Effect of Water Quality on Chemical Properties of Two Different Soil Textures and Corn Growth in Erbil Governorate

Akram Othman Esmail

Aveen Sabir Kareem*

College of Agriculture / University of Salahaddin

Abstract

A pot experiment was carried out to study the role of chemical composition of water, soil texture and their interaction on soil chemical properties and growth of corn plant, at Grdarasha Field, College of Agriculture, University of Salahaddin, Erbil. The results indicated to increase in electrical conductivity of the soil extract after harvest and ranged between 1.25 to 9.30 dS m⁻¹ with increasing the electrical conductivity of the water from 0.44 to 5.00 dS m⁻¹, the highest value of electrical conductivity of soil extract 9.30 dS m⁻¹ was recorded from W_6S_1 , while the lowest value 1.25 dS m⁻¹ was recorded from W_1S_1 . The highest value 93.14 g pot⁻¹ of dry matter was recorded at treatment combination W_6S_1 , generally the role of soil texture was very clear in the weight of dry matter in S1 which was 8 times more than its weight in S2. The quality of irrigation water affected significantly in the concentration of cations and anions and chlorophyll content of corn plant.

Keywords: Water quality, Soil texture, Corn.

Introduction

Water is a precious natural resource, it is vital for sustaining all kinds of life on the earth, less than 3% of total water on the earth is fresh water and less than0.03% is accessible to mankind. Water is needed for irrigation, food production, drinking and to maintain the natural ecosystem (Sastry and Rama, 2004). Ground water is one of the earth's most widely distributed replenishable resources. Ground water caters to the requirement of the agriculture. Total ground water on the earth is 35 times greater than the surface water the main objective of ground water exploration is to locate aquifers capable of yielding water in sufficient quantity of suitable quality for domestic, industrial and agricultural purposes (Patel *et al*;(2006)).

^{*} A part of high Diploma dissertation for the second author.

Date of research received 15 / 2 / 2012 and accepted 7 / 6 / 2012

Texture is the most important physical property of the soil for plant growing, since it influences water holding capacity and root growth (Rice, 2002).

High-quality crops can be produced only by using high- quality irrigation water. Characteristics of irrigation water that define its quality vary with the source of water. There are regional differences in water characteristics, based mainly on geological formation and climate (Faust, 1999).

Water quality has great effect on soil chemical properties. The normal pH range for irrigation water is from 6.5 to 8.4. High pH,s above 8.5 often caused by high bicarbonate (HCO⁻¹) and carbonate (CO₃²⁻) concentration, know as alkalinity (Bauder et al, 2005). Calcium carbonate would prevent significant changes in pH of soil solution (Al-busaidi and Cookson, 2003). The water quality did not affected significantly ($p \le 0.01$) on the soil pH after harvesting due to the high buffer capacity of the soil (Mam Rasul,2000 and Salih ,2008). Ayres and Westcot ;(1976) indicated to an increase in soil salinity in case of using bad water quality, the salinity of soil increases when the water takes by plant from the soil. An increase in water salinity would cause an increase in osmotic pressure of the soil solution, causing reduces in availability of water for plant (Rijtema,1981). The increase in EC_{iw} of irrigation water from 0.37 to 0.94 dS m⁻¹ caused an increase in EC_e of soil extract from 0.55 to 2.65 dS m⁻¹ (Mam Rasul,2000) .Salih (2008) studied effect of seven water qualities having EC_{iw} 0.42 to 5.65 dS m⁻¹ irrigation with these waters caused an increases in (EC_e) from 2.05 to 10.87 dS m⁻¹.

Kelly;(1963) found that if the concentration of Ca^{2+} in irrigation water is equal or more than 35% of total cations, it will replace sodium on the surface of soil particles. The results showed an increase in exchangeable sodium percentage due to increases in sodium percent to calcium in irrigation water(Hamdi *et al.* 1966) .The investigations on the effect of water quality of well water in Erbil plain on some chemical properties of soil under supplementary irrigation condition found the high significant correlation between the concentration of cations and anions in irrigation water and saturated soil extract, the results also showed that the ionic composition of saturated soil extract is similar to the ionic composition of irrigation water (Esmai ; (1986) , Al-Azawi ; (1986) , Esmail ;(1996). Mam Rasul ;(2000), Salih ;(2008) , Abdul Amer *et al*; (1987) found the significant correlation coefficients (r) between the concentration of (Ca^{2+} , Mg^{2+} , K^+ and Na^+) in soil extract and concentration of them in irrigation water. The mean values of (r) were (0.967^{**} , 0.951^{**} , 0.994^{**} , 0.977^{**}) for the above cations respectively.

This investigation was conducted to study:

- **1.** The effect of chemical composition of irrigation water on chemical properties of two different textured soils.
- **2.** The effect of chemical composition of irrigation water on growth and nutrient uptake of corn plant.

Materials and methods

Water sampling:

Water samples were collected from six locations at Arbil plain which included 6 wells (Figure,1) and (Table,1), water samples were taken at each location for chemical analysis according to APHA (1989). The chemical properties of the studied water were shown in (Table, 2).

