Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

Scheduling jobs with release dates on identical machines to
minimize weighted completion times function

Hanan Ali Chachan
Mathematical Department / College of Science
University of Mustansiriya / Baghdad; Iraq.

Abstract:-

This paper considers the problem of scheduling independent jobs with release dates on m
identical machines to find minimize the total weighted completion times. The purpose of this paper is
to describe meta-heuristic algorithms such as Memetic algorithm approach (MA),Threshold
acceptance algorithm (TA) and Tabu search (TS), in order to find near optimal solution (feasible
solution) to minimize the total weighted completion time which subject to release dates. The problem

denoted as P‘rj‘zj w,C; .

sl

Aad SalVLSY) i sl Qo slay Alilaiall ISl e M e Gl el sar Jlee V1 A san Al Wl gl Cand) 128 b
5 (TA) Gl sa ((MA) Aaalsa 3ok Jia laal) Gl 3ok ad Gkt Jlee S jumas Gy 35a g oyl 23
. P\rj\zjchj Alsall 41 e 5 Jsla 2aY (TS)

Key words: Machine scheduling, parallel machines, Meta-heuristic, Tabu search, Memetic algorithm,
Threshold acceptance algorithm.

1. Introduction:-

A machine scheduling problem is an extended field of research in various applications. The
main elements of machine scheduling problems are machine configuration job characteristics, and
objective function. The machine can be classified to single and multiple machine problems in a
broad sense. Parallel machine scheduling problems can be referred as a class of problems that
relaxed from the multiple machine scheduling problems [3]. In an identical parallel machine system
all machines are identical and job can be processed by any free machine. Many researchers studied
parallel machine scheduling problems in past. Cheng and Sin [3] surveyed a parallel machine
scheduling problem. Brone et.al. [2] proved that even a two-machine system for finding the
weighted sum of flow times with an unequally weighted set of jobs is NP-hardness. Ramachandra
and Elmaghraby [8] proposed a Binary Integer Program (BIP) and a Dynamic Program (DP) on two
machines to minimize to weighted completion time. Nessach et.al. [10] presented an identical
parallel machine scheduling problem with release dates to minimize the total completion time. They
proposed heuristic algorithm based on this condition to build a schedule belonging to subset and
they developed the lower bound computed in polynomial time. Leung et.al. [7] analyzed efficient
heuristic for the scheduling orders for multiple product types to minimize the total weighted
completion time without release dates.

The purpose of this paper is to describe meta-heuristic algorithms in order to find near optimal
solution (feasible solution) to minimize the total weighted completion time which subject to release

date. The problem denoted as P‘rj ‘Z, w,C; .

The rest of this paper is given blew. In section (2) details of the given problem. Sections
(3,4,5,6) presents a description the local search methods. Computational results obtained by the
proposed local search methods in section (7). In section (8) future research in this area.

122



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

2. Problem Description and Mathematical Formulation
In the parallel machines scheduling problem, a set of n independent jobs should be scheduled
on m identical machines without preemption. Each job has a processing time p;, a release date T,

and a due date d;. All these jobs data are generated randomly. Some assumption must be respected:

each machine can execute only one job at once, each job can be processed only once. Some
notations are defined below:

n: the number of jobs

m: the number of machines

j:theindex of jobsj=1,2, ...,n

k: the index of machines k=1,2, ..., m

r: the order of job in the machine.

r;: the release date of job j=1,2,...,n

d;: the due date of jobj,j=1,2,...,n

p;: the processing time of job j, j=1,2,...,n

C, : the completion time of job j,j=1,2,...,n

N, : the number of jobs assigned to machine k.
The problem can be formulated as follows:

minimizezjchj )
Subject to
y _ _ ()
DX =1l k=1,2,...mr=1,2..,n
j=1
A - .. (3)
szjkr =1,J: 1,2, ..., N
k=L j=1

N (4
Pr] = 2 X Py K=1,2,.omr=1,2, ...,

j=1

y .. (5)
I’[kr] :lejkr r, k=1,2,....,mr=1,2,...,ng

J:

N .. (6)
d[kl’] =ijkrdj 1k: 15 23 ey m, r= 1, 2, ceey nk

j=1
C[kr] :max(c[kl’fl]’r[kr])_'_ p[kr]l k: 17 27 ceey m; r: 1, 2, ey nk e (7)
Xpe =00r L, k=1,2,....mr=12,...,n j=1,2,...,ng ... (8)
y; =0orl,i=1,2,..,nj=12,...,m . 9)
w,>0,i=1,2,...,n . (10)

Equation (1) represents the objective function and the goal of our work is to minimize the total
of weighted completion time. Constraint (2) ensures that only one job can be scheduled at the r-th
job position. Constraint (3) means that each job can be scheduled only once. Constraints (4)-(7)
denote the data of jobs which are scheduled at the r-th job position of k-th machine position jobs,
such as processing times, release dates, due date, and completion time. Constraint (8) is a decision

variable, if job j is scheduled on machine i in position r, then X;, =1, otherwise 0. Constraint (9)
shows that if job j is the immediate successor of the job i on the some machine, then y; =1,
otherwise, y; =0.Weighted for each job i, i =1, 2, ..., n in condition (10).

