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Bayesian Smoothing of Discrete -Time Signals with Application

Kurdistan I. Mawlood\College of Administration and Economic\
Salahaddin University-Erbil

Abstract

In this work we deal with Bayesian smoothing for a time varying system, to
find smoothing estimators of signals in present of noise. The smoothing
procedure is re-estimating a signal after adding new observations, or in the light
of more new observations. This study began with modeling the fixed point
smoothing process using Bayesian updating process, and then using this model
to find smoothing estimators for the wind speed in Erbil city at the fixed point
(t=15), for three month's (October, November, December) using (MATLAB 7).
The results showed that the variances are reduced by adding any new
observation; this demonstrates that the method works effectively.
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Introduction

The problem of estimating the parameters of the signal is important in many
applications and in most of the practical situations the signals are corrupted by
additive noise and must be enhanced. The development of linear dynamic
recursive filtering smoothing and prediction has been lead by Kalman (1960)
and Kalman and Bucy (1961)[ Kalman 1960],[ Kalman and Bucy 1961], but in
non Bayesian way. In (1993) Gamerman and Megon are disscused smoothing
and filtering through the levels of Dynamic hierarchical models [Gamerman and
Megon 1993]. In (1996) Jalil has derived a general fixed lag smoothing
recursive relation [Jalil 1996] and recently the smoothing theory has been
applied to several statistical problems[ Wang 2003],[ Zuccolol, Maule and
Gregori 2005][Thomas and Ghosal 2011]. Smoothing is kind of feed back
filtering produces for signal values of the posterior distribution that supplant the
current estimator it means that inference is more reasonably conducted by
smoothing than by filtering, because smoothing procedure correct the past
estimators. In this paper we introduce such an enhancement algorithm based on
fixed point Bayesian smoothing with assumption that the noise process is white,
because is an adequate situation in many signal processing applications, and the
estimation is optimal and sufficient if normality holds.

Types of smoothing [Anderson 1979]
1- The Fixed-Point Smoothing

Estimate the system state * at a fixed point t based on measurement data X

where K=t+1t+2,....  or the fixed point output is X%z for a fixed t.
This type of smoothing is used when the state estimate is needed at only one
time, such as for estimating the miss distance between two objects that are being
traced by radar.

2- The Fixed-Lag Smoothing

Provides the estimate of signal or state *r-~ for a fixed lag N , and the fixed lag

output is “Tvm for N<T
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Given a signal St and observation Yia dynamic linear system is simply a
process that can be described by the following two equations [Harrison and
Stevens 1976]

State equation
S, =S, +W,
Observation equation

Y, =S, +¢

where the noises " and é are given by:

w, ~ N(O,W)

g ~N(O\V)

in the current time (t), (5:1D)~ N(ét,Ct), where [Grewal and Andrews 2001]:

Gt :Pti(Pti +Vt)l
S, = A{+Gt(yt —§t‘)
C, :(I _Gt)Pt_ ..(1)

Now we calculate the smoothing estimators and as follows:

One Step-smoothing

We mean by one step-smoothing, estimating the signal Stafter one new

observation "t+ becomes available, using Bayes theorem [Box and Tiao 1973]
the condition probability of one step smoothing is given by:

P(s; | D) < P(Yyor I8, )P(s, 1 D) E)
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where:
Dt+1 = Y11 Yo Yaseeene Yir Yea
or the process is given by:

Yin =Sta T €
S

i1 = St T Weyg ...(3)
And we can get

E(yt+1): St ’V(yt+l):W +V = dt+1

.. (4)

where:
§t(+1) = §t + Ctd _1(yt+1 - §t) ves (5)
Ct(+l) =C, _Ctzd B (6)

Or:
P(St | Dt+1)~ N(§t(+l)’Ct(+l) )
Two Step-smoothing

In the same way we find the distribution of two step-smoothing as follows, or
after available two new observations:

E(yt+2 ) =5 ’V(yt+2 ) =2W+V =d,, ..(7)
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2 _ 2 e 2
(S |Dt+2 OCEXp__{Z yt+| (S St) }

i=1 t+| Ct

A 2
_ Exp _1 (St St(+2))
2l G .(8)

where:

2
§t(+2) = §t + Ctd _lz()’m - §t)
i-1

Ct(+2) = Ct - Ctzd N

(So)

(.Z:: IW +V +C jl

..(9)
Or:
P(s1Dy.2)~ N8z Cucizy)

K Step-smoothing

Then we can generalize this process for K step-smoothing as follows:

i=1 t+| Ct

= Exp _%{(St _ét(+k))z}

Ct(+k)

Kk _ 2 _& 2
(S | Dt+k oc EXp __{Z Yisi (St St) }

..(10)

where:

k
§t(+k) = §t +Ctdilz(yt+i _§t) (1 1)
i=1

Ct(+k) =C _Ctzd N ..(12)
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dfl

(Zk:dm +ctj_l

i=1

=[

P(St | Dt+k)~ N(gt(+k)’ct(+k))

=

(iW +V )+ ctj_l

-

Or:

We observe that the K-step smoothing posterior mean is combination of two

terms, the first term is mean of the signal St at the time (1) and the second term

IS a correction term (or error smoothing) represent the difference between the
k

c d—lj
observation and posterior mean multiplied by ( i=1 . And K-step smoothing

C,

posterior variance is equal to current posterior variance minus small

24-1
quantityCI 4™ it means that the variance is reduced by smoothing. Smoothing
will give better estimates more accurate than filtering or more reliable estimates

with smaller error variance [Béhning and Kuhnert 2011].

Application

The data set consists of 92 observations represents the wind speed of three
months (October, November December ) in Erbil city sampled from Bahrka
weather station during the period (1/10/2011-31/12/2011), after estimating the
signals up to time (day) t=15 for each month using the initial values of wind
speed and its variance of the first 15 observations, we find the smoothing
estimators for the fixed time t=15 after utilization of the new observations

equations (11,12), and as follows:

smoothing estimations for a fixed point (15) in the October (
$,=65773, ¢, =1.0865,V =0.05)
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Table (1); smoothing results for a fixed point (15) after adding the new
observations (Yae:Yi7+++Ya1) in the October

t C, S, k Cisen Sis(4k)

1 10.0578 7.5502 16 0.0278 5.8442

2 10.036809 |8.5903 17 | 0.0278 5.8669

0.031201 | 7.5242 18 0.0277 5.8802

0.029212 | 7.3554 19 0.0277 5.8842

0.028439 |6.9883 20 0.0276 5.8907

o o1 b~ W

0.028128 | 6.6256 21 0.0275 5.9044

7 10.028001 |6.6499 22 0.0274 5.9586

0.027949 |6.8485 23 | 0.0273 5.9669

9 10.027928 |6.5435 24 1 0.0272 5.9351

10 | 0.027919 |6.4147 25 0.0271 6.1395

11 |0.027915 |6.7111 26 0.0269 6.1327

12 10.027914 |6.48 27 0.0268 6.1472

13 |0.027913 | 6.0999 28 0.0267 6.095

14 10.027913 |5.8735 29 0.0265 6.1116

15 | 0.027913 |5.8443 30 |0.0264 6.1664

31 |0.0262 6.1651

b- Smoothing estimations for a fixed point (15) in the November (
§, =5.0483,¢, = 2.4164,V = 0.045)
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Table (2); smoothing results for a fixed point (15) after adding the new
observations (Yie:Yi7+++Ya0) i the November

A A

t |C S, K Cusirio SH
1 10.053177 5.2591 16 0.0251 4.8142
2 10.033374 | 7.177 17 |0.025 4.8174
3 0.028162 7.2507 18 0.025 4.8156
4 10.026322 |6.7835 19 0.0249 4.8073
5 0.025608 5.8171 20 0.0249 4.8056
6 0.02532 5.1077 21 0.0248 4.7812

