paper considers the problem of scheduling independent jobs with release dates on m

identical machines to find minimize the total weighted completion times. The purpose of this paper is

to describe meta-heuristic algorithms such as Memetic algorithm approach (MA),Threshold

acceptance algorithm (TA) and Tabu search (TS), in order to find near optimal solution (feasible

solution) to minimize the total weighted completion time which subject to release dates. The problem

denoted as  j jjj CwrP .

 المستخلص:

من انمكائن انمخماثهت لإيجاد حقَهيم أوقاثِ الإكمالِِنمزجّحتِ m في هذا انبحث حناوننا مسأنت جدونت الأعمال بمواعيدِ انعزض عهى

و (TA)خوارسميت، (MA)انكهيتِّ بشزط وجود وقج ححضيز نلأعمال. نطُبقُّ بعَْض طزقِ انبحثِ انمحهيتِّ مثم نظزةِ خوارسميتِ

(TS) لإيجاد حهول مثانيت مقبونت نهمسأنت j jjj CwrP .

Key words: Machine scheduling, parallel machines, Meta-heuristic, Tabu search, Memetic algorithm,

Threshold acceptance algorithm.

1. Introduction:-
A machine scheduling problem is an extended field of research in various applications. The

main elements of machine scheduling problems are machine configuration job characteristics, and

objective function. The machine can be classified to single and multiple machine problems in a

broad sense. Parallel machine scheduling problems can be referred as a class of problems that

relaxed from the multiple machine scheduling problems [3]. In an identical parallel machine system

all machines are identical and job can be processed by any free machine. Many researchers studied

parallel machine scheduling problems in past. Cheng and Sin [3] surveyed a parallel machine

scheduling problem. Brone et.al. [2] proved that even a two-machine system for finding the

weighted sum of flow times with an unequally weighted set of jobs is NP-hardness. Ramachandra

and Elmaghraby [8] proposed a Binary Integer Program (BIP) and a Dynamic Program (DP) on two

machines to minimize to weighted completion time. Nessach et.al. [10] presented an identical

parallel machine scheduling problem with release dates to minimize the total completion time. They

proposed heuristic algorithm based on this condition to build a schedule belonging to subset and

they developed the lower bound computed in polynomial time. Leung et.al. [7] analyzed efficient

heuristic for the scheduling orders for multiple product types to minimize the total weighted

completion time without release dates.

The purpose of this paper is to describe meta-heuristic algorithms in order to find near optimal

solution (feasible solution) to minimize the total weighted completion time which subject to release

date. The problem denoted as  j jjj CwrP .

The rest of this paper is given blew. In section (2) details of the given problem. Sections

(3,4,5,6) presents a description the local search methods. Computational results obtained by the

proposed local search methods in section (7). In section (8) future research in this area.

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

234

2. Problem Description and Mathematical Formulation
In the parallel machines scheduling problem, a set of n independent jobs should be scheduled

on m identical machines without preemption. Each job has a processing time jp , a release date jr

and a due date jd . All these jobs data are generated randomly. Some assumption must be respected:

each machine can execute only one job at once, each job can be processed only once. Some

notations are defined below:

n: the number of jobs

m: the number of machines

j: the index of jobs j = 1, 2, …, n

k: the index of machines k = 1, 2, …, m

r: the order of job in the machine.

jr : the release date of job j = 1, 2, …, n

jd : the due date of job j, j = 1, 2, …, n

jp : the processing time of job j, j = 1, 2, …, n

jC : the completion time of job j, j = 1, 2, …, n

kn : the number of jobs assigned to machine k.

The problem can be formulated as follows:

minimize j jjCw … (1)

Subject to





n

j

jkrx
1

1, k = 1, 2, …, m, r = 1, 2, …, nk
… (2)


 


m

k

n

j

jkr

k

x
1 1

1, j = 1, 2, …, n
… (3)

  



n

j

jjkrkr pxp
1

, k = 1, 2, …, m, r = 1, 2, …, nk
… (4)

  



n

j

jjkrkr rxr
1

, k = 1, 2, …, m, r = 1, 2, …, nk
… (5)

  



n

j

jjkrkr dxd
1

, k = 1, 2, …, m, r = 1, 2, …, nk
… (6)

        krkrkrkr prCC   ,max 1 , k = 1, 2, …, m, r = 1, 2, …, nk … (7)

0jkrx or 1, k = 1, 2, …, m, r = 1, 2, …, nk, j = 1, 2, …, nk … (8)