123



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

3. Local search heuristics:-

Research a local search in scheduling is quite extensive, but applications to parallel machine
scheduling are scarce. There are few computational studies that compare different local search
methods on the same scheduling problem [1]. Three local search algorithms are implemented in
sections (4,5,6).

First we introduce some neighborhoods types which are used in local search methods
3.1 Neighborhood generating Mechanisms:-

We develop a local search methods here where five operations are used to generate local search
neighborhoods, these operations are the,
e Move operation:-

Reassigning one job from a machine with minimum total weighted completion time to another
machine. For instance if we have 10 jobs and M1 and M2 denoted to machines, then:

MI1:23945 M1:2945
M2:1016738 = M2:1031678
e Swap operation:-

Swap one job from a machine with minimum total weighted completion time with one job from
another machine. For instance:

M1:23945 M1:23145

M2:101678 = M2:109678

e Insert [i, j].operation:-
Represent a move where job i is remove from machine m(j) such that [let m(j) denote the
machines that job i is currently processed on] and inserted right before. For instance:
M1:23945 M1:2315

M2:101678 = M2:1096748

e Insert [j, p(1)].operation:-
Denote the move where job j is scheduled to be processed at the end of machine I. For instance:
M1:23945 M1:2315
M2:101678 = M2:1096784
e k-insert operation:-
We construct a restricted version of the k-insert neighborhood by only allowing moves insert
li,, J,] insert [i,, j,] ..., insert fi.., J, ] where i, <i, for1=1tok—1with j, < j., forl=1tok—

1. For instance:

M1:23945 M1:945

M2:101678 = M2:10296378
Now we introduce algorithm (1) which is generated feasible solution we can improved it by
applied at initial solution (ini) which describe at below.
Algorithm(1):-
Swaps as kick moves for parallel machines scheduling.
Procedure kick move (s)
For M time do

Randomly select two machineskand 1 3k =1
Randomly select two jobs m, (i) and m, ()

apply swap [m, (i)m, (j)]
End for
Where M dependent on the number of machines m. In our experiments, we discovered that
choosing M randomly from interval (0.3m, 0.8m).
After algorithm (1) the jobs assigned to each machine are ordered by NEH algorithm [10].

124



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

Initial solution (ini):-
Jf (I) denotes job j, which is placed in the I-th position on machine k. The initial solution is
generated as follows:

Step(1):

Arrange all jobs by SRT (shorted release dates). And obtain a sequence
{3,(f), f =1,2,...,n},J,(f ) means that job J; is placed in the f-th position on the SRT sequence.

If k> m, thenk <~ 1, andl <~ 1 +1 if f > n stop otherwise go to step(3).
denote the number of jobs assigned to machine k.
Now, we give details about local search methods which are used to solve P‘rj‘szjCj

Ik

problem.

4. Memetic Algorithm Approach
Memetic algorithms (MAs) (Moscato, 1989), combines the recognized strength of the

population-based methods with the intensification capability of a local search. In an MA, all
individuals of the population evolve solutions until they become a local minima of a certain
neighborhood (or highly evolved solutions of individual search strategies), i.e., after the
recombination and mutation steps, a local search is applied to the resulting solutions. A more formal
introduction to MAs and polynomial merger algorithms can be found in Moscato (1999). Figure 1
shows a pseudo-code representation of a local search-based memetic algorithm.

1. procedure Local Search-based Memetic Algorithm;

BEGIN

2. Initialize Population Pop using First Pop();

3. For Each individual i e Pop DO i:= Local-Search(i);

4 For Each individual i e main Pop DO Evaluate Fitness(i);

REPEAT /*generation loop */

5 FOR i:= 1 to #recombinations DO

6. Select To Merge a set Syar < PoP;

7. offspring:=Recombine(Spar, X);

8. IF (select To Mutate offspring) THEN offspring := Mutate (offspring);
9. offspring:= Local-Search(offspring);

10. Evaluate Fitness(offspring);

11. Add In Population individual offspring to Pop;

12. End For;

13. IF (Pop has_converged) Pop:= RestartPop(Pop);

UNTIL stop criterion;
END

Figurel. Pseudo-code of a memetic algorithm
The initialization part begins at initialize Population and ends just before the repeat
command. This part is responsible for the generation, optimization and evaluation of the initial
population (Pop). The second part includes the so-called ‘generation loop’. At each step, two parent
configurations are selected for recombination and an offspring is produced and, if selected to
mutate, it suffers a mutation process. The next steps are local search, evaluation and insertion of the