Journal of Kirkuk University for Agricultural Sciences Water, soil and plant analysis:

Some chemical properties of soil, water and plant were analyzed weekly depending on methods mentioned in APHA;(1989), Black;(1980),Gupta;(2006)

No	Well Locations	Elevation	(G.P.	S.) Reading
110.	Wen Locations	(m)	N	Е
1	Kuchablbas	398	35°03´09´´	44°01´09´´
2	Grdarasha	412	36°06 [°] 49 ^{″′′}	44°00´41″
3	Bakrta	332	35°57´03´´	43°53´58″
4	Mnara	320	35°57´49´´	43°53´23´´
5	Makhmur	305	35°46 [°] 54 ^{″′′}	43°36´05´´
6	Chakhmera	282	35°47´00´´	43°46´32´´
		Studied soil	s locations	
S ₁	Grdarasha	407	36°06 [°] 49 ^{′′′}	44°00´47´´
S ₂	Zurgazraw	396	35°54´19″	43°49´45´´

Table (1) The Global Positioning System (GPS) readings for the studied locations of wells and soils.

and Mostra and Roy ;(2008). Table (2 and 3) show the mean of water properties during the study and initial soil properties respectively.

Pot experiment:

The pot experiment was conducted at the farm of the College of Agriculture, University of Salahaddin at Grdarasha field (G.P.S., $N = 36^{\circ}06^{\circ}49''$, $E = 44^{\circ}00^{\circ}47''$), during (23/7/2009 to 3/10/2009) to study the effect of six water qualities having EC values (0.44, 0.50, 1.30, 1.37, 3.5 and 5 dS.m⁻¹), two different textured soils and their combination on some chemical properties of soil and corn growth using factorial CRD with 3 replication.

Results and discussion

1- Effect of water quality, soil texture and their interaction on some chemical properties of the soils

1-1-Hydroge ion potential (pH)

Table (4) shows that the water quality, soil type and their interaction did not affected significantly ($p \le 0.01$) on the soil pH after harvesting; this may be due to the high buffering capacity of the studied soils. This result agree with those recorded by Mam Rasul;(2000), Salih;(2008), AbdulAmer *et al*;(1987) and Esmail ;(1986).

Tabl

e (2) some		S						concer	ntratio	n	mmol	L ⁻¹				-	5+	5+
chemical	No	ion		нα	т									R	SAR	S Na	Ξ S	Ca
properties	Well	Locat		F	dS	Ca ²⁺	Mg ²⁺	Na⁺	K⁺	Cl⁻	NO3 ⁻¹	SO4 ²⁻	HCO ₃ ⁻	SA	Adj.:	Adj.F	Ca ²⁺ /	Mg ²⁺ /
of	W ₁	I	ba	7.6	0.4	2.35	1.10	0.6	0.0	0.3	0.24	0.57	3.01	0.5	0.9	0.5	2.1	0.4
irrigation			р															
water																		

used in

pot

experimen

t.

Journal of Kirkuk Univers	sity for <i>i</i>	Agricultural	Sciences	S											Vol.	3) No.(2	2) 2012
			0	4			6	2	5				0	8	6	4	7
	W ₂	Grdarasha	7.4 5	0.5 0	2.80	1.45	0.4 5	0.0 3	0.3 0	0.25	1.30	3.13	0.3 1	0.6 3	0.3 4	1.9 3	0.5 2
	W ₃	Bakrta	7.4 0	1.3 0	3.85	4.88	3.8	0.1 8	1.2 8	0.50	5.43	6.00	1.8 2	4.6 2	2.1 2	0.7 9	1.2 7
	W ₄	Mnara	7.3 0	1.3 7	6.01	8.05	4.6 5	0.0 5	2.3 5	0.60	8.04	7.77	1.7 5	4.9 3	2.0 9	0.7 5	1.3 4
	W ₅	Makhmur	7.0 8	2.5 0	10.0 0	8.05	7.0 2	0.0 2	4.8 3	2.60	15.76	4.50	2.3 4	2.4 6	2.8 7	1.2 4	0.8 1
	W ₆	Chakhmera	7.0 5	5.0 0	18.5 5	16.7 0	18. 1	0.1 4	11. 8	3.67	37.49	4.00	4.3 1	5.9 9	1.5 0	1.1 1	0.9 0

جدول رقم (2)

Table (3) Some physical and chemical properties of the soils before experiment.

