
Journal of Kerbala University , Vol. 10 No.2 Scientific . 2012 
 

 142 

 

ELASTIC BUCKLING OF PLATES UNDER IN-PLANE 

PATCH LOADING USING FINITE DIFFERENCE METHOD 

الانبعاج الوشى للصفائح ححج حأثُش سقعت الخحوُل الوسخىَت باسخخذام طشَقت الاخخلافاث 

 الوحذدة
Lecturer Dr. Jawad  T. Abodi 

 Civil Engineering Dept./ Engineering College/ Karbala  University 

 

 

Abstract: 

The present study investigates the problem of linear buckling of thin steel plates subjected to 

in-plane patch compression loading. The stability problem treated using finite difference method. 

The present procedure is general and applicable to the buckling and free vibration of thin 

rectangular plates with various thickness variations.  The influences of thickness variation, plate 

aspect ratios, and boundary conditions, and length of patch loading on the buckling load are shown 

graphically. The plate was analyzed with different tapering ratios (ta/to) (1.0, 1.25, 1.5, 1.75, and 

2.0), so different lengths of axial patch loading (bp/b)(1.0-0.4) were taken. A comparison with 

previous works is made. Finally, it is shown that the buckling load factor will increase with 

decreasing length of axial patch loading where the decreasing the length of axial patch loading to 

0.4 will increase the buckling load factor by about  40% for plate with aspect ratio (a/b=1) and 

tapering ratio (ta/to=1.0). 

Keywords: Linear buckling, Thin plates, Tapered plates, Patch compression, Finite Difference 

method 

 مستخلص:ال

الانبعاج الخطٍ للصفائح الفىلارَت النحُفت الوعشضت إلً أحوال ضغط سقعت فٍ الوسخىٌ.  هسألتالذساست الحالُت حخحشي 

(. الطشَقت الوقذهت هٍ عاهت وحطبق finite differenceخخذام طشَقت الاخخلافاث الوحذودة )هسألت الاسخقشاسَت حن هعالجخها باس

للانبعاج والاهخضاص الحش للصفائح الوسخطُلت النحُفت هع حنىع اخخلافاث السوك. إى حأثُشاث حغُش السوك, نسب الطىل للعشض, 

( tapering ratiosحن ححلُل الصفائح هع هخخلف نسب الوسخذقت )الإسناد وطىل سقعت الخحوُل علً حول الانبعاج قذ بُنج بالشسن. 

(ta/to( )1.0, 1.25, 1.5, 1.75, and 2.0 وكزلك هخخلف أطىال الشقعت للحول الوحىسٌ. وأخُشا ظهش إى هعاهل حول )

( سىف 0.4)الانبعاج سىف َضداد  هع حناقص طىل سقعت الحول الوحىسٌ حُث الخناقص  فٍ طىل سقعت الحول الوحىسٌ إلً 

( tapering ratios( والنسبت الوسخذقت )a/b=1( حقشَبا للصفُحت راث نسبت أبعاد )%40إلً ) جَضَذ هعاهل حول الانبعا

(ta/to=1.0.) 

 

1. INTRODUCTION 

The use of thin panels in many technical fields such as aerospace, mechanical and civil 

engineering is nowadays quite common. Since modern design process requires the evaluation of 

appropriate safety levels, many studies have been carried out in the last decades in order to describe the 

buckling due to uniform compression, tension and shear for such structures
(4)

. On the other hand, a 

limited number of studies have been carried out to evaluate the influence of patch loading on the 

critical buckling load in the compressed plates although designers are always confronted with this 

issue. Such a problem is encountered in airframe where the action of the air loading on an aircraft wing 
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develops an axial loading that gives a non-uniform compression that can lead to loss of stability. Also, 

the aerodynamic heating of panels in supersonic aircraft can be approximated by non-uniform thermal 

stresses as the temperature distribution is not uniform throughout the volume of the restrained plate. In 

civil engineering structures, engineers are often confronted with designs involving partial edge loading, 

such as the buckling of the web plate of a crane girder under the action of heavy wheel loads applied to 

the flanges. It is worth pointing out that since constructional elements are frequently subjected to in-

plane patch loading and often prone to buckling, it is important that further design data should be 

provided to deal with this important stability problem. If such an issue has so far received relatively 

little attention from researchers, the reason for this is undoubtedly due to the additional theoretical 

difficulties involved in obtaining rigorous solutions to the buckling of plate when subjected to non-

uniform compression. Undeniably, the solution of this stability problem is mathematically difficult to 

obtain as the stress distribution throughout the plate varies considerably
(4)

. However, using the finite 

difference method, one can easily deal with these buckling problems. Few researches published their 

works in buckling behavior of thin steel plate under in-plane patch loading. Pavlovic and Baker[8] 

used an analytical method to investigate thin plate buckling, Rockey[9] used finite element method to 

investigate the buckling stiffened plate. Stephen and Steven[12] worked on the error estimation for 

plate buckling element. Ikhenazen, et. al. [4] used the total energy to treat the stability problems where 

their study showed that the resolution of the plate buckling problem using true stress distribution with 

the finite element method leads to a good agreement with results previously obtained by means of 

analytical methods using an exact stress distribution. 