125



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

new solution into the population. If the population is considered to have lost diversity, a mutation
process is applied on all individuals except the best one. Finally, a termination condition is checked.
4.1 Population Structure

In our implementation we use a hierarchically structured population organized as a complete
ternary tree of individuals clustered in 4 subpopulations or clusters, as shown in figure 2. In contrast
with a non-structured population it restricts crossover possibilities. Other studies have shown that
the use of structured populations is more effective when compared to non-structured populations
(e.g. Franca et al. 1999; Buriol et al. 1999).

/ | Leader

o_/<+—| Cluster

Suppor

Figure 2. Population structure

The structure consists of several clusters, each one composed of a leader and three supporter
solutions. The leader of a cluster is always better fitted than its supporters. This hierarchy ensures
top clusters have better fitted individuals than bottom clusters. As new individuals are constantly
generated, replacing old ones, periodic adjustments to keep this structure well-ordered are
necessary. The number of individuals in the population is restricted to the numbers of nodes in a
complete ternary tree: 13, 40, 121, etc. That is, 13 individuals are necessary to construct a ternary
tree with 3 levels, 40 to one with 4 levels and so on.
4.2 Representation of Individuals

The representation we have chosen for the P‘rj‘zj w;C; is quite intuitive, with a solution

represented as a chromosome with the alleles assuming different integer values in the [1, n] interval,
where n is the number of jobs. There are m-lcut-points in the chromosome that define the
subsequences assigned on machine. For instance, <496 *2851* 310 7 > is a possible solution
for a problem with 10 jobs. The cut-points (*) are in positions 4 and 9. Therefore, subsequence 1
executes operations 4 - 9 - 6, in this order; subsequence 2 executes operations 2 - 8 - 5 - 1 and
subsequence 3 performs operations 3 - 10 - 7.
4.3 Recombination

The command selectToMerge indicates the task of selecting a subset of individuals (called
Spar< [JPOp) to be used as input for the crossover operation, represented by the Recombine( )
function. In the pseudocode, the symbol 'x' stands for the instance of the problem. In this case, since

we are addressing the P‘rJ‘ZjoCj , the 'x' refers to matrix s; and vector p;. The crossover

operator implemented is the well-known Order Crossover (OX). After choosing two parents, a
fragment of the chromosome from one of them is randomly selected and copied into the offspring.
In the second phase, the offspring's empty positions are sequentially filled according to the
chromosome of the other parent.

Parent A 24*763*15
Parent B 652*714*3
Initial Offspring ___763*__(A)
Construction phase 5__763*__(B)

52 763* _(B)

52*763* _(B)

52*763*1 (B)

Final Offspring 52*763*14(B)

126



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

In the example above, the fragment is selected from the parent A and consists of the alleles < 7
6 3 * >. The child's empty positions were then filled according to the order that the alleles appear in
the chromosome of parent B. The number of new individuals generated in every iteration is
controlled by a parameter named cross_rate which is expressed as the percentage of new
individuals over the total population.

4.4 Mutation

In our method, a traditional mutation strategy based on job swapping was implemented.
According to it, two positions are randomly selected and the alleles in these positions swap their
values. The alleles that are swapped can be both related to two jobs (two integers) or one to a job
and other to a cut-point. In the first case the number of jobs on each machine remains the same. In
the second case the structure of the solution is changed, because the number of jobs on each
machine is modified. The case in which both positions selected are cut-points does not change
anything at all.

We implemented two mutation procedures - Mutate( ) and RestartPop( ); the first can be
considered a light mutation and the other is a heavy mutation procedure. The Mutate( ) function is
applied to each individual with a probability of mut_rateand, once applied, it mutates two alleles.
Implementations with more changes per individual showed no improvement. In fact, when the
number of alleles to be mutated increases, valuable information tends to be lost, worsening the
MA's overall performance. The RestartPop( ) procedure, on the other hand, mutates all individuals
in the mainPop except the incumbent solution. The swapping procedure is applied to each
individual 10n times, so the resulting population almost resembles a randomized restarting
procedure.

4.5 Fitness Function

As in this problem the goal is to minimize the total weighted completion time which subject to
release date, the fitness function was chosen as randomly.
4.6 Selection of Parents

Recombination is only allowed between a leader and one of its supporters and both are
randomly selected. An intensification procedure was implemented, forcing the best individual to
take part in approximately 10% of the crossovers. This procedure showed itself to be very effective
when compared to a standard selection policy. Tests revealed small but repeated improvements over
the scheme without intensification.