7 10.025203 |5.1777 22 0.0247 4.7679

0.025155 | 5.3067 23 0.0247 4.7346

9 10.025135 |4.6549 24 | 0.0246 4.6965

10 |0.025127 |4.6653 25 0.0245 4.6487

11 |0.025124 | 4.2507 26 0.0244 4.6452

12 |1 0.025123 |4.0129 27 0.0243 4.6132

13 |0.025122 |3.7761 28 0.0242 4.565

14 10.025122 | 4.1365 29 0.0241 4.5072

15 |0.025122 | 4.8066 30 0.024 4.4045

Smoothing estimations for a fixed point (15) in the December

( §, =5.0929,¢, =6.8626,V = 0.035)
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Table (3); smoothing results for a fixed point (15) after adding the new
observations (Vie a7+ Yat) in the December

t C, S, k C15(+k) Sls(+k)

1 ]0.026054 |3.8228 16 | 0.0195 5.1656

2 10.021936 |3.7512 17 0.0195 5.1693

0.020485 |3.5142 18 |0.0195 5.1678

0.019922 |3.1106 19 0.0194 5.1607

0.019696 | 3.8805 20 0.0194 5.1486

o o1 b~ W

0.019603 | 4.3607 21 0.0194 5.1283

7 10.019565 |4.1461 22 0.0193 5.1025

0.01955 4.0227 23 | 0.0193 5.0636

9 10.019543 |4.7622 24 10.0193 5.033

10 |0.019541 |6.5744 25 0.0192 4.9829

11 | 0.01954 8.2998 26 0.0192 4.944

12 | 0.019539 | 7.9806 27 |0.0191 4.8718

13 |0.019539 |6.7329 28 0.0191 4.7951

14 |0.019539 |5.167 29 |0.019 4.8933

15 |0.026054 |3.8228 30 |0.019 5.0013

31 |0.0195 5.1656

262



YAy (Y) aand) (¥)alaal) Aol g A V) a slall & oS S dzala ddaa

Conclusion

We observe that due to smoothing the variances for three months are less than
the variance at the fixed time t=15, and the variance reduced by adding every
new observation, this means that the smoothing process can improve the
accuracy of estimates generally even when k=1 or we have one new observation.
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addlial) e )
y=1I;
y1=(];
y=y'
yl=y1'
duration=length(y);

dt=1;
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V=
W=0.2*V; % initial estimation covariance
x=mean(y)
P=var(y)
xhat = x; % initial state estimate
Inn = zeros(size(V));
del = []; % true delition array
delhat = []; % estimated delition array
delmeas = []; % measured delition array
Counter = 0;
for t =1 : dt: duration,
Counter = Counter + 1;
x=x+0.2;
% Innovation
Inn = y(t) -xhat;
% Covariance of Innovation
s=P+V,
% Gain matrix
K =P * inv(s);
kk(:,t)=K;
% State estimate
xhat = xhat + K * Inn;
x_hat(:,t)=xhat;
% Covariance of prediction error
P=P+W-P *inv(s) * P;

%P = (1-K)P
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PP(t)=P;
del = [del; x(1)];
delmeas = [delmeas; y(t)];
delhat = [delhat; xhat(1)];
end
kk;
x_hat
PP
x_hat=x_hat'
PP=PP'
% Plot the results
t=1:dt: duration;
t=t';
plot(t,delhat,'g',t,delmeas,'b');
grid;
xlabel('Time (sec)');
ylabel('Time Delay (sec)’);
title('Kalman Filter Performance’);
for m =1:16
d(m)=(W*m*(m+1)/2)+V*m+P;
xx(m)=xhat*m;
end
XX=XX'";
d=d’;
C=P-(PA2)*d

m=1;
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R(m)=y1(1);

while m <16
R(m+1)=R(m)+y1(m+1);
m=m+1;

end

R=R';

RR=R-xx;

fori=1:16
q(i)=d(i)*RR(i);

end

Shat=xhat+P*q;

Shat=Shat'
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