(location) H			g kg	kg	1	6 M ⁻³			P.S.D g kg⁻	• 1	со	wate onten	r t %	/ pot (L)		cor	ncent	ratio	n mi	mol _c	L ⁻¹			
Soil No. (locat	Hq	EC ds m ⁻¹	organic matter	total CaCO ₃ g	CEC mol kg	Bulk Density M	Soil texture	clay	Silt	sand	S.P	F.C	W.P	total water added	Ca ²⁺	Mg ²⁺	Na⁺	K^+	Cl ⁻	HCO3	NO ₃	SO4 ²⁻	Mg ²⁺ /Ca ²⁺	SAR
S1 Grdarasha	7.65	0.63	8.18	335	23.4	1.27	Sicl	356	546	97	58.45	26.45	17.03	40.25	2.75	1.92	1.39	0.12	1.20	3.32	0.45	1.08	0.70	0.91

Jour	nal o	f Kirku	ık Univ	versity	for Ag	ricultu	ral Scie	ences																	Vol
zurgazraw	7.70	1.10	8.11	350	19.1	1.36	SL	117	244	637	33.33	17.61	8.67	26.10	5.20	1.30	1.80	0.08	0.70	2.30	0.25	6.25	0.25	1.00	
S2																									

Vol.(3) No.(2) 2012

جدول رقم (3)

		\mathbf{S}_1	S_2	Mean	\mathbf{S}_1	S_2	Mean
W= qu	water ality		pН			EC at	25 C°
	\mathbf{W}_1	7.60	7.20	7.40	1.25	3.12	2.19
	W_2	7.45	7.80	7.63	1.56	1.70	1.63
	W ₃	7.40	7.30	7.35	2.12	2.50	2.31
	W_4	7.30	7.10	7.20	4.05	4.00	4.03
	W_5	7.08	7.54	7.31	3.50	4.50	4.00
	W_6	7.15	7.30	7.23	9.30	8.50	8.90
N	Iean	7.33	7.37	7.35	3.63	4.05	3.84
ke `s	W		0.05			0.	03
Tu y	S		0.02			0.	01

effect of water quality (w)

extract after harvest.

WS	0.08	0.05
11.5	0.00	0.02

1-2Electrical conductivity (EC).

Table (4) shows the significant differences at ($p \le 0.01$) between all water qualities in their effect on electrical conductivity of soil extract EC_e, the highest mean value 8.90 dS m⁻¹ was recorded from W₆ while the lowest value 1.63 dS m⁻¹ was obtained from W₂. In general the increase in electrical conductivity of irrigation water EC_{iw} caused an increase in EC_e. The correlation coefficient between EC_{iw} and EC_e was ($r = 0.959^{**}$). This result is agreed with results reported by Mam Rasul (2000).

The soil texture affected significantly at a level of ($p \le 0.01$) on EC_e, the highest value (4.05 dS m⁻¹) was recorded from S₂ while the lowest value (3.63 dS m⁻¹) was recorded from S₁, this may be due to the differences in initial EC of studied soils and the differences in their chemical and physical properties (Table 3). The interaction between water quality and soil texture affected significantly ($p \le 0.01$) on the electrical conductivity of soil extract the highest value 9.30 dS m⁻¹ was recorded from the combination treatment W₆S₁ while the lowest value 1.25 dS m⁻¹ was recorded from W₁S₁, this may be due to the difference in initial EC of studied soils and the quality of applied water in irrigation (Table 2 and 3).

1-3- Soluble cations.

The water quality affected significantly ($p \le 0.01$) on the mean concentration of cations (Table,5) the highest concentrations (28.50, 15.61 and 45.00) mmol_c L⁻¹ of Ca²⁺, Mg²⁺ and Na⁺ respectively, were recorded in treatment W₆ however the highest concentration 0.45 mmol_c L⁻¹ of K⁺ was recorded from treatment W₁, while the lowest concentration 8.45 mmol_c L⁻¹ of Ca²⁺ was obtained from treatment W₁, and the lowest concentrations (2.55, 0.11, 4.38) mmol_c L⁻¹ of Mg²⁺, K⁺, Na⁺, were recorded from treatment W₂.

Table:(5)Interaction effect of water quality (w) and soil texture (S) on concentration of cations in soil extract (mmol_c L⁻¹) after harvest.

W	S_1	S_2	Mean	S_1	S_2	Mean	S_1	S_2	Mean	\mathbf{S}_1	S_2	Mean
vv		Ca ²⁺			Mg^{2+}			\mathbf{K}^+			Na^+	
\mathbf{W}_1	7.50	9.40	8.45	1.42	13.20	7.31	0.13	0.77	0.45	3.35	8.60	5.98
W_2	8.88	10.20	9.54	3.10	2.00	2.55	0.13	0.09	0.11	4.05	4.70	4.38
W ₃	11.50	6.40	8.95	3.10	8.00	5.55	0.22	0.12	0.17	5.10	10.00	7.55
W_4	22.50	9.60	16.05	10.50	3.40	6.95	0.17	0.08	0.13	6.12	24.30	15.21

Journal of Kirkuk University for Agricultural Sciences

W	V ₅	16.00	14.40	15.20	10.20	11.60	10.90	0.20	0.09	0.15	9.30	19.50	14.40
W	V ₆	27.00	30.00	28.50	17.22	14.00	15.61	0.51	0.30	0.41	50.00	40.00	45.00
Me	ean	15.56	13.33	14.45	7.59	8.70	8.15	0.23	0.24	0.24	12.99	17.85	15.42
nes	M		0.18			0.09			5.20)		0.07	
's Valı	S		0.08			0.04			2.24			0.03	
Tukey						0.15			8.32	2		0.11	