0ijy or 1, i = 1, 2, …, n, j = 1, 2, …, m … (9)

0iw , i = 1, 2, …, n … (10)

Equation (1) represents the objective function and the goal of our work is to minimize the total

of weighted completion time. Constraint (2) ensures that only one job can be scheduled at the r-th

job position. Constraint (3) means that each job can be scheduled only once. Constraints (4)-(7)

denote the data of jobs which are scheduled at the r-th job position of k-th machine position jobs,

such as processing times, release dates, due date, and completion time. Constraint (8) is a decision

variable, if job j is scheduled on machine i in position r, then 1jkrx , otherwise 0. Constraint (9)

shows that if job j is the immediate successor of the job i on the some machine, then 1ijy ,

otherwise, 0ijy .Weighted for each job i, i = 1, 2, …, n in condition (10).

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

235

3. Local search heuristics:-
Research a local search in scheduling is quite extensive, but applications to parallel machine

scheduling are scarce. There are few computational studies that compare different local search

methods on the same scheduling problem [1]. Three local search algorithms are implemented in

sections (4,5,6).

First we introduce some neighborhoods types which are used in local search methods

3.1 Neighborhood generating Mechanisms:-

We develop a local search methods here where five operations are used to generate local search

neighborhoods, these operations are the,

 Move operation:-

Reassigning one job from a machine with minimum total weighted completion time to another

machine. For instance if we have 10 jobs and M1 and M2 denoted to machines, then:

M1: 2 3 9 4 5 M1: 2 9 4 5

M2: 10 1 6 7 8  M2: 10 3 1 6 7 8

 Swap operation:-

Swap one job from a machine with minimum total weighted completion time with one job from

another machine. For instance:

M1: 2 3 9 4 5 M1: 2 3 1 4 5

M2: 10 1 6 7 8  M2: 10 9 6 7 8

 Insert  ji, operation:-

Represent a move where job i is remove from machine m(j) such that [let m(j) denote the

machines that job i is currently processed on] and inserted right before. For instance:

M1: 2 3 9 4 5 M1: 2 3 1 5

M2: 10 1 6 7 8  M2: 10 9 6 7 4 8

 Insert   lpj, operation:-

Denote the move where job j is scheduled to be processed at the end of machine l. For instance:

M1: 2 3 9 4 5 M1: 2 3 1 5

M2: 10 1 6 7 8  M2: 10 9 6 7 8 4

 k-insert operation:-
We construct a restricted version of the k-insert neighborhood by only allowing moves insert

 11, ji insert  22 , ji …, insert  kk ji , where 1 ll ii for l = 1 to k – 1 with 1 ll jj for l = 1 to k –

1. For instance:

M1: 2 3 9 4 5 M1: 9 4 5

M2: 10 1 6 7 8  M2: 10 2 9 6 3 7 8

Now we introduce algorithm (1) which is generated feasible solution we can improved it by

applied at initial solution (ini) which describe at below.

Algorithm(1):-

Swaps as kick moves for parallel machines scheduling.

Procedure kick move (s)

For M time do

Randomly select two machines k and lkl 

Randomly select two jobs  imk and  jml

apply swap     jmim lk ,

End for

Where M dependent on the number of machines m. In our experiments, we discovered that

choosing M randomly from interval (0.3m, 0.8m).

After algorithm (1) the jobs assigned to each machine are ordered by NEH algorithm [10].

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

236

Initial solution (ini):-

 lJ k

i denotes job ij which is placed in the l-th position on machine k. The initial solution is

generated as follows:

Step(1):

Arrange all jobs by SRT (shorted release dates). And obtain a sequence

    fJnffJ ii ,...,,2,1,  means that job iJ is placed in the f-th position on the SRT sequence.

Step(2):-

1,1,1  lfk

Step(3):-

   fJlJ i

k

i 

Step(4):-

1,1  ffkk

Step(5):-

If k > m, then 1k , and 1 ll if f > n stop otherwise go to step(3).
kl denote the number of jobs assigned to machine k.

Now, we give details about local search methods which are used to solve  j jjj CwrP

problem.

4. Memetic Algorithm Approach
Memetic algorithms (MAs) (Moscato, 1989), combines the recognized strength of the

population-based methods with the intensification capability of a local search. In an MA, all

individuals of the population evolve solutions until they become a local minima of a certain

neighborhood (or highly evolved solutions of individual search strategies), i.e., after the

recombination and mutation steps, a local search is applied to the resulting solutions. A more formal

introduction to MAs and polynomial merger algorithms can be found in Moscato (1999). Figure 1

shows a pseudo-code representation of a local search-based memetic algorithm.

