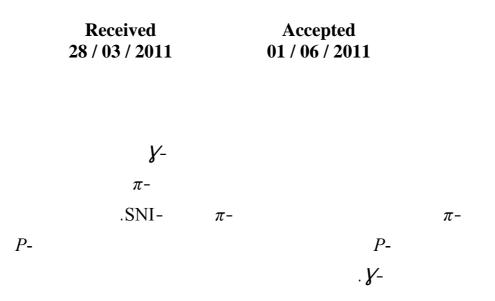
On *P*-Injective Modules And *Y*-Regular Rings

Baida S. Abdullah

Department of Mathematics / College of Education University of Mosul



ABSTRACT

The main purpose of this paper is to study \mathcal{Y} -regular rings, and the connection between such rings and weakly regular, π -regular, strongly π -regular, semi π -regular and SNI-rings. We also study *P*-injective modules, and to find it's relation with \mathcal{Y} -regular rings.

1. Introduction

- Throughout this paper, *R* denotes an associative ring with identity and all modules are unitary. An ideal *I* of a ring *R* is called reduced if it contains no non-zero nilpotent elements. For any non empty subset *x* of a ring *R*, the right (left) annihilator of *x* will be denoted by r(x) (l(x)), respectively. Recall that:
- (1) A ring R is said to be Von Neumann regular if for every $a \in R$, there exists $b \in R$ such that a=aba. The concept of regular rings was introduced by J. Von Neumann in 1936.
- (2) A ring R is said to be right (left) weakly regular if $a \in aRaR$ ($a \in RaRa$) for every $a \in R$, R is weakly regular ring if it is both right and left weakly regular.
- (3) A ring R is said to be π -regular if for every element a in R there exists a positive integer n=n(a) depending on a, such that $a^n \in a^n Ra^n$. [8]

- (4) A ring *R* is said to be right semi π -regular if for each *a* in *R*, there exist a positive integer *n* and an element *b* in *R* such that $a^n = a^n b$ and $r(a^n) = r(b)$. [7]
- (5) A ring R is called a right (left) self-injective (and is denoted by SNI-rings), if and only if, for any essential right (left) ideal E of R, every right (left) R-homomorphism of E in to R extends to one of R in to R.[3]
- (6) A ring R is said to be strongly regular if for every a ∈ R, there exists b ∈ R such that a=a²b.
- (7) A ring *R* is said to be strongly π -regular if for every $a \in R$, there exists $b \in R$ and a positive integer *n* such that $a^n = a^{n+1}b$.
- (8) Let *I* be an ideal of a ring *R*. We say that *I* is pure if for all $x \in I$ there exists $y \in I$ such that x=xy A ring *R* is called a right (left) semiduo, if and only if, every principal right (left) ideal of *R* is a two sided ideal generated by the same element.
- (9) A right *R*-module *M* is said to be *P*-injective, if and only if, for each principal right ideal *I* of *R* and every right *R*-homomorphism $f:I \rightarrow M$, there exists *y* in *M* such that f(x)=yx for all $x \in I$.
- (10) A right *R*-module is called *GP*-injective if for any $0 \neq a \in R$, there exists a positive integer *n* such that $a^n \pm 0$, and any right *R*-homomorphism of $a^n R$ in to *M* extends to one of *R* in to *M*.

2. *Y*-Regular Rings

In this section we introduce the definition of γ -regular rings and we discuss the connection between γ -regular rings and other rings which reduced.

Definition 2.1: [5]

An element *a* of a ring *R* is said to be \mathcal{Y} -regular if there exists *b* in *R* and a positive integer $n \neq 1$ such that $a = ab^n a$. A ring *R* is said to be \mathcal{Y} -regular if every element of *R* is \mathcal{Y} -regular element.

Examples 2.2:

The following rings are γ -regular rings:

- 1- $Z_{3}, Z_{5}, Z_{11}, Z_{15}$
- 2- Let $R(Z_2)$ be the ring of all 2 by 2 matrices over the ring Z_2 (the ring of integer module 2) which are strictly upper triangular.

Clearly, $R(Z_2)$ is \mathcal{Y} -regular ring. We define a condition (*) as follows:

Definition 2.3: [5]

A ring *R* satisfies condition (*) if for every $l \neq a \in R$ and $b \in R$, there exists a positive integer m > l such that $ab = b^m a$.

116

Theorem 2.4:

Let *R* be a reduced ring satisfies condition (*) then the following are equivalent:

- 1- R is a γ -regular ring.
- 2- *R* is a strongly π -regular ring.
- 3- R is π -regular ring.