Vol.(3) No.(2) 2012

It means that in general an increase in concentration of cations in irrigation water caused an increase in their concentration in soil extract, these results are similar to those recorded by Esmail ;(1992) and Salih ;(2008). In general the soil texture affected significantly on the mean concentration of cations at ($p \le 0.01$) the highest value 15.56 mmol_c L⁻¹ of Ca²⁺ was recorded from treatment S₁, while the highest values (8.70, 0.24, 17.85) mmol_c L⁻¹ of Mg²⁺, K⁺ and Na⁺ were recorded from treatment S₂, and the lowest concentration of Ca²⁺ (13.33 mmol_c L⁻¹) was recorded at S₂ and the lowest concentration of Mg²⁺, K⁺ and Na⁺ (7.59, 0.23, 12.99) mmol_c L⁻¹ were recorded from treatment S₁. The highest value of Ca²⁺ was recorded in S₁ in spite of the low initial concentration of Ca²⁺ in this soil comparing with S₂, this may be due to the higher from Ca²⁺ since the higher Na⁺ concentration, SAR, Adj. SAR and Adj. RNa values were recorded in S₁ (Table,3), this explain that the behavior of Na⁺ is differ from Ca²⁺, and may be due to the difference in chemical and physical properties of S₁ and S₂, the similar results were recorded by Salih ;(2008).

The interaction between water quality and soil texture affected significantly ($p \le 0.01$) on concentration of cations in soil extract, the highest concentration 30.00 mmol_c L⁻¹ of Ca²⁺ was recorded from treatment combination W₆S₂ and the highest concentration (17.22 and 50.00) mmol_c L⁻¹ of both Mg²⁺ and Na⁺ were recorded from W₆S₁, while the lowest concentration (6.40 mmol_c L⁻¹) of Ca²⁺ was recorded from treatment combination W_3S_2 and the lowest concentration (1.42 and 3.35) mmol_c L⁻¹ of both Mg²⁺ and Na⁺ were recorded at

treatment combination W_1S_1 , and the lowest concentration ($0.08 \text{ mmol}_c \text{ L}^{-1}$) of K⁺ was recorded from W_4S_2 (Table,5). This may be due to the initial concentration of cations in soil and it 's concentrations in irrigation water (Table, 2 and 3), for example the concentration of Mg²⁺ and Na⁺ in each of W₁, W₂ and S₂ were less than the concentration of them in other water quality and soils, for this reason, the interaction between W and S created various conditions for accumulation of cations in low or high concentration, this may be due to the role of the type of clay minerals in the studied soils, in additional to the differences between chemical and physical properties of S₁ and S₂ (Table,3). These results are similar to those recorded by Esmail ;(1986) and Salih ;(2008).

1-4- Soluble anions.

The water quality affected significantly at ($p \le 0.01$) on the mean concentration of anions (Table,6) the highest concentration (7.78 mmolc L⁻¹) of Cl⁻ was recorded from treatment W₄, while the highest concentrations (8.28, 78.96 and 0.70) mmolc L⁻¹ of HCO₃⁻, SO₄²⁻ and NO₃⁻ were recorded from treatment W6 respectively and the highest concentration (4.44 µg ml⁻¹) of P was recorded from W₃. While the lowest concentration (1.65 and 11.63) mmolc L⁻¹ of both Cl⁻ and SO₄²⁻ and (3.74 µg ml⁻¹) of P were recorded at treatment W₂, and the lowest concentration (3.05 and 0.45) mmolc L⁻¹ of both HCO₃⁻ and NO₃⁻ were recorded from W₁, in general the increase in concentration of anions in irrigation water caused an increase in their concentration in soil extract (Table, 2). The similar results were recorded by Mam Rasul ;(2000), Mustafa *et al*;(2004) and Salih ;(2008).

The soil texture affected significantly on the mean concentration of anions at ($p \le 0.01$) the highest values 4.13 µg ml⁻¹ of P, (5.54, 6.27 and 0.73) mmol_c L⁻¹ of P, Cl⁻, HCO₃⁻, NO₃⁻, were recorded at treatment S₁ respectively, while the highest value (33.92) mmol_c L⁻¹ of SO₄²⁻ was recorded from treatment S₂. The lowest concentration 4.01 µg ml⁻¹ of P and (3.04, 3.18, 0.42) mmol_c L⁻¹ of (Cl⁻, HCO₃⁻) and NO₃⁻) were recorded in treatment S₂, while the lowest value (24.55) mmol_c L⁻¹ of SO₄²⁻ was recorded from treatment S₁, this may be due to the initial concentration of anions, and the ratio between the chemical composition of the soil extract in studied soils. The similar results were obtained by Salih ;(2008) , Mam Rasul ;(2000) and Mostra *et al* ;(2008). In additional to the effect of different textured soils on the amount of required water to reach the soil moisture to the field capacity.