1. procedure Local Search-based Memetic Algorithm;

 BEGIN

2. Initialize Population Pop using First Pop();

3. For Each individual iPop DO i:= Local-Search(i);

4. For Each individual imain Pop DO Evaluate Fitness(i);

 REPEAT /*generation loop */

5. FOR i:= 1 to #recombinations DO

6. Select To Merge a set SparPop;

7. offspring:=Recombine(Spar, x);

8. IF (select To Mutate offspring) THEN offspring := Mutate (offspring);

9. offspring:= Local-Search(offspring);

10. Evaluate Fitness(offspring);

11. Add In Population individual offspring to Pop;

12. End For;

13. IF (Pop has_converged) Pop:= RestartPop(Pop);

 UNTIL stop criterion;

 END

Figure1. Pseudo-code of a memetic algorithm

The initialization part begins at initialize Population and ends just before the repeat

command. This part is responsible for the generation, optimization and evaluation of the initial

population (Pop). The second part includes the so-called ‘generation loop’. At each step, two parent

configurations are selected for recombination and an offspring is produced and, if selected to

mutate, it suffers a mutation process. The next steps are local search, evaluation and insertion of the

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

237

Leader

Cluster

Suppor

t

•

•

•

•

new solution into the population. If the population is considered to have lost diversity, a mutation

process is applied on all individuals except the best one. Finally, a termination condition is checked.

4.1 Population Structure

In our implementation we use a hierarchically structured population organized as a complete

ternary tree of individuals clustered in 4 subpopulations or clusters, as shown in figure 2. In contrast

with a non-structured population it restricts crossover possibilities. Other studies have shown that

the use of structured populations is more effective when compared to non-structured populations

(e.g. França et al. 1999; Buriol et al. 1999).

Figure 2. Population structure

The structure consists of several clusters, each one composed of a leader and three supporter

solutions. The leader of a cluster is always better fitted than its supporters. This hierarchy ensures

top clusters have better fitted individuals than bottom clusters. As new individuals are constantly

generated, replacing old ones, periodic adjustments to keep this structure well-ordered are

necessary. The number of individuals in the population is restricted to the numbers of nodes in a

complete ternary tree: 13, 40, 121, etc. That is, 13 individuals are necessary to construct a ternary

tree with 3 levels, 40 to one with 4 levels and so on.

4.2 Representation of Individuals

The representation we have chosen for the  j jjj CwrP is quite intuitive, with a solution

represented as a chromosome with the alleles assuming different integer values in the [1, n] interval,

where n is the number of jobs. There are m-1cut-points in the chromosome that define the

subsequences assigned on machine. For instance, < 4 9 6 * 2 8 5 1 * 3 10 7 > is a possible solution

for a problem with 10 jobs. The cut-points (*) are in positions 4 and 9. Therefore, subsequence 1

executes operations 4 - 9 - 6, in this order; subsequence 2 executes operations 2 - 8 - 5 - 1 and

subsequence 3 performs operations 3 - 10 - 7.

4.3 Recombination

The command selectToMerge indicates the task of selecting a subset of individuals (called

Spar Pop) to be used as input for the crossover operation, represented by the Recombine()

function. In the pseudocode, the symbol 'x' stands for the instance of the problem. In this case, since

we are addressing the  j jjj CwrP , the 'x' refers to matrix ijs and vector jp . The crossover

operator implemented is the well-known Order Crossover (OX). After choosing two parents, a

fragment of the chromosome from one of them is randomly selected and copied into the offspring.

In the second phase, the offspring's empty positions are sequentially filled according to the

chromosome of the other parent.

Parent A 2 4 * 7 6 3 * 1 5

Parent B 6 5 2 * 7 1 4 * 3

Initial Offspring 1 1 1 7 6 3 * 1 1 (A)

Construction phase 5 2 2 7 6 3 * 2 1 (B)

5 2 2 7 6 3 * 2 v (B)

5 2 * 7 6 3 * 2 1 (B)

5 2 * 7 6 3 * 1 1 (B)

Final Offspring 5 2 * 7 6 3 * 1 4 (B)

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

238

In the example above, the fragment is selected from the parent A and consists of the alleles < 7

6 3 * >. The child's empty positions were then filled according to the order that the alleles appear in

the chromosome of parent B. The number of new individuals generated in every iteration is

controlled by a parameter named cross_rate which is expressed as the percentage of new

individuals over the total population.