Proof:

1⇒ 2: Since *R* is *Y*-regular ring and satisfies condition (*), then by [5, Theorem 4.4] *R* is strongly regular ring. So for every $a \in R$ there exists $b \in R$ such that $a=a^2b$. So $(1-ab) \in r(a)$. By [1; Lemma(2.1.9)] $r(a)=r(a^n)$, whence $a^n(1-ab)=0$, then $a^n=a^{n+1}b$. Therefore *R* is strongly π -regular ring.

2⇒ 1: For every $a \in R$ there exists $n \in Z^+$ and element $b \in R$ such that $a^n = a^{n+1}b$. Now since *R* satisfies condition (*), then for every $a, b \in R$, $ab = b^m a$ for some positive integer m > 1. Then $a^n = a^n b^m a$. So $(1-b^m a) \in r(a^n)$. By [1; Lemma(2.1.9)], $r(a^n) = r(a)$, whence $a(1-b^m a) = 0$, then $a = ab^m a$. Therefore *R* is *Y*-regular ring.

1 \Rightarrow 3: Since *R* is *Y*-regular ring and satisfies condition (*), then *R* is strongly π -regular ring, and since *R* is reduced, then by [1; corollary(2.2.7)] *R* is π -regular ring.

 $3 \Rightarrow 1$: Trivial.

Theorem 2.5:

Let *R* be a strongly π -regular ring satisfies condition (*). Then any reduced ideal of *R* is γ -regular.

Proof:

Let *I* be any reduced ideal of *R*, and let $a \in I$. Since *R* is strongly π -regular, there exists a positive integer *n* and an element *b* in *R* such that $a^n = a^{n+1}b$ which implies $a^n(1-ab)=0$ and hence $(1-ab) \in r(a^n)=r(a)=l(a)$, gives (1-ab)a=0. Therefore a=aba. Now let $c=bab \in I$, then aca=a.bab.a=aba=a. Thus $a=aca, c \in I$. Consider $(a-a^2c)^2=a^2-a^3c-a^2ca+a^2ca^2c}=a^2-a^3c-a(aca)+a(aca)ac$

$$=a^2 - a^3 c - a^2 + a^3 c$$

=0 But *I* is reduced, then $a - a^2 c = 0$ implies that $a = a^2 c$. Thus *I* is a strongly regular ideal. Since *R* satisfies condition (*), then by [5; Theorem 4.4] *I* is γ -regular ideal.

Theorem 2.6:

If R is π -regular ring satisfies condition (*) and all idempotent elements of R are central, then R is γ -regular ring.

117

Proof:

Since R is π -regular ring and all idempotent elements of R are central, then by [1; Corollary (2.2.10)] R is strongly π -regular, and since R satisfies condition (*) then by [Theorem 2.4] R is χ -regular ring.

Theorem 2.7:

Let R be a left semi-duo ring satisfies condition (*). Then R is Yregular if for every $a \in R$, there exists $n \in Z^+$ such that $a^n R$ is a right semi-regular ideal.

Proof:

Since R is a left semi-duo ring and for every $a \in R$, there exists $n \in R$ Z^+ such that $a^n R$ is a right semi-regular ideal, then by [1; Theorem (2.3.8)] R is π -regular ring, and since R satisfies condition (*) then by [Theorem 2.4] R is γ -regular ring.

Theorem 2.8:

Let R be a duo ring satisfies condition (*). Then R is Y-regular if for all $a \in R$, there exists a positive integer n such that $a^n R$ is a pure ideal. **Proof:**

Since R be a duo ring and for all $a \in R$, there exists a positive integer *n* such that $a^n R$ is a pure ideal, then by [1; Theorem (2.3.5)] *R* is π regular ring, and since R satisfies condition (*) then by [Theorem 2.4] R is *Y*-regular ring.

Theorem 2.9:

Let R be a reduced ring satisfies condition (*). Then R is V-regular iff for all $a \in R$ there exists unit element $k \in R$ and some idempotent $e \in R$ *R* such that a = ke.

Proof:

Assume that R is \bigvee -regular. For any $a \in R$ then there exists $b \in R$ and a positive integer $n \neq 1$ such that $a = ab^n a$. Hence $e = ab^n$. Now, we shall prove that e is idempotent element, so $e^2 = (ab^n)^2 = ab^n ab^n = ab^n = e$; and since R is a reduced then e is a central so $a=ab^na=ea=ae$. If we set, $a=e-e+a=e-e^2+ae=(1-e+a)e=ke$. Where k=(1-e+a), then (1-e+a)(1-e+a)e=ke. $e+eb^n$)=1- $e+eb^n-e+e^2-e^2b^n+a-ae+aeb^n=1$. So k=(1-e+a) is a unit $ab^n + ae = a$

Conversely, let $a \in R$, and a=ke for some unit $k \in R$ and some idempotent $e \in R$. Hence e=ax where x the inverse of k. Now $ae=aax=keax=kee=ke^2=ke=a$. Therefore a=ae=aax. Since R satisfies condition (*), then for every $a,x \in R$, $ax = x^m a$ for some positive integer

m > 1. Then $a = ax^m a$. Therefore R is γ -regular ring.