The interaction between water quality and soil texture affected significantly ($p \le 0.01$) on the concentration of anions in soil extract, the highest values (13.35, 0.88) mmol_cL⁻¹ of Cl⁻ and NO₃⁻ were recorded from treatment combination W₄S₁,while the highest value (8.65 and 85.54)) mmol_c L⁻¹ of HCO₃⁻ and SO₄²⁻ were recorded at treatment combination W₆S₁ and the highest value 4.78 µg ml⁻¹ of P was recorded at treatment combination W₃S₂,while the lowest values (0.51, 1.90, 7.75, 0.32) mmol_c L⁻¹ and 3.5 µg ml⁻¹ of Cl⁻, HCO₃⁻, SO₄²⁻, NO⁻₃ and P were recorded in treatment combinations W₆S₁, W₅S₂, W₁S₁, W₃S₂, W₅S₂ and W₅S₂ this may be due to initial concentration of anions in different water qualities and textured soils (Table ,2 and 3) similar results were recorded by Mustafa et al.;(2004).

Table (6) Interaction effect of water quality (w) and soil texture (S) on concentration of anions in soil extract after harvest.

			S ₁	S ₂	Mea			mean			mea						
					n	S ₁	S ₂		S_1	S ₂	n	S ₁	S ₂	mean	S ₁	S ₂	Mean
	W	/		Cl⁻			HCO ₃ ⁻			SO ₄ ⁻²			NO ₃				
								mmo	ol _c L ⁻¹						Р	'μg n	nl ⁻¹
	W ₁		1.30	3.80	2.55	3.35	2.75	3.05	7.75	25.42	16.59	0.49	0.41	0.45	4.06	4.22	4.14
	W	2	1.50	1.80	1.65	4.50	2.10	3.30	10.16	13.09	11.63	0.65	0.53	0.59	3.89	3.59	3.74
	W ₃		4.40	3.40	3.90	6.50	2.10	4.30	9.02	19.02	14.02	0.70	0.32	0.51	4.10	4.78	4.44
	W	4	13.35	2.20	7.78	7.10	2.30	4.70	18.84	32.89	25.87	0.88	0.38	0.63	4.20	4.38	4.29
	W	5	12.20	3.00	7.60	7.50	1.90	4.70	16.00	40.69	28.35	0.80	0.33	0.57	4.18	3.50	3.84
	W	6	0.51	4.02	2.27	8.65	7.90	8.28	85.54	72.38	78.96	0.84	0.56	0.70	4.35	3.59	3.97
	me	an	5.54	3.04	4.29	6.27	3.18	4.72	24.55	33.92	29.23	0.73	0.42	0.57	4.13	4.01	4.07
s. λa	les	W		0.03			0.11			0.21			0.04			0.03	•
IUKE	Valı	S		0.01			0.05			0.09			0.01			0.01	

جدول رقم (6)

2-Effect of water quality, different soil texture and their interaction on concentration of some ions and chlorophyll content in corn plant:

The water quality affected significantly ($p \le 0.01$) on concentration of cations in dry matter as shown in Table (7). The highest mean values 3.62 and 2.45 mg g⁻¹ dry matter of both Ca²⁺ and Mg²⁺, were recorded in W₆, while the lowest values of both of them 1.66 and 1.37 mg g⁻¹ dry matter, and were recorded from W₂. This may be due to chemical composition of the irrigation water for example, the highest concentration of Ca²⁺ and Mg²⁺ were recorded in treatment W₆ comparing with most of studied water qualities (Table,2). On the other hand the highest dry weight of plant was recorded from treatment W₆ comparing with most other treatments. This means that the highest concentration of cations were not attributed to the dilution effect. The lowest value of Ca²⁺ and K⁺ may be due to the imbalance among ions in soil media then in the plant (Mustafa et al.;(2004)).

As appear from table (7) the soil texture affected at ($p \le 0.01$) the calcium concentration in the plant, the highest mean value 2.59 mg g⁻¹ was recorded from S₁, while the lowest mean value 2.44 mg g⁻¹ recorded from S₂ and the highest mean value (1.73 mg g⁻¹) of Mg²⁺ recorded from S₂, while the lowest value 1.68 mg g⁻¹ recorded from S₁, this is due to the dilution effect, since the concentration of Ca²⁺ in corn after harvest in soil S₁ was higher than S₂, however its concentration in plant grown in S₁ was lower than those grown in S₂. These explain the role of dilution effect; the different behaviors of water qualities in soil and their effect on nutrient concentration in plant.

The interaction between water quality and soil texture affected significantly ($p \le 0.01$) on concentration of cations in corn, the highest concentration 3.88 and 2.79 mg g⁻¹ for both Ca²⁺ and Mg²⁺ were recorded from treatment combination W₆S₂, while the lowest concentration 1.23 mg g¹ for Ca²⁺ was recorded from treatment combination W₂S₁ and the lowest concentration 1.05 mg g¹ for Mg²⁺ recorded from treatment combination W₁S₁. This may be due to the initial concentration of cations in soils and concentration of them in irrigation water (Tables 2 and 3).