Hussein, et. al. [3] used simplified computational procedure for the elastic buckling problems of 

rectangular thin plates with variable cross section thickness. Kobayashi and Sonod and Ohga et. al. 

[6] used the power series method to solve the differential equation for tapered thin-walled members. 

In the present study, the buckling of thin elastic plates non-uniformly compressed in one direction 

(see Figure (1)) is investigated using the finite difference method. This numerical analysis is performed 

with the FORTRAN90 program that was written by Amash[1]. The aim of this paper is to show some 

representative elastic buckling coefficient results of a simply supported plate under in-plane patch 

loading with constant and variable thickness. The influence of edge ratio and load breadth ratio on the 

critical buckling load is investigated. The obtained numerical results are graphically summarized 

through a `buckling load factor with varying aspect ratio, varying boundary condition, varying length 

of patch loading ratio, and varying tapering ratio and some interesting conclusions are drawn.  
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Fig. (1): Thin plate under uniaxial patch loading 
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2. GOVERNING EQUATION AND SOLUTION 

The buckling of isotropic rectangular plates with linearly tapered thickness in the x-direction is 

considered as shown in Figure(2).  The plate is subjected to uniform compressive load in y-direction.  

The thickness )(xt  and moment of inertia )(xI  are expressed as: - 

 

)1()( xctxt to 
 (1) 

3
)1()( xcIxI to 

 (2) 

in which ooat atttc )(  ; ot and at  denote the thickness at the sides 0x  and ax  , 

respectively; 12
3

oo tI   is the second moment of area(per unit width) for the plate cross section at the 

side 0x . 

 Within the classical small deflection theory of thin plates, the differential equation for the 

rectangular plate under consideration can be written in the form [Husain, et al (2002)]: -   
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In which   

     23
112 vEtD xx   = is the flexural (or bending) rigidity of the section of the plate (and this is 

varying with respect to x). 
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(a) Plate under Axial Compressive Patch Load              (b) Plate Cross Section 

Fig. (2): Buckling load of linearly tapered plate under in-plane patch loading 
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The solution of Equation (3) may be achieved by finite difference method as shown in Figure (3).  

By applying the finite difference molecules at the interior nodes of the subdivided plate, the following 

system of simultaneous linear equations in matrices will be obtained: - 

 

      0 wBwK   (4) 

where the matrices  K and  B may be named as follows: 

 K : is the stiffness matrix for the plate 

 B : is the geometry matrix for the plate  

 
2

422

a

hhDN xyx 
   : is the Eigen-value 

        Notice that Equation (4) is an Eigen-value problem. For a given thickness  
ao tt ,  and plate– 

aspect ratio ( ba ), the Eigen-value ( ) can be determined numerically by using any relevant 

technique.  The smallest Eigen-value gives the most (fundamental) buckling load. 
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Fig. (3): Plate equation in finite difference molecule form 
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3. NUMERICAL RESULTS 

In order to find the more appropriate mesh size that is to be used in the present stability 

problem, the case of a simply supported rectangular plate under axial compressive load in the direction 

of its length is investigated. The plate ratio is (a/b=1), slenderness ratio (b/t=100), Young's modulus 

(E=200 GPa) and Poisson's ratio (v=0.3) are considered. Table (1) gives a measure of convergence as a 

function of mesh size. It can be seen that a (14 × 14) mesh for this problem that gives results to within 

(0.4%) of the exact Timoshenko's value [13], which in this case corresponds to (4.00). 

 

 

Mesh size Buckling coefficient 

8  8 3.948 

10  10 3.967 

12  12 3.977 

14  14 3.983 

16  16 3.987 

18  18 3.989 

20  20 3.994 

 

 

 

A present study is performed to assess the influence of several important parameters on the 

linear buckling of a rectangular steel plate subjected to in-plane compressive patch load.  Each 

parameter was studied individually by analyzing a type of rectangular steel plate.  In all cases, a finite 

difference method was used by considering the full plates with (14×14) mesh. The following geometry 

and material properties of steel plate are used in the analysis: (E=200 GPa; v=0.30, Fy=250 MPa,). 

Figure (5) presents the buckling factor-patch length ratio curve of a simply supported 

rectangular steel plate with variable thickness under in-plane compressive patch loading with 

slenderness ratios (b/t=100), aspect ratio (a/b=1.0). The compression patch load is in x-direction (the 

direction parallel to thickness variation). The range of tapering ratio ( oa tt / ) was used from (1.0) to 

(2.0) and patch length ratio(bp/b)  was used from (0.4) to (1.0).  From this figure, it can be noticed that 

the buckling factor will decrease with increasing patch length ratio for all tapering ratios about (38%) 

for plate with tapering ratio (2.0) when patch length increase from (0.4) to (1.0).  