Theorem 2.10:

Let R be a ring satisfies condition (*), if R is Y-regular ring. Then R is semi π -regular ring.

Proof:

Let *R* be a \mathcal{Y} -regular ring satisfies condition (*). Then by [Theorem 2.4] *R* is π -regular ring, then by [1; Theorem (1.3.1)] *R* is a right and left semi- π regular ring.

Example 2.11:

Let $R(Z_2)$ be the ring of all 2 by 2 matrices over the ring Z_2 (the ring of integer modulo 2) which are strictly upper triangular. The elements of $R(Z_2)$ are:

 $I = \begin{bmatrix} \vec{1} & 0 \\ 0 & 1 \end{bmatrix}, 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, and$ $F = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

 $R(Z_2)$ is γ -regular ring satisfies condition (*) clearly, $R(Z_2)$ is a right semi π -regular ring, however D=DC=DF and $r(D)=r(C)=r(F)=\{0,A,D,E\}$.

Theorem 2.12:

Let *R* be a reduced semi π -regular ring satisfies condition (*) with every non-zero divisor has inverse. Then *R* is γ -regular ring.

Proof:

Since *R* is semi π -regular ring, then $r(a^n) = r(e)$ where *e* is central idempotent element. Let $x \in a^n R \cap eR$ implies that $x = a^n r$, and x = er' for some $r, r' \in R$. Now, see that x = er' = e.er' = ex. Since $e \in eR = r(a^n)$ then $a^n e = ea^n = 0$. Also $ex = ea^n r = 0$, $x = a^n r$, then x = ex = 0. Thus $a^n R \cap eR = 0$. Now we must prove that $(a^n + e)$ is non-zero divisor. Let $(a^n + e)y = 0$ implies that $a^n y = -ey$. That is $a^n y = -ey \in a^n R \cap eR$. Since $a^n R \cap eR = 0$. Then $a^n y = ey = 0$ and we have $a^n y = 0$. That is $y \in r(a^n) = eR$. There exists $r_1 \in R$ such that $y = er_1$, also $0 = ey = e.er_1 = e^2 r_1 = er_1 = y$ (*e* is idempotent), since $(a^n + e)x = 1$ implies that $a^n(a^n + e)x = a^n$ implies $(a^{2^n} + a^n e)x = a^n$. Since $a^n e = 0$, then $a^{2^n}x = a^n$ implies $a^n = a^n a^n x = a^n xa^n$. Since *R* satisfies condition (*) then by [Theorem 2.4] *R* is *Y*-regular ring.

Theorem 2.13:

Let R be a commutative ring satisfies condition (*), then the following are equivalent:

1- *R* is weakly regular ring,

2- R is Y-regular ring.

Proof:

 $1 \Rightarrow 2$: Since *R* is a commutative weakly regular ring, then by [2; Theorem (1.3.9)] *R* is regular ring, and since *R* satisfies condition (*), then by [5; Theorem 4.6] *R* is γ -regular ring.

 $2 \Rightarrow 1$: Since *R* is *Y*-regular ring satisfies condition (*), then by [5; Theorem 4.6] *R* is regular ring, and since *R* is commutative then by [2; Theorem (1.3.9)] *R* is weakly regular ring.

Theorem 2.14:

If R is a right SNI-ring satisfies condition (*), then R is \mathcal{Y} -regular ring.

Proof:

Since *R* is a right SNI-ring, then by [3; corollary 3.4; P 149] *R* is weakly regular ring, and since *R* satisfies condition (*), then by [Theorem 2.13] *R* is χ -regular ring.

Theorem 2.15:

If *R* is a right SNI-ring which is left self-injective, satisfies condition (*). Then *R* is γ -regular ring. **Proof:**

Let *R* be a right SNI-ring. Then *R* is semi-prime ring. Thus for any left ideal *I*, $L(I) \cap I=0$. Since *R* is SNI-ring, then *R* is reduced ring, and for any non-zero element *a* in *R*, r(a)=L(a). Thus $L(r(a)) \cap L(a)=L(L(a)) \cap L(a)=0$, and since *R* is left self-injective ring, then *aR* is a right annihilator and

R = r(L(r(a))) + r(L(a))= r(a) + aR In particular l = d + ab, for some b in R, and d in r(a). Hence a = aba. Since R satisfies condition (*), then by [5; Theorem 4.6] R is Yregular ring.