		S ₁	S_2	mean	S_1	S_2	Mean
W=W	Vater		Ca ²⁺		Mg ²⁺		
qual	ity			1	ng g ⁻¹		
W	1	2.28	2.51	2.40	1.05	2.20	1.63
W_2		1.23	2.08	1.66	1.27	1.47	1.37
W ₃		2.75	2.24	2.50	2.15	1.42	1.79
W_4		3.23	2.12	2.68	2.03	1.21	1.62
W_5		2.68	1.80	2.24	1.49	1.31	1.40
W	6	3.35	3.88	3.62	2.10	2.79	2.45
Mean		2.59	2.44	2.51	1.68	1.73	1.71
SS	W		0.23			0.0)8
key alue	S		0.10		0.03		
Tu V	WS		0.37		0.12		

Table (7) Interaction effect of water quality and soil texture on cations concentration of corn.

Table (8) shows the significant effect ($p \le 0.01$) of water quality on Cl⁻ concentration in plant. The highest mean value (3.97mg g⁻¹) of Cl⁻ was recorded from treatment W₆ and the lowest value of 1.13 mg g⁻¹ was recorded from treatment W₂, this may be due to the highest concentration of Cl⁻ in W₆ (Table,2) similar results recorded by Mam Rasul; (2000) and Salih; (2008).

The soil texture affected significantly at ($p \le 0.01$) on Cl⁻ concentration in corn plant and the highest mean value (3.00 mg g⁻¹) of Cl⁻ found in corn plants grown in treatment S₁, this may be due to the initial Cl⁻ concentration of S₁ (Table, 3), While the lowest values (1.94 mg g⁻¹) of Cl was recorded in S₂, this is due to the highest Mg²⁺/Ca²⁺ in treatment S₁ and the balance between Cl⁻ and SO₄²⁻ (Table, 3), these results agree with those recorded by Salih; (2008) and Esmail; (1992).

irrigation water (Table 2 and 3).

Table (8) shows that the water quality, soil type and their interaction did not affected significantly ($p \le 0.01$) on concentration of P in the plant this due to high concentration of CaCO₃ and pH in the soil that reduced the availability of P in soil.

The interaction between water quality and soil texture affected significantly ($p \le 0.01$) on concentration of anions in corn plants, the highest value (6.93 mg g¹) of Cl⁻ was recorded from treatment combination W_6S_1 , while the lowest values (1.02 mg g¹) of Cl⁻ was recorded from treatment combination W_6S_2 . This may be due to the initial concentration of anions in soils and concentration of them in

Table (8) Interaction effect of water quality (W) and soil texture (S) on anions concentration of corn plants.

		S_1	S_2	mean	S_1	S_2	mean	S_1	S_2	Mean
W=W quali	/ater	Cl			Р			N		
quait	c y					$mg g^{-1}$				
W	V_1	1.05	2.36	1.70	0.30	0.31	0.31	1.89	2.01	1.95
W	V_2	1.06	1.20	1.13	0.31	0.33	0.32	2.01	2.14	2.08
W	V_3	1.45	3.06	2.26	0.36	0.40	0.38	1.28	1.86	1.57
W	V_4	2.73	1.53	2.13	0.33	0.39	0.36	1.16	1.55	1.36
W	V_5	4.76	2.47	3.61	0.29	0.30	0.30	1.27	1.58	1.43
W	V ₆	6.93	1.02	3.97	0.32	0.31	0.32	1.02	1.43	1.23
Me	ean	3.00	1.94	2.47	0.32	0.34	0.33	1.44	1.76	1.60
s. s	W		0.09			0.03			0.04	
ukey alue	S		0.04			0.02			0.02	
Tu V	WS		0.15			0.06			0.06	

The soil texture affected significantly at ($p \le 0.01$) on the nitrogen concentration in corn plants, the highest mean value (1.76 mg g⁻) ¹)of nitrogen was recorded from treatment S_2 , while the lowest value (1.44) mg g¹ of nitrogen was recorded from S_1 , at the same time the highest mean values of Chlorophyll a, b (7.70 and 5.17) mg.100g⁻¹ were recorded in S_2 and the lowest value (6.95 and 2.78) mg/100g

were recorded in S_1 (Table,9) this may be due to the differences in NO_3^- concentration in the studied soils and waters (Table, 3) in additional to the variation between chemical composition of water and soil solution, the similar results were recorded by Salih; (2008).

The interaction between water quality and soil texture affected significantly at ($p \le 0.01$) on concentration of nitrogen in corn plants, the highest value (2.14 mg g¹) of nitrogen was recorded in treatment combination W_2S_2 , while the lowest value (1.02 mg g⁻¹) of nitrogen was recorded in treatment combination W_6S_1 , This is due to the initial concentration of anions in soils and its concentration in irrigation water.