 

 

Table (1): Convergence of buckling coefficient ( k
*
) for a square simply 

supported plate with constant thickness (a/b=1.0) 
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Figure (6) presents the buckling factor-patch length ratio curve of simply supported rectangular 

steel plate with variable thickness under in-plane compressive patch loading with slenderness ratios 

(b/t=100), aspect ratio (a/b=1.0). The compression patch load is in y-direction (the direction parallel to 

thickness variation). The range of tapering ratio ( oa tt / ) was used from (1.0) to (2.0) and patch length 

ratio(ap/a)  was used from (0.4) to (1.0).  From this figure, it can be noticed that the buckling factor will 

decrease with increasing patch length ratio for all tapering ratios about (42%) for plate with tapering 

ratio (2.0) when patch length increases from (0.4) to (1.0).  This can be attributed to the fact that the 

increase in the thickness ratio amounts to the decrease in the flexural rigidity of the plate. 
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Fig. (5):Buckling Factor-Patch length ratio of simply supported rectangular  steel 

plate with variable thickness under in-plane patch loading along x-direction 
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Fig. (6):Buckling Factor-Patch length ratio of simply supported rectangular  steel plate 

with variable thickness under in-plane patch loading along y-direction 
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Figure (7) presents the buckling factor-patch length ratio curve of clamped rectangular steel 

plate with variable thickness under in-plane compressive patch loading with slenderness ratios (b/t) 

(100), aspect ratio (a/b=1.0). The compression patch load is in x-direction (the direction parallel to 

thickness variation). The range of tapering ratio ( oa tt / ) was used from (1.0) to (2.0) and patch length 

ratio(bp/b)  was used from (0.4) to (1.0).  From this figure, it can be noticed that the buckling factor will 

decrease with increasing patch length ratio for all tapering ratios about (31%) for plate with tapering 

ratio (2.0) when patch length increases from (0.4) to (1.0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7):Buckling Factor-Patch length ratio of rectangular  steel plate with 

variable thickness under in-plane patch loading at x-direction 

Fig. (8):Buckling Factor-Patch length ratio of simply supported rectangular  steel plate 

with variable thickness under in-plane patch loading at x-direction 
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Figure (9) presents the curves of buckling coefficient of rectangular steel plates with variable 

thickness under in-plane compressive patch loading which represent the changes in the buckling mode 

in the x-direction as the plate aspect ratio changes. The compression patch load in x-direction (the 

direction parallel to thickness variation). The range of aspect ratios (a/b) were used from (0.5) to (4.0), 

tapering ratio ( oa tt / =1.0) and patch length ratio (bp/b) was used from (0.4) to (1.0).  It can be seen 

from the figure that the plate aspect ratios at which changes in such buckling mode occur appear to be 

almost independent of the patch length ratio. 
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Figure (10) presents the curves of buckling coefficient of rectangular steel plates with variable 

thickness under in-plane compressive patch loading which represent the changes in the buckling mode 

in the x-direction as the plate aspect ratio changes. The compression patch load in x-direction (the 

direction parallel to thickness variation). The range of aspect ratios (a/b) were used from (0.5) to (4.0), 

tapering ratio ( oa tt / =1.5) and patch length ratio (bp/b) was used from (0.4) to (1.0).  It can be seen 

from the figure that the plate aspect ratios at which changes in such buckling mode occur appear to be 

almost independent of the patch length ratio. 

 

 

 

 

 

 

 

 

 

Fig. (9):Buckling Factor-aspect ratio of simply supported rectangular  steel plate 

with tapering ratio ( oa tt / =1.0) under in-plane patch loading at x-direction 
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Fig. (10):Buckling Factor-aspect ratio of simply supported rectangular  steel plate 

with tapering ratio ( oa tt / =1.5) under in-plane patch loading at x-direction 
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4. CONCLUSIONS  

A finite difference method has been employed to solve numerically the buckling problem of 

rectangular plates with linearly tapered thickness under in-plane patch loading.  The effects of aspect 

ratio, boundary condition, tapering ratio, and patch length ratio on the buckling behavior are 

considered.  The values of buckling coefficients decrease with an increase in the tapering ratio (for the 

same volume of the plate) and so with increasing patch length ratio.  The buckling coefficient of simply 

supported plate under in-plane patch loading at x-direction will decrease about (40.6%) for tapering 

ratio ( oa tt / =1.0) while it will decrease by about (38%) for tapering ratio ( oa tt / =2.0) but when the 

plate under in-plane patch loading at y-direction the buckling coefficient will decrease about (28.8%) 

for tapering ratio ( oa tt / =1.0) while will decrease about (42%) for tapering ratio ( oa tt / =2.0). 
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