4.4 Mutation

In our method, a traditional mutation strategy based on job swapping was implemented.

According to it, two positions are randomly selected and the alleles in these positions swap their

values. The alleles that are swapped can be both related to two jobs (two integers) or one to a job

and other to a cut-point. In the first case the number of jobs on each machine remains the same. In

the second case the structure of the solution is changed, because the number of jobs on each

machine is modified. The case in which both positions selected are cut-points does not change

anything at all.

We implemented two mutation procedures - Mutate() and RestartPop(); the first can be

considered a light mutation and the other is a heavy mutation procedure. The Mutate() function is

applied to each individual with a probability of mut_rateand, once applied, it mutates two alleles.

Implementations with more changes per individual showed no improvement. In fact, when the

number of alleles to be mutated increases, valuable information tends to be lost, worsening the

MA's overall performance. The RestartPop() procedure, on the other hand, mutates all individuals

in the mainPop except the incumbent solution. The swapping procedure is applied to each

individual 10n times, so the resulting population almost resembles a randomized restarting

procedure.

4.5 Fitness Function

As in this problem the goal is to minimize the total weighted completion time which subject to

release date, the fitness function was chosen as randomly.

4.6 Selection of Parents

Recombination is only allowed between a leader and one of its supporters and both are

randomly selected. An intensification procedure was implemented, forcing the best individual to

take part in approximately 10% of the crossovers. This procedure showed itself to be very effective

when compared to a standard selection policy. Tests revealed small but repeated improvements over

the scheme without intensification.

4.7 Offspring Insertion into Population

Once the leader and one supporter are selected, the recombination, mutation and local search

take place and an offspring is generated. If the fitness of the offspring is better than the supporter's

that took part in the recombination, the offspring replaces the supporter. If the new individual is

already present in the population, it is not inserted in it. We adopted a policy of not allowing

duplicated individuals to reduce loss of diversity. After the generation is over and all individuals

were inserted, the population is restructured. The hierarchy forces the fitness of an individual to be

lower than the fitness of the individual just above it in the ternary tree. Following this policy, the

higher clusters will have leaders with better fitness than the lower clusters and the best solution will

be the leader of the root cluster. The adjustment is made by comparing each individual to the

individual just above which it is connected to. If the lower individual becomes better than the upper

one, they swap places.

5. Threshold Acceptance Method (TH)
A variant of simulated annealing is the threshold acceptance method (Brucker 2007). It

differs from simulated annealing only by the acceptance rule for the randomly generated solution

Ns  . s is accepted if the difference    sZsZ  is smaller than some non-negative threshold t. t

is a positive control parameter which is gradually reduced.

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

239

Algorithm Threshold Acceptance

1. i := 0;

2. Choose an initial solution Ss ;

3. best :=Z(s);

4. ss :*
;

 REPEAT /*generation loop */

5. Generate randomly a solution  sNs  ;

6. IF     itsZsZ  THEN ss : ;

7. IF  sZ  < best THEN

 BEGIN

8. ss :*
;

9. best  sZ : ;

 END;

10.  ii tgt  :1 ;

11. i := i +1

 UNTIL stop criterion;

 END

g is a non-negative function with g(t) < t for all t.

Figure 3.Threshold acceptance structure

The threshold acceptance method has the advantage that they can leave a local minimum. They

have the disadvantage that it is possible to get back to solutions already visited. Therefore

oscillation around local minima is possible and this may lead to a situation where much

computational time is spent on a small part of the solution set.

6. Tabu Search (TS)

In this section we describe the tabu search procedure used to solve the  j jjj CwrP problem.

Tabu search (see Glover and Laguna [1997] and Gendreau [2003]) is one of the most popular

techniques to find near optimal solutions to hard combinatorial optimization problems. A simple

way to avoid such problems is to store all visited solutions in a list called tabu list T and to only

accept solutions which are not contained in the list. However, storing all visited solutions in a tabu

list and testing if a candidate solution belongs to the list is generally too consuming, both in terms

of memory and computational time.

To make the approach practical, we store attributes which define a set of solutions. The

definition of the attributes is done in such a way that for each solution visited recently, the tabu list

contains a corresponding attribute. All moves to solutions characterized by these attributes are

forbidden (tabu). In this way cycles smaller than a certain length t, where t usually grows with the

length of the tabu list, will not occur.