Fable:(9) Interaction effective	ct of water quality (w) and soil textured on	chlorophyll content of	corn plants.
	1 v i		L V	—

3-Effect of water
texture and their
weight of corn planta

Table (10) shows the water quality at (p \leq of plant, the highest was recorded from lowest value 38.27 mg treatment W₄, this due to composition of irrigation

The soil texture ≤ 0.01) on the dry weight values 78.57 mg pot ⁻¹ while the lowest values recorded from S₂ this

		S_1	S_2	mean	S_1	S_2	mean	S_1	S_2	Mean
W=Water		Chl. a				Chl.b		Total Chl.		
qual	ity		$Mg.100g^{-1}$							
W	1	6.80	8.00	7.40	2.70	4.40	3.55	9.50	12.40	10.95
W	2	6.60	8.20	7.40	2.40	6.70	4.55	9.00	14.90	11.95
W	3	7.00	8.50	7.75	2.80	4.40	3.60	9.80	12.90	11.35
W	4	7.70	7.10	7.40	3.00	4.40	3.70	10.70	11.50	11.10
W	5	6.00	6.00	6.00	2.70	4.30	3.50	8.70	10.30	9.50
W	6	7.60	8.40	8.00	3.10	6.80	4.95	10.70	15.20	12.95
Me	an	6.95	7.70	7.33	2.78	5.17	3.98	9.73	12.87	11.30
r 'S es	W		0.63			0.41			0.72	
ukey 'alue	S	0.27			0.18		0.31			
Ϋ́	WS		1.01			0.66			1.15	

quality, different soil interaction on dry

significant effect of 0.01) on the dry weight values 50.94 mg pot $^{-1}$ treatment W₆ and the pot $^{-1}$ was recorded from the chemical water.

affected significantly (p of plant, the highest was recorded from S_1 , 9.80 mg pot ⁻¹ was may be due to the

Journal of Kirkuk University for Agricultural Sciences differences in the physical

the soils.

The interaction between affected texture the dry weight of plant, the -1 was recorded from W_6S_1 , while the lowest recorded from treatment results were obtained by (1997).

and chemical properties of				
water quality and soil	Mean	\mathbf{S}_2	\mathbf{S}_1	W=water quality
significantly at $(p \le 0.01)$ on	Pot ⁻¹	dry weight mg P		
highest values 93.14 mg pot	48.28	9.28	87.29	W_1
treatment combination	43.17	11.58	74.75	W_2
values 8.74 mg pot ⁻¹ was	42.88	9.08	76.67	W ₃
$\begin{bmatrix} \text{combination} W_6 S_2, \text{similar} \\ S_6 U_{10} & \text{combination} \\ \end{bmatrix}$	38.27	9.99	66.55	W_4

Vol.(3) No.(2) 2012

Table (10)Interaction effect of water quality (w) and soil texture(s) on dry weight of corn plants.

	Vol.(3) No.(2) 2012
41.56	
50.04	

V	V_5	73.01	10.11	41.56		
W ₆		93.14	8.74	50.94		
Mean		78.57	9.80	44.18		
S. S	W	17.15				
key alue	S	7.38				
Tu V	WS	27.42				

References

1. Abdul Amer, M. R., A. O. Esmail, and B. J. mahmod (1987). Effect of	irrigation water quality on ions behavior in soil
profile. Iraqi Journal of Agric. Sci. 18.2:155-172. (In Arabic).	
2. Al-Azawi, S. Sh. H. (1986). Effect of irrigation by ground water from Erbil	plain on soil and wheat plant. MSc. Thesis. College of
Agriculture. Salahaddin Univ. Iraq. (In Arabic).	
3. Al-Busaidi, A. S. and P. Cookson (2003). Salinity -pH relationships in	calcareous soil. College of Agriculture and marine Sci.
Sultan Qaboos Uni. Vol. (8). No. (1): 41-46. Sultanate Oman.	
4. American public health association (A. P. H. A.). (1989) Standard methods	for the examination of water and waster water.
17 th Ed. A. P. H. A., Washington.	
5. Ayers, R. S. and D.W. Westcot (1976). Water quality for agriculture. Irrigation	on and drainage. Paper. (29).FAO. Rome. Italy.
6. Black, C. A. (1980). Methods of soil analysis. Part 2. Amer. Soc. Agron. Inc.	publishers. Madison. Wisconsin, USA.
7. Dohuki, M. S. S. M. (1997). Evaluation of some well and springs water in	Dohuk governorate for irrigation and
drinking purpose .MSc. Thesis. College of Science, Salahaddin Univ,	Iraq. (In Arabic).
8. Esmail, A. O. (1986). Limitation of some ground water suitability in Erbil	plain for different uses. MSc. Thesis, College of
Agriculture. Salahaddin Univ.Iraq. (In Arabic).	-
9. Esmail, A. O. (1992). Effect of composition and ion pair in irrigation water	on Soil and plant. Ph. D. Thesis, College
of Agriculture. Baghdad Univ. Iraq. (In Arabic).	
10. Faust, E. (1999). Irrigation water quality for greenhouse production. Agricu	ltural extension service .The university of Tennessee.
11. Gupta,p.k.(2006) Soil ,Plant, Water and Fertilizer analysis .Maharana Pra	tatap University of Agriculture and
Technology, Dept. of Agricultural chemistry and Soil Science.	
12. Hamdi, H., S. youssef and M. M. Elmansey (1966). The effect of Saline	irrigation water with different Na and Ca
concentration on some soil properties. Journal Soil Sci. U. A. R., 6, N	0.1.
13. Kelly, W. P. (1963). Use of saline irrigation water. Soil Sci. 95 : 385-391.	
14. Motsra M.R., and R.N. Roy (2008) Guide to laboratory establishment for	plant nutrient analysis.FAO,Roma.
15. Mam Rasul. G. A. (2000). Effect of ionic activity on classification of	irrigation water and availability of some nutrients
in Sulaimani city. MSc. Thesis. College of Agric. Sulaimani Univi. / In	aq.