Theorem 2.16:

Let *R* be a ring satisfies condition (*), then *R* is \mathcal{Y} -regular if and only if *R* is a right semi-regular ring.

Proof:

Since *R* is a right semi-regular ring, then by [6; Theorem 3.2] r(a) is direct summand for every *a* in *R*, and since *R* satisfies condition (*), then

by [5; Proposition 4.11] R is γ -regular ring.

Conversely: If R is \mathcal{Y} -regular, then r(a) is direct summand for every a in R [3; Proposition 2.17]. Therefore R is a right semi-regular ring [6; Theorem 3.2].

3. *P*-Injectivity:

In this section we discuss the connection between P-injective with y-regular ring.

Theorem 3.1:

Let *R* be a ring satisfies condition (*) with every principal right ideal $a^n R$ is a right annihilator generated by the same element, and if $R/a^n R$ is *P*-injective. Then *R* is *Y*-regular ring.

Proof:

Let *a* be a non-zero element in *R*. Define a right *R*-homomorphism $f:a^nR \rightarrow R/a^nR$ by $f(a^nx)=x+a^nR$; Clearly *f* is well defined. Since R/a^nR is *P*-injective, then there exists $c \in R$ such that $f(a^nx)=(c+a^nR)a^nx=ca^nx+a^nR$, for each element *x* in *R*. In particular; $f(a^n)=1+a^nR=ca^n+a^nR$, which implies $1-ca^n \in a^nR=r(a^n)$. Thus $1-ca^n \in r(a^n)$. Therefore, $a^n=a^nca^n$. Since *R* satisfies condition (*) then by [Theorem 2.4] *R* is Y-regular rin

Theorem 3.2:

Let *a* be an element of a left semi-duo ring, satisfies condition (*), and if $R/a^n R$ is *P*-injective and $a^n R$ is projective. Then *R* is *Y*-regular ring. **Proof:**

Let $a \in R$. Define a right *R*-homomorphism $f:R/a^n R \to a^n R/a^{n+1}R$ by $f(y+a^n R)=a^n y+a^{n+1}R$ for all $y \in R$. Since $a^n R$ is projective, there exists *R*-homomorphism $g:a^n R \to R/a^n R$ such that $f(g(a^n x))=a^n x+a^{n+1}R$ for all $x \in R$. But $R/a^n R$ is *P*-injective, then there exists $c \in R$ such that $g(a^n x)=(c+a^n R)a^n x$ then $a^n x+a^{n+1}R=f(g(a^n x))=f((c+a^n R)a^n x)$

= $f(ca^n x + a^n R)$, (since $a^n x \in a^n R$)

 $=a^n ca^n x + a^{n+1}R$ Since R is a left semi-duo ring, then $ca^n \in Ra^n = a^n R$, then $ca^n = a^n r$ for some $r \in R$. So $a^n x + a^{n+1}R = a^{2n}rx + a^{n+1}R$ implies $a^n R = a^{2n}R$. Thus $a^n = a^{2n}d$ for some $d \in R$. Therefore R is strongly π -regular ring. Since R satisfies condition (*) then by [Theorem 2.4] R is γ -regular rin

Theorem 3.3:

Let *R* be a reduced ring satisfies condition (*). Then *R* is Y-regular ring if $aR/(aR)^2$ is *P*-injective for all $a \in R$ such that $r(a) \subseteq (aR)^2$. **Proof:**

Let $aR/(aR)^2$ is *P*-injective ring. Defined $f:aR \rightarrow aR/(aR)^2$ as a right *R*-homomorphism by $f(ax) = ax + (aR)^2$, for all *x* in *R*, then *f* is a well define right *R*-homomorphism. Indeed let $x_1, x_2 \in R$ with $ax_1 = ax_2$, implies $(x_1 - x_2) \in r(a) \subseteq (aR)^2$, thus $ax_1 + (aR)^2 = ax_2 + (aR)^2$. Hence $f(ax_1) = ax_1 + (aR)^2 = ax_2 + (aR)^2 = f(ax_2)$. Since $aR/(aR)^2$ is *P*-injective, then there exists *c* in *R* such that $f(ax) = (ac + (aR)^2 ax = acax + (aR)^2$, for all $x \in R$ yields $a + (aR)^2 = f(a) = aca + (aR)^2$, so $(a - aca) \in (aR)^2$. Since $aca \in (aR)^2$, then $a \in (aR)^2$. Thus $a \in aRaR$. Let $ab_1, ab_2 \in aR$ for any two element $b_1, b_2 \in R$, then $a = ab_1ab_2 = a(b_1ab_2) = a(b_1b_2)a = aca$ for some *c* in *R*. Thus a = aca. Since *R* satisfies condition (*), then by [5 ; Theorem 4.6] *R* is Y-regular ring.