Besides a tabu status, a so-called aspiration criterion is associated with each attribute. If a

current move leading to a solution s is tabu, then this move will be considered admissible if s

satisfies the aspiration criterion associated with the attribute of s . For example, we may associate

with each attribute a threshold k for the objective function and allow a move m to a solution s if

  ksZ  , even though m is tabu.

The following algorithm describes the general framework of tabu search.

Algorithm Tabu Search

1. Choose an initial solution Ss ;

2. best:= Z(s);

3. ss :*
;

4. Tabu-list:=  ;

 REPEAT /*generation loop */

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

23:

5. Cand(s):= {   |sNs  the move from s to s is not tabu OR s satisfies the

aspiration criterion};

6. Generate a solution s Cand(s);

7. Update the tabu list;

8. s:= s ;

9. IF Z(s) < best THEN

BEGIN

10. ss :*
;

11. best := Z(s);

 UNTIL stop criterion;

 END

Figure 4.Tabu search structure

Different stopping criteria and procedures for updating the tabu list T can be developed. We

also have the freedom to choose a method for generating a solution s Cand(s). A simple strategy

is to choose the best possible s with respect to function Z:

      sCandssZsZ  |min … (1)

However, this simple strategy can be much too time-consuming, since the cardinality of the set

Cand(s) may be very large. For these reasons we may restrict our choice to a subset V Cand(s):

    VssZsZ  |min … (2)

Usually the discrete optimization problem (1) or (2) is solved heuristically.

7. Computational experience
7.1 Test Problems

In this section a number of experiments are carried out which outlines the effectiveness of local

search algorithms described above. The purpose of these experiments is to compare the

performance Memetic algorithm approach (MA), Threshold acceptance algorithm (TA) and Tabu

search (TS) for  j jjj CwrP Problem. These methods are coded in Matlab language R2009b and

runs on a Pentium IV at 2.00GHz, 2.92GB computer. The job data include the processing times jp ,

the due dates jd and release dates jr , For each job ,the processing times jp and jr are generated

using a uniform distribution [1,100]. The due dates of jobs are in the interval [P*(1-TF-(RDD/2)),

P*(1-TF+(RDD/2))] where P= j j mp and we have chosen TF and RDD between 0.2 and 0.4.

For the comparison of three local search method, three types of instances have been processed: the

problem with (10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000) jobs and (2,3,5) machines. The full

enumeration method cannot be applied on large problems because of the too long execution times

7.2 Comparative Results

In this section we will report on the results of our computational tests to show the effectiveness

of our local search methods. In Table(1) we compare the neighborhoods types (move, swaps, Insert

[i, j] , Insert [j, p(l)]) with the problems (10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000) jobs on

(2,3,5) machines .

In the following tables (2,3) show the efficiency local search methods Memetic algorithm

approach (MA), Threshold acceptance algorithm (TA) and Tabu search (TS) for  j jjj CwrP

Problem. Table (2) show comparison of three local search method when these methods start with good initial

solution which is get from two heuristic methods (SWPT) (shorted weight processing times), and (SRD)

(shorted release dates). Table (3) like as (table (2)) but the initial solution get from best neighborhood types.

In tables (1), (2) we compare the efficiency Memetic algorithm approach (MA), Threshold acceptance

algorithm (TA) and Tabu search (TS) have been approached in terms of comparable rate of value (V) and

time (T). The Threshold acceptance algorithm (TA) is best value for all job on machine(2), Memetic

algorithm approach (MA) is best value for all job on machine(3), and Tabu search (TS) is best value for all

job on machine (5). The Threshold acceptance algorithm (TA) is best times for all job on machines (2,3,5).

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

241

Table (1) the performance of neighborhood types

M

10 20 30 40 50 75 100 150 200 500 1000 2000 5000

2

INISIAL 419.8667 1494.626 2947.133 5494.133 8142.225 17193.58 30717.26 64728.2 116315.4 726750.8 2909364 11678176 72582050
Move

neigh.
385.6667 1160.68 1604.6 4353.693 6191.35 14059.2 27138.17 62962.06 112701.7 704689.2 2903231 11677237 71057514

Insert

384.4667 1062.64 1745.333 4412.1 6503.583 13770.79 27069.47 61966.09 110960.9 700406.2 2896883 11662587 70869639

SWAP 359.3667 1036.8 1645.033 4374 6155.517 13098.71 26520.57 60411.33 109927.5 683173.6 2891522 11642290 70793631
Insert

397.3667 1214.78 2059.633 4872.6 6697.283 14110.25 27324.57 61478.3 110148.5 670836.6 2882477 11583407 70292869

SWAP 2

JOBS
376.4667 1299.78 2071.633 5040.443 6858.217 15352.01 28276.27 63171.44 113534.9 705998.9 2901707 11674169 71048676

MIN 359.3667 1036.8 1604.6 4353.693 6155.517 13098.71 26520.57 60411.33 109927.5 670836.6 2882477 11583407 70292869

3

INISIAL 196 647.55 1316.457 2462.246 3519.863 7340.831 13112.1 27298.47 51366.27 314133.1 1256137 5051549 31101460
Move
neigh.