Journal of Kirkuk University for Agricultural Sciences Vol.(3) No.(2) 2012 16. Mostafa, M. A., M. O. Elsharawy and F. M. Elboraei. (2004). Use of sea water for wheat irrigation II. Effect on soil chemistry properties, actual evapotranspiration and water use efficiency. International conf. on water resources . 17. Patel, H., A.J. Gadgil, C. Galitsky, E. Chukwueke, D. Wang, M.R.Sippola, Bauder, T. A., R. M. Waskom and J. G. Davis (2006). Irrigation water quality criteria. Colorada State Univ. Cooperative. Soil and Crop Sci. 18. Rice, Thomas J. (2002) Importance of soil texture to vineyard management. Soil Science Department, California Polytechnic State University, San Luis Obispo, CA. 19. Rijtema, P. E. (1981). Quality standards for irrigation waters. Acta. Hort. 199: 25-35. 20.Salih. H. O. (2008). The role of ionic activity in classification of some groundwater on some chemical properties and wheat yield in Erbil plain. Msc. Thesis, college of Agric. Salahaddin Univ. Iraq.

21.Sastry, K.S. Rama (2004). Integrated water resources planning and management of environment.Y.K.

تاثير نوعية المياه في الصفات الكيميائية لنسجتين من التربة ونمو الذرة الصفراء في محافظة اربيل أكرم عثمان اسماعيل جامعة صلاح الدين / اربيل / كلية الزراعة

الخلاصة

اجرى هذا البحث في حقول كلية الزراعة / جامعة صلاح الدين / اربيل لدراسة تاثير ست نوعيات من مياه الري و نسجتين من التربة و التداخل بينهما في الصفات الكيميائية للتربة ونمو الذرة الصفراء و تشير النتائج الى الزيادة في درجة التوصيل الكهربائى للمياه من (0.44 - 5.00) ديسيسيمنز م⁻¹ ادت الى زيادة قيمة التوصيل الكهربائى للمياه من (0.44 - 5.00) ديسيسيمنز م⁻¹ ادت الى زيادة قيمة التوصيل الكهربائى للمياه من (0.44 - 5.00) ديسيسيمنز م⁻¹ ادت الى زيادة قيمة التوصيل الكهربائى للمياه من (0.44 - 5.00) ديسيسيمنز م⁻¹ ادت الى زيادة قيمة التوصيل الكهربائى فى مستخلص العجينة المشبعة و بمدى (0.21- 9.30) ديسيسيمنز م⁻¹ حيث سجلت اعلى قيمة للتوصيل الكهربائى فى المعاملة العاملية (W₆ S₁) اى مياه ذات الكهربائى فى مستخلص العجينة المشبعة و بمدى (0.21- 9.30) ديسيسيمنز م⁻¹ حيث سجلت اعلى قيمة للتوصيل الكهربائى فى المعاملة العاملية (W₆ S₁) اى مياه ذات درجة التوصيل الكهربائى فى مستخلص العجينة المشبعة و بمدى (0.21- 9.30) ديسيسيمنز م⁻¹ حيث سجلت اعلى قيمة للتوصيل الكهربائى فى المعاملة العاملية (W₆ S₁) اى مياه ذات درجة التوصيل الكهربائى فى المعاملة العاملية (W₆ S₁) اى مياه ذات درجة التوصيل الكهربائى = 5 ديسيسيمنز م⁻¹ وتربة ذات نسجة (مزيجية طينية) فى حين سجلت ادنى قيمة للتوصيل الكهربائى في المعاملة العاملية (W₁ S₁) اى مياه ذات درجة التوصيل الكهربائى في المعاملة العاملية (W₁ S₁) الحصول على قيمة للتوصيل الكهربائى في المعاملة العاملية (W₁ S₁) الحصول على قيمة للمادة الجافة وى المادة الجافة حيث كانت وزن المادة الجافة وي المادة الجافة وي المادة الجافة وي على الحلي في المادة الجافة وي المادة الجافة وي على اعلى قيمة المادة الحادة المادة الحادة وي المادة الحاملية (W₆ S₁) حيث كانت دور النسجة واضحة جدا فى زيادة المادة الجافة حيث كانت وزن المادة الجافة وي الحاد وي المادة الجافة وي المادة الحاملية (W₆ S₁) حيث كانت دور النسجة واضحة جدا فى زيادة المادة الجافة حيث كانت واض الحرة واضحة جدا فى زيادة الحادة الحادة وي المادة الجافة وي المادة الحاد وي المادة الحادة وي المادة الحاد وي المادة الحادة الحاد وي ترربة (S)، كذلك الرت نوعية ا