Theorem 3.4:

Let R be a reduced ring satisfies condition (*) with every maximal right ideal is GP-injective. Then R is γ -regular ring.

Proof:

Let $a \in R$. We claim first $a^n R + r(a^n) = R$. If not, there exists a maximal right ideal M containing $a^n R + r(a^n)$. Define the canonical injective $f:a^n R \to M$ by $f(a^n b) = a^n b$ for any $b \in R$. Since M is GP-injective, then there exists $c \in R$ such that $f(a^n b) = ca^n b$. Therefore $a^n = f(a^n) = ca^n$. Thus $1 - c \in L(a^n) = r(a^n) \subseteq M$, which implies $1 \in M$, a contradiction. Hence $a^n R + r(a^n) = R$. In particular $a^n c + d = 1$ for some $c \in R$ and $d \in r(a^n)$. so $a^n ca^n = a^n$. Since R satisfies condition (*), then by [Theorem 2.4] R is M regular ring.

Y-regular ring.

Theorem 3.5:

Let *R* be a duo ring satisfies condition (*). Then *R* is \mathcal{Y} -regular if for all $a \in R$ there exists a positive integer *n* such that the principal ideal $a^n R$ is idempotent.

Proof:

Let *I* be an ideal of *R* such that $I=a^nR$ with $a \in R$ and $n \in Z^+$, assume that $I^2=I$, and let $a^n \in a^nR=(a^nR)^2$. Since *R* is a duo ring, then $a^n \in a^{2n}R$. Hence $a^n=a^{2n}c$ for some $c \in R$. Thus $a^n=a^n.a^nc=a^n.da^n$ for some $d \in R$. Therefore, *R* is π -regular ring. Since *R* satisfies condition (*), then by [Theorem 2.4] *R* is γ -regular ring.

Theorem 3.6:

Let *R* be a reduced ring satisfies condition (*). Then *R* is \mathcal{Y} -regular if every principal right ideal is a right annihilator generated by an element in *R* and *R*/*aR* is *P*-injective ring.

Proof:

Let $0 \neq a \in R$. Now, define a right *R*-homomorphism $f:aR \rightarrow R/aR$ by f(ax)=x+aR for all $x \in R$, then *f* is well-define, indeed, let $ax_1=ax_2$ for any two elements x_1, x_2 in *R*, then $a(x_1-x_2)=0$. So $(x_1-x_2) \in r(a)=aR$, then $x_1+aR=x_2+aR$, it mean $f(ax_1)=x_1+aR=x_2+aR=f(ax_2)$. Now, since R/aR is *P*-injective then there exists $c \in R$ such that f(ax)=(c+aR)ax for all $x \in R$. Now, f(a)=1+aR=ca+aR, implies $1-ca \in aR=r(a)$. So $1-ca \in r(a)$, whence a(1-ca)=0, then a-aca=0, so a=aca. Since *R* satisfies condition (*), then by [5; Theorem 4.6] *R* is Y-regular ring.

REFERENCES

- [1] AL-Kouri M. R. M. (1996); On π -regular rings, M. Sc. Thesis, Mosul University.
- [2] AL-saffar L. M. Z. (2000); On weakly regular rings, M. Sc. Thesis, Mosul University.
- [3] Ibraheem. Z. M (1996); On *N*-injective modules and regular rings, J. Edu. Sci, Vol. (25).
- [4] Mahmood. R. D, Ibraheem. Z. M (2003); On zero commutative strongly π -regular rings, J. Tikrit. Sci, Vol. (9), No. (2).
- [5] Mohammad. A. J, Salih. S. M (2006); On *Y*-regular rings, J. Edu. Sci, Vol. (18) No. (4).
- [6] Shuker. N. H. (1994); On semi-regular rings, J. Educ. Sci. Vol. (21).
- [7] Shuker. N. H, AL-Kouri M.R. M (1996); On semi π -regular rings, J. Edu. Sci, Vol. (25).
- [8] Shuker. N. H, Mahmood. A. S (1994); On π -regular rings, J. Edu. Sci, Vol. (22).