178.3667 592.55 1212.8 2205.92 3423.246 6801.597 12503.39 26539.45 50528.5 313137 1254935 5050047 31099959

Insert

185.1167 606.3 1244.75 2310.477 3432.649 7012.554 12710.8 26601.57 50338.45 311706 1249541 5038410 31073853

SWAP 168.1667 562.5667 1188.737 2229.337 3323.843 6880.185 12348.97 26132.9 49221.11 308766.6 1243895 5022616 31034680
Insert

192.9 639.6 1316.457 2454.422 3493.046 7338.364 13092.84 27280.67 51340.84 313781.3 1254078 5044876 31093627

SWAP 2

JOBS
196 647.55 1316.4 2457.446 3519.863 7340.831 13102.46 27288.62 51353.56 313867.8 1255981 5049061 31096677

MIN 168.1667 562.5667 1188.737 2205.92 3323.843 6801.597 12348.97 26132.9 49221.11 308766.6 1243895 5022616 31034680

5

INISIAL 123.6175 305.8947 608.329 1041.691 1485.719 2977.988 5235.844 10878.25 19811.85 118829.3 471493.9 1880288 11639250
Move
neigh.

104.1 272.5 540.3833 935.06 1292.867 2702.077 4976.888 10556.23 19720.47 117777.1 469462 1877860 11633737

Insert

105.6 274.8 551.1333 976.76 1388.426 2882.625 5137.519 10762.85 19746.56 117887.3 468702.3 1874919 11626720

SWAP 92.9 247.1143 500.2119 897.985 1289.613 2698.636 4959.031 10327.21 19520.71 115899.2 466032 1868141 11617084
Insert

122.33 300.529 599.0729 1041.691 1478 2961.346 5095.643 10871.57 19803.59 116379.3 463187.4 1863179 11590791

SWAP 2

JOBS
108.9 296.3857 587.9833 1024.093 1469.627 2942.378 5163.131 10802.2 19732.98 117957.8 469765.9 1877247 11629460

MIN 92.9 247.1143 500.2119 897.985 1289.613 2698.636 4959.031 10327.21 19520.71 115899.2 463187.4 1863179 11590791

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

242

Table(2)The performance of three local search method when these methods start with

good initial solution which is get from two heuristic methods (SWPT) (shorted weight

processing times), and (SRD) (shorted release dates)