4.7 Offspring Insertion into Population

Once the leader and one supporter are selected, the recombination, mutation and local search
take place and an offspring is generated. If the fitness of the offspring is better than the supporter's
that took part in the recombination, the offspring replaces the supporter. If the new individual is
already present in the population, it is not inserted in it. We adopted a policy of not allowing
duplicated individuals to reduce loss of diversity. After the generation is over and all individuals
were inserted, the population is restructured. The hierarchy forces the fitness of an individual to be
lower than the fitness of the individual just above it in the ternary tree. Following this policy, the
higher clusters will have leaders with better fitness than the lower clusters and the best solution will
be the leader of the root cluster. The adjustment is made by comparing each individual to the
individual just above which it is connected to. If the lower individual becomes better than the upper
one, they swap places.

5. Threshold Acceptance Method (TH)
A variant of simulated annealing is the threshold acceptance method (Brucker 2007). It
differs from simulated annealing only by the acceptance rule for the randomly generated solution

s'eN. s’ is accepted if the difference Z(s")—Z(s) is smaller than some non-negative threshold t. t
is a positive control parameter which is gradually reduced.

127



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

Algorithm Threshold Acceptance
1. i1:=0;
2. Choose an initial solution seS;
3. best :=Z(s);
4. s =s;
REPEAT /*generation loop */

5. Generate randomly a solution s’ e N(s);
6. IF Z(s')-Z(s)<t, THEN s:=s';
7. IF Z(s')< best THEN
BEGIN
8. s =5';
9. best:=Z(s');
END;
10.  t+1=g(t);
11. =i+l
UNTIL stop criterion;
END

g is a non-negative function with g(t) <t for all t.
Figure 3.Threshold acceptance structure
The threshold acceptance method has the advantage that they can leave a local minimum. They
have the disadvantage that it is possible to get back to solutions already visited. Therefore
oscillation around local minima is possible and this may lead to a situation where much
computational time is spent on a small part of the solution set.

6. Tabu Search (TS)
In this section we describe the tabu search procedure used to solve the P‘rj‘zj w;C; problem.

Tabu search (see Glover and Laguna [1997] and Gendreau [2003]) is one of the most popular
techniques to find near optimal solutions to hard combinatorial optimization problems. A simple
way to avoid such problems is to store all visited solutions in a list called tabu list T and to only
accept solutions which are not contained in the list. However, storing all visited solutions in a tabu
list and testing if a candidate solution belongs to the list is generally too consuming, both in terms
of memory and computational time.

To make the approach practical, we store attributes which define a set of solutions. The
definition of the attributes is done in such a way that for each solution visited recently, the tabu list
contains a corresponding attribute. All moves to solutions characterized by these attributes are
forbidden (tabu). In this way cycles smaller than a certain length t, where t usually grows with the
length of the tabu list, will not occur.

Besides a tabu status, a so-called aspiration criterion is associated with each attribute. If a
current move leading to a solution s’ is tabu, then this move will be considered admissible if s’
satisfies the aspiration criterion associated with the attribute of s'. For example, we may associate
with each attribute a threshold k for the objective function and allow a move m to a solution s’ if
Z(s")<k, even though m is tabu.

The following algorithm describes the general framework of tabu search.
Algorithm Tabu Search
1. Choose an initial solution se€S;

2. best:=Z(s);
3. s =s;
4. Tabu-list:= ¢;

REPEAT /*generation loop */
128



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

5. Cand(s):= {s'e N(s)|the move from s to s’ is not tabu OR s’ satisfies the
aspiration criterion};

6. Generate a solution § e Cand(s);
7. Update the tabu list;
8. S:=5,;
9. IF Z(s) < best THEN
BEGIN
10. s =s;

11. best := Z(s);
UNTIL stop criterion;
END
Figure 4.Tabu search structure

Different stopping criteria and procedures for updating the tabu list T can be developed. We
also have the freedom to choose a method for generating a solution S e Cand(s). A simple strategy
is to choose the best possible s with respect to function Z:

Z(s)=min{Z(s')|s" e Cand(s)} (D

However, this simple strategy can be much too time-consuming, since the cardinality of the set
Cand(s) may be very large. For these reasons we may restrict our choice to a subset V< Cand(s):

Z(s)=min{z(s')|s' eV} . (2)

Usually the discrete optimization problem (1) or (2) is solved heuristically.

