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Abstract 
Many sequencing problems have a combinatorial nature and they are very difficult to 

optimality within acceptable computation times. 

We consider the problem of scheduling jobs on a single machine minimize the maximum 

completion time and maximum weighted earliness time. The jobs partitional into families, and a 

setup time is necessary for scheduling the fest job and when there is a switch in processing jobs 

from one family to jobs of another family. And to solve this problem we suggested method 

heuristic to compare and test different local search method. 

 المستخلص 
اىجذًىت حمخيل اىصٍغت اىخٌافقٍت ًىذه اىمسائو من اىصعب جذاً إٌجاد اىحو الأمثو ىيا خلاه ىناىل عذة مسائو فً 

 أًقاث حسابٍت معقٌىت.

 maximumىقذ حناًىنا مسأىت جذًىت اىنخاجاث عيى مامنت ًاحذة ىخصغٍز داىت اىيذف ًحنبٍز ًقج الإمماه )

completion time and maximum weighted earliness time.) من اىعٌائو ًىناك  قذ قسمج اىنخاجاث اىى ى

ًقج إعذاد ضزًري ىيمامنت عنذ جذًىت أًه نخاج ًعنذ جذًىت نخاج من عائيت حخخيف عن عائيت اىنخاج اىذي سبقو. ًىحو 

 near optimal( ىيحصٌه عيى حو