M n UB
MA TH TS

VALUES TIMES VALUES TIMES VALUES TIMES

2

10 419.86667 359.70667 0.124251 358.16667 0.0174512 359.76667 0.0379077

20 1494.6257 1055.6397 0.1803118 1030.14 0.0163288 1044.4 0.0377286

30 2947.1333 1720.5405 0.2333202 1644.0333 0.0167008 1637.5333 0.0398638

40 5494.1333 4343.7621 0.2880169 4311.05 0.0184245 4321.75 0.0382915

50 8142.225 6513.2673 0.3428978 6161.8667 0.0174311 6184.7167 0.0394023

75 17193.583 13516.942 0.4981693 13037.888 0.0180377 13008.525 0.0463554

100 30717.26 27304.521 0.6480451 26063.5 0.0189265 26151.468 0.0501647

150 64728.204 61671.034 1.0277303 60763.3 0.0202358 60807.62 0.0442482

200 116315.41 111381.62 1.4333909 109868.31 0.0211679 110128.16 0.0497723

500 726750.81 689645.23 4.3859568 680020.5 0.0314309 684657.59 0.0875024

1000 2909364 2894088.7 11.494485 2891195.5 0.0469107 2891871 0.076835

2000 11678176 11648584 33.155939 11646832 0.0790935 11640233 0.1609947

5000 72582050 71207223 147.05215 70804590 0.2005945 70798788 0.8667717

3

10 196 176.83167 0.1397935 187.2 0.0333768 184.85873 0.0341948

20 647.55 606.34143 0.1910327 616.55 0.0346968 609.39365 0.0359947

30 1316.4571 1254.8652 0.2456646 1286.444 0.0347889 1285.4971 0.0382817

40 2462.2462 2314.0217 0.3022341 2313.9725 0.0352639 2357.2446 0.0377739

50 3519.8625 3447.7517 0.3564184 3475.6701 0.0357993 3516.0375 0.0371936

75 7340.8306 7064.689 0.5086188 7340.8306 0.0378422 7089.0237 0.0413126

100 13112.097 12736.945 0.6697063 12979.124 0.0392601 12770.697 0.0433846

150 27298.473 26948.994 0.977642 26703.539 0.0436202 26823.142 0.0477326

200 51366.268 50517.881 1.2977759 50409.488 0.0455283 50779.679 0.0514781

500 314133.13 311925.97 3.8734856 311659.08 0.0634641 312130.2 0.0768899

1000 1256136.8 1249657.3 10.111567 1251834 0.0906378 1250470.8 0.1227459

2000 5051548.9 5039866.9 29.546275 5039773.2 0.1578318 5039794.6 0.246138

5000 31101460 31073414 145.44128 31082299 0.352088 31077981 0.5947781

5

10 123.6175 102.78159 0.1494628 102.9 0.032246 108.40698 0.0475413

20 305.89468 286.66278 0.2015698 281.84444 0.0317631 285.10079 0.048508

30 608.32905 571.86667 0.2542034 576.76667 0.0320604 569.0881 0.0493561

40 1041.6906 990.40266 0.313983 983.63333 0.0319043 996.3375 0.05005

50 1485.7193 1441.5137 0.3688772 1454.4429 0.0327535 1411.1454 0.0509319

75 2977.9875 2963.1303 0.5122929 2973.8209 0.0336831 2879.1161 0.0527893

100 5235.844 5123.8516 0.6518393 5188.2254 0.035814 5098.5749 0.0526805

150 10878.248 10826.87 0.9538139 10733.468 0.0394088 10751.417 0.0563398

200 19811.852 19778.033 1.2683401 19781.507 0.0414777 19757.908 0.0595755

500 118829.34 118356.14 3.8169265 118197.98 0.056248 117920.44 0.0838675

1000 471493.95 471080.75 10.025859 469151.54 0.0811237 469523.1 0.124201

2000 1880288.3 1880288.3 29.067407 1876443.9 0.1298392 1876281.8 0.2275431

5000 11639250 11629878 140.4961 11625462 0.3032346 11630446 0.5405126

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

243

Table (3) The performance of local search methods when the initial solution get from