7. Computational experience
7.1 Test Problems

In this section a number of experiments are carried out which outlines the effectiveness of local
search algorithms described above. The purpose of these experiments is to compare the
performance Memetic algorithm approach (MA), Threshold acceptance algorithm (TA) and Tabu

search (TS) for P‘rj‘zjchj Problem. These methods are coded in Matlab language R2009b and

runs on a Pentium IV at 2.00GHz, 2.92GB computer. The job data include the processing times p;,

the due dates d; and release dates r;, For each job ,the processing times p; and r; are generated

using a uniform distribution [1,100]. The due dates of jobs are in the interval [P*(1-TF-(RDD/2)),
P*(1-TF+(RDD/2))] where P= Z,— p;/mand we have chosen TF and RDD between 0.2 and 0.4.

For the comparison of three local search method, three types of instances have been processed: the
problem with (10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000) jobs and (2,3,5) machines. The full
enumeration method cannot be applied on large problems because of the too long execution times
7.2 Comparative Results

In this section we will report on the results of our computational tests to show the effectiveness
of our local search methods. In Table(1) we compare the neighborhoods types (move, swaps, Insert
[i, j] , Insert [j, p(D]) with the problems (10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000) jobs on
(2,3,5) machines .

In the following tables (2,3) show the efficiency local search methods Memetic algorithm

approach (MA), Threshold acceptance algorithm (TA) and Tabu search (TS) for P‘rj‘zjchj

Problem. Table (2) show comparison of three local search method when these methods start with good initial
solution which is get from two heuristic methods (SWPT) (shorted weight processing times), and (SRD)
(shorted release dates). Table (3) like as (table (2)) but the initial solution get from best neighborhood types.
In tables (1), (2) we compare the efficiency Memetic algorithm approach (MA), Threshold acceptance
algorithm (TA) and Tabu search (TS) have been approached in terms of comparable rate of value (V) and
time (T). The Threshold acceptance algorithm (TA) is best value for all job on machine(2), Memetic
algorithm approach (MA) is best value for all job on machine(3), and Tabu search (TS) is best value for all
job on machine (5). The Threshold acceptance algorithm (TA) is best times for all job on machines (2,3,5).

129



Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

Table (1) the performance of neighborhood types

10 20 30 40 50 75 100 150 200 500 1000 2000 5000
INISIAL | 419.8667 | 1494.626 | 2947.133 | 5494.133 | 8142.225 | 1719358 | 30717.26 | 647282 | 1163154 | 726750.8 | 2909364 | 11678176 | 72582050
gg;g; 385.6667 | 1160.68 1604.6 4353693 | 6191.35 14059.2 | 27138.17 | 62962.06 | 1127017 | 704689.2 | 2903231 | 11677237 | 71057514
'Fji;t 384.4667 | 1062.64 | 1745333 44121 6503.583 | 13770.79 | 27069.47 | 61966.09 | 110960.9 | 700406.2 | 2896883 | 11662587 | 70869639
SWAP | 359.3667 1036.8 1645.033 4374 6155517 | 13098.71 | 2652057 | 60411.33 | 1099275 | 683173.6 | 2891522 | 11642290 | 70793631
[,."”;‘(*;t)] 397.3667 | 121478 | 2059.633 48726 6697.283 | 1411025 | 2732457 | 61478.3 | 1101485 | 670836.6 | 2882477 | 11583407 | 70292869
SWAR? | 376.4667 | 129978 | 2071633 | 5040.443 | 6858217 | 15352.01 | 28276.27 | 6317144 | 1135349 | 7059989 | 2901707 | 11674169 | 71048676
MIN 359.3667 1036.8 1604.6 4353.693 | 6155517 | 13098.71 | 2652057 | 60411.33 | 1099275 | 670836.6 | 2882477 | 11583407 | 70292869
INISIAL 196 647.55 1316.457 | 2462.246 | 3519.863 | 7340.831 | 13112.1 | 27298.47 | 51366.27 | 314133.1 | 1256137 5051549 | 31101460
n“gggvhe_ 178.3667 592.55 1212.8 2205.92 | 3423.246 | 6801.597 | 12503.39 | 26539.45 | 50528.5 313137 1254935 5050047 | 31099959
'E‘f‘;at 185.1167 606.3 1244.75 2310.477 | 3432.649 | 7012.554 12710.8 26601.57 | 50338.45 311706 1249541 5038410 31073853
SWAP | 168.1667 | 562.5667 | 1188.737 | 2229.337 | 3323.843 | 6880.185 | 12348.97 | 26132.9 | 49221.11 | 308766.6 | 1243895 5022616 | 31034680
[].'”;‘E;t)] 192.9 639.6 1316.457 | 2454.422 | 3493.046 | 7338.364 | 13092.84 | 27280.67 | 51340.84 | 313781.3 | 1254078 5044876 | 31093627
Sgg;gz 196 647.55 1316.4 2457.446 | 3519.863 | 7340.831 | 13102.46 | 27288.62 | 51353.56 | 313867.8 | 1255981 5049061 | 31096677
MIN 168.1667 | 562.5667 | 1188.737 | 220592 | 3323.843 | 6801597 | 12348.97 | 261329 | 4922111 | 308766.6 | 1243895 5022616 | 31034680
INISIAL | 123.6175 | 305.8947 | 608.329 | 1041.691 | 1485719 | 2977.988 | 5235844 | 10878.25 | 19811.85 | 118829.3 | 4714939 | 1880288 11639250
ggggv; 104.1 272.5 540.3833 935.06 1292.867 | 2702.077 | 4976.888 | 10556.23 | 19720.47 | 117777.1 469462 1877860 11633737
'E‘j;{;t 105.6 274.8 551.1333 976.76 1388.426 | 2882.625 | 5137.519 | 10762.85 | 19746.56 | 117887.3 | 468702.3 | 1874919 11626720
SWAP 92.9 2471143 | 5002119 | 897.985 | 1289.613 | 2698.636 | 4959.031 | 10327.21 | 19520.71 | 115899.2 466032 1868141 11617084
D.',”;‘(*;t)] 122.33 300.529 599.0729 | 1041.691 1478 2961.346 | 5095.643 | 1087157 | 19803.59 | 116379.3 | 463187.4 1863179 11590791
SN’ | 1089 | 2963857 | 587.9833 | 1024.003 | 1460.627 | 2042378 | 5163131 | 10802.2 | 19732.98 | 117957.8 | 4697659 | 1877247 | 11629460
MIN 929 2471143 | 5002119 | 897.985 | 1289.613 | 2698.636 | 4959.031 | 10327.21 | 19520.71 | 115899.2 | 463187.4 | 1863179 11590791

130




Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

Table(2)The performance of three local search method when these methods start with
good initial solution which is get from two heuristic methods (SWPT) (shorted weight

processing times), and (SRD) (shorted release dates)

MA TH TS
" uB VALUES TIMES VALUES TIMES VALUES TIMES
10 419.86667 | 359.70667 0.124251 358.16667 | 0.0174512 | 359.76667 | 0.0379077
20 1494.6257 | 1055.6397 | 0.1803118 1030.14 0.0163288 1044.4 0.0377286
30 2947.1333 | 1720.5405 | 0.2333202 | 1644.0333 | 0.0167008 | 1637.5333 | 0.0398638
40 5494.1333 | 4343.7621 | 0.2880169 4311.05 0.0184245 4321.75 0.0382915
50 8142.225 6513.2673 | 0.3428978 | 6161.8667 | 0.0174311 | 6184.7167 | 0.0394023
75 17193.583 | 13516.942 | 0.4981693 | 13037.888 | 0.0180377 | 13008.525 | 0.0463554
100 30717.26 27304.521 | 0.6480451 26063.5 0.0189265 | 26151.468 | 0.0501647
150 64728.204 | 61671.034 | 1.0277303 60763.3 0.0202358 60807.62 0.0442482
200 116315.41 | 111381.62 | 1.4333909 | 109868.31 | 0.0211679 | 110128.16 | 0.0497723
500 726750.81 | 689645.23 | 4.3859568 680020.5 0.0314309 | 684657.59 [ 0.0875024
1000 2909364 2894088.7 | 11.494485 | 2891195.5 | 0.0469107 2891871 0.076835
2000 11678176 11648584 33.155939 11646832 0.0790935 11640233 0.1609947
5000 72582050 71207223 147.05215 70804590 0.2005945 70798788 0.8667717
10 196 176.83167 | 0.1397935 187.2 0.0333768 | 184.85873 | 0.0341948
20 647.55 606.34143 | 0.1910327 616.55 0.0346968 | 609.39365 | 0.0359947
30 1316.4571 | 1254.8652 | 0.2456646 1286.444 0.0347889 | 1285.4971 | 0.0382817
40 2462.2462 | 2314.0217 | 0.3022341 | 2313.9725 | 0.0352639 | 2357.2446 | 0.0377739
50 3519.8625 | 3447.7517 | 0.3564184 | 3475.6701 | 0.0357993 | 3516.0375 | 0.0371936
75 7340.8306 7064.689 0.5086188 | 7340.8306 | 0.0378422 | 7089.0237 | 0.0413126
100 13112.097 | 12736.945 | 0.6697063 | 12979.124 | 0.0392601 | 12770.697 | 0.0433846
150 27298.473 | 26948.994 0.977642 26703.539 | 0.0436202 | 26823.142 | 0.0477326
200 51366.268 | 50517.881 | 1.2977759 | 50409.488 | 0.0455283 | 50779.679 | 0.0514781
500 314133.13 | 311925.97 | 3.8734856 | 311659.08 | 0.0634641 312130.2 0.0768899
1000 1256136.8 | 1249657.3 | 10.111567 1251834 0.0906378 | 1250470.8 | 0.1227459
2000 5051548.9 | 5039866.9 | 29.546275 | 5039773.2 | 0.1578318 | 5039794.6 0.246138
5000 31101460 31073414 145.44128 31082299 0.352088 31077981 0.5947781
10 123.6175 102.78159 | 0.1494628 102.9 0.032246 108.40698 | 0.0475413
20 305.89468 | 286.66278 | 0.2015698 | 281.84444 | 0.0317631 | 285.10079 0.048508
30 608.32905 | 571.86667 | 0.2542034 | 576.76667 | 0.0320604 569.0881 0.0493561
40 1041.6906 | 990.40266 0.313983 983.63333 | 0.0319043 996.3375 0.05005
50 1485.7193 | 1441.5137 | 0.3688772 | 1454.4429 | 0.0327535 | 1411.1454 | 0.0509319
75 2977.9875 | 2963.1303 | 0.5122929 | 2973.8209 | 0.0336831 | 2879.1161 | 0.0527893
100 5235.844 5123.8516 | 0.6518393 | 5188.2254 0.035814 5098.5749 | 0.0526805
150 10878.248 10826.87 0.9538139 | 10733.468 | 0.0394088 | 10751.417 | 0.0563398
200 19811.852 | 19778.033 | 1.2683401 | 19781.507 | 0.0414777 | 19757.908 | 0.0595755
500 118829.34 | 118356.14 | 3.8169265 | 118197.98 0.056248 117920.44 | 0.0838675
1000 471493.95 | 471080.75 | 10.025859 | 469151.54 | 0.0811237 469523.1 0.124201
2000 1880288.3 | 1880288.3 | 29.067407 | 18764439 | 0.1298392 | 1876281.8 | 0.2275431
5000 11639250 11629878 140.4961 11625462 0.3032346 11630446 0.5405126