best neighborhood types

M n Nei
Memetic TH TS

VALUES TIMES VALUES TIMES VALUES TIMES

2

10 359.36667 356.24667 0.1221558 358.06667 0.0160009 359.36667 0.0171704

20 1018 1004.1978 0.1767784 1005.84 0.0165376 1004 0.0177178

30 1595.2 1591.8095 0.2257501 1583.9333 0.016837 1563.5 0.0186026

40 4273.65 4226.2536 0.2838984 4207.2 0.0169905 4212.7 0.0188071

50 6126.9833 6015.635 0.342817 5976.9667 0.0173553 5984.9833 0.0199491

75 13098.713 12789.075 0.4792318 12393.75 0.018113 12459.2 0.0219774

100 26445.368 25891.625 0.6213327 25426.6 0.0187814 25602.468 0.0229412

150 60411.329 59373.769 0.9251299 59382.523 0.0203839 59281.941 0.0241152

200 109581.54 108181.48 1.2687709 107429.96 0.0215188 107310.69 0.0265009

500 670836.57 658977.45 3.8664861 655709.5 0.0328406 654408.77 0.0503392

1000 2882477.1 2875242.6 10.136502 2875291 0.0518994 2873749.6 0.0595975

2000 11583407 11543154 28.973093 11546197 0.0808915 11554617 0.1422821

5000 70292869 70170894 151.55515 70044376 0.1815122 70027064 0.7370488

3

10 166.56667 166.56667 0.1352777 163.96667 0.0223382 163.56667 0.0211848

20 562.06667 562.06667 0.1913307 559.36667 0.0198184 558.46667 0.0209428

30 1178.8667 1165.2567 0.282192 1148.4667 0.0203388 1158.0857 0.0213979

40 2197.22 2184.8394 0.35765 2165.4 0.0205579 2165.4367 0.0213249

50 3290.93 3235.4317 0.3937103 3154.8733 0.0203634 3199.6417 0.0223792

75 6757.7656 6689.5841 0.5541724 6517.5776 0.022498 6558.2208 0.0244501

100 12328.3 12181.85 0.7257782 12010.571 0.0216802 11928.935 0.0265547

150 26103.07 25730.268 1.0740765 25314.159 0.0231294 25304.198 0.0301014

200 49221.108 48496.899 1.4598517 47996.184 0.0258494 47709.067 0.0329539

500 308766.57 306317.81 4.4777277 303740.79 0.0361337 302867.61 0.0567856

1000 1243895.3 1238788.7 11.569771 1230956.1 0.0505896 1231430.6 0.1160968

2000 5022615.8 5015381.1 33.171259 4995065.9 0.0836233 4999809.4 0.2362307

5000 31034680 31010084 157.55845 30971728 0.190418 30973941 0.612971

5

10 90.7 90.7 0.1434232 90.7 0.0262714 90.7 0.0356703

20 245.3 245.3 0.199091 242.2 0.0255362 241 0.0274463

30 498.9119 498.9119 0.2558105 488.61667 0.0256621 482.3119 0.0282433

40 891.525 891.525 0.3088707 860.3 0.0260922 854.22 0.029621

50 1278.1333 1277.6133 0.3655092 1253.675 0.0269021 1231.5133 0.0301909

75 2674.2333 2674.2333 0.5080963 2612.6847 0.0273448 2578.0939 0.0316005

100 4922.781 4918.7095 0.6590784 4779.8583 0.0278559 4826.7643 0.0334803

150 10326.208 10324.18 0.9664086 10093.588 0.0292771 10047.595 0.0376512

200 19520.706 19520.706 1.2931839 19371.887 0.0314287 19408.724 0.0369334

500 115652.16 115637.65 3.8598413 114356.82 0.0400443 114367.84 0.0639215

1000 463187.38 463187.38 10.101418 460594.55 0.0544169 460923.23 0.1198947

2000 1862929.4 1862929.4 30.522191 1857918.9 0.0846591 1857405.2 0.2361335

5000 11590791 11590791 157.09561 11577239 0.186721 11576716 0.6186447

n: Number of jobs

M: Number of machines

MA: Memetic algorithm approach

TA: Threshold acceptance algorithm

TS: Tabu search

Nei: The neighborhood types

Scientific . 2012 3Journal of Kerbala University , Vol. 10 No.

244

7. Future work
Some suggestions for future research are described as follows:

 First, the extensions propose of the exact for   
j jjjjj HThWCwrP

problem by driving a good lower bound or using the dominance rule in branch and

bound algorithm.

 Second, using the local search heuristic should be explored finding an

improvement potential of various polynomially bounded scheduling heuristic.

Reference

[1] Ahn, B.H, and Hyun, J.H., "Single facility multi class job scheduling", computers

and operation research vol.17(1990),265-272.

[2] Bruno, L. Coofman J. and Sethi, R., "Scheduling independent tasks reduce mean

finishing time" coounications on Acm vol.17 (1974)382-387.

[3] Cheng, T. and Sin, C., "A state of the review of parallel machine scheduling

research" European journal of OR. Vol.47, 271-292.

[4] Franca, P. M., Mendes, A. and Moscato, P., "A memetic algorithm for the total

tardiness single machine scheduling problem", European journal of OR. (1999)

[5] Gendreau M., "An introduction to tabu search", in glover F. and Kochenberger

G.A. editors handbook of meta heuristic 37-54, Boston Kluwer academic

publishers (2003)

[6] Glover F., and Laguna, M., "Tabu search", Boston: Kluwer academic publishers

(1997).

[7] Leung, J.Y.-T. Li, Li, H., and Pinedo, M. L., "Scheduling orders for multiple

product types to minimize total weighted completion time", Discrete applied.

[8] Ramachandra, G., and Elmaghraby, S. E., "Sequencing precedence related jobs

on two machine to minimize the weighted completion time", int. J-production

Economics .vol.100, (2006)44-58.

[9] Moscato, P., "On evolution search optimization genetic algorithms and martial

arts: towards memetic algorithm", Caltech concurrent computation program c3p

roport 826(1989).

[10] Nessah, R., Chu, C., and Yalaoui, F., "An exact method for  j jjm CrsdsP ,

problem", Computers and OR.vol.34,(2007)2840-2848.