131




Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

Table (3) The performance of local search methods when the initial solution get from

best neighborhood types
n Nei Memetic TH TS
VALUES TIMES VALUES TIMES VALUES TIMES
10 359.36667 | 356.24667 | 0.1221558 | 358.06667 | 0.0160009 | 359.36667 [ 0.0171704
20 1018 1004.1978 | 0.1767784 1005.84 0.0165376 1004 0.0177178
30 1595.2 1591.8095 | 0.2257501 [ 1583.9333 | 0.016837 1563.5 0.0186026
40 4273.65 4226.2536 | 0.2838984 4207.2 0.0169905 4212.7 0.0188071
50 6126.9833 | 6015.635 0.342817 | 5976.9667 | 0.0173553 | 5984.9833 | 0.0199491
75 13098.713 | 12789.075 [ 0.4792318 | 12393.75 0.018113 12459.2 0.0219774
100 26445.368 | 25891.625 | 0.6213327 25426.6 0.0187814 | 25602.468 | 0.0229412
150 60411.329 | 59373.769 | 0.9251299 | 59382.523 | 0.0203839 | 59281.941 [ 0.0241152
200 109581.54 | 108181.48 | 1.2687709 | 107429.96 | 0.0215188 | 107310.69 [ 0.0265009
500 670836.57 | 658977.45 | 3.8664861 | 655709.5 [ 0.0328406 | 654408.77 | 0.0503392
1000 2882477.1 | 2875242.6 | 10.136502 | 2875291 | 0.0518994 | 2873749.6 [ 0.0595975
2000 11583407 | 11543154 | 28.973093 | 11546197 | 0.0808915 | 11554617 | 0.1422821
5000 70292869 [ 70170894 [ 15155515 | 70044376 | 0.1815122 | 70027064 | 0.7370488
10 166.56667 | 166.56667 | 0.1352777 | 163.96667 | 0.0223382 | 163.56667 [ 0.0211848
20 562.06667 | 562.06667 | 0.1913307 | 559.36667 | 0.0198184 | 558.46667 [ 0.0209428
30 1178.8667 | 1165.2567 | 0.282192 | 1148.4667 | 0.0203388 | 1158.0857 [ 0.0213979
40 2197.22 2184.8394 0.35765 2165.4 0.0205579 | 2165.4367 | 0.0213249
50 3290.93 3235.4317 | 0.3937103 | 3154.8733 | 0.0203634 | 3199.6417 [ 0.0223792
75 6757.7656 | 6689.5841 | 0.5541724 | 6517.5776 | 0.022498 | 6558.2208 [ 0.0244501
100 12328.3 12181.85 | 0.7257782 | 12010.571 | 0.0216802 | 11928.935 | 0.0265547
150 26103.07 | 25730.268 | 1.0740765 | 25314.159 | 0.0231294 | 25304.198 | 0.0301014
200 49221.108 | 48496.899 | 1.4598517 | 47996.184 | 0.0258494 [ 47709.067 | 0.0329539
500 308766.57 | 306317.81 | 4.4777277 | 303740.79 | 0.0361337 | 302867.61 [ 0.0567856
1000 1243895.3 | 1238788.7 | 11.569771 | 1230956.1 | 0.0505896 | 1231430.6 [ 0.1160968
2000 5022615.8 | 5015381.1 | 33.171259 | 4995065.9 | 0.0836233 | 4999809.4 [ 0.2362307
5000 31034680 [ 31010084 [ 157.55845 | 30971728 | 0.190418 | 30973941 | 0.612971
10 90.7 90.7 0.1434232 90.7 0.0262714 90.7 0.0356703
20 245.3 245.3 0.199091 242.2 0.0255362 241 0.0274463
30 498.9119 498.9119 [ 0.2558105 | 488.61667 | 0.0256621 | 482.3119 | 0.0282433
40 891.525 891.525 0.3088707 860.3 0.0260922 854.22 0.029621
50 1278.1333 | 1277.6133 | 0.3655092 | 1253.675 | 0.0269021 | 12315133 [ 0.0301909
75 2674.2333 | 2674.2333 | 0.5080963 | 2612.6847 | 0.0273448 | 2578.0939 [ 0.0316005
100 4922.781 | 4918.7095 | 0.6590784 | 4779.8583 | 0.0278559 | 4826.7643 | 0.0334803
150 10326.208 | 10324.18 | 0.9664086 | 10093.588 | 0.0292771 | 10047.595 [ 0.0376512
200 19520.706 | 19520.706 | 1.2931839 | 19371.887 | 0.0314287 | 19408.724 | 0.0369334
500 115652.16 | 115637.65 | 3.8598413 | 114356.82 | 0.0400443 | 114367.84 [ 0.0639215
1000 463187.38 | 463187.38 | 10.101418 | 460594.55 | 0.0544169 [ 460923.23 | 0.1198947
2000 1862929.4 | 1862929.4 | 30.522191 | 1857918.9 | 0.0846591 | 1857405.2 [ 0.2361335
5000 11590791 | 11590791 [ 157.09561 | 11577239 | 0.186721 | 11576716 | 0.6186447

n: Number of jobs
M: Number of machines

MA: Memetic algorithm approach
TA: Threshold acceptance algorithm

TS: Tabu search
Nei: The neighborhood types

132




Journal of Kerbala University , VVol. 10 No.3 Scientific . 2012

7. Future work

Some suggestions for future research are described as follows:
First, the extensions propose of the exact for P‘rj‘zj (WjCj W +hT, /H)

problem by driving a good lower bound or using the dominance rule in branch and
bound algorithm.

Second, using the local search heuristic should be explored finding an
improvement potential of various polynomially bounded scheduling heuristic.

Reference

[1]
[2]
[3]
[4]
[5]

[6]
[7]
[8]

[9]

Ahn, B.H, and Hyun, J.H., "Single facility multi class job scheduling”, computers
and operation research vol.17(1990),265-272.

Bruno, L. Coofman J. and Sethi, R., "Scheduling independent tasks reduce mean
finishing time" coounications on Acm vol.17 (1974)382-387.

Cheng, T. and Sin, C., "A state of the review of parallel machine scheduling
research” European journal of OR. VVol.47, 271-292.

Franca, P. M., Mendes, A. and Moscato, P., "A memetic algorithm for the total
tardiness single machine scheduling problem™, European journal of OR. (1999)
Gendreau M., "An introduction to tabu search”, in glover F. and Kochenberger
G.A. editors handbook of meta heuristic 37-54, Boston Kluwer academic
publishers (2003)

Glover F., and Laguna, M., "Tabu search”, Boston: Kluwer academic publishers
(1997).

Leung, J.Y.-T. Li, Li, H., and Pinedo, M. L., "Scheduling orders for multiple
product types to minimize total weighted completion time", Discrete applied.
Ramachandra, G., and Elmaghraby, S. E., "Sequencing precedence related jobs
on two machine to minimize the weighted completion time", int. J-production
Economics .vol.100, (2006)44-58.

Moscato, P., "On evolution search optimization genetic algorithms and martial
arts: towards memetic algorithm", Caltech concurrent computation program c3p
roport 826(1989).

[10]Nessah, R., Chu, C., and Yalaoui, F., "An exact method for Pm‘sds, rj‘zjcj

problem", Computers and OR.vol.34,(2007)2840-2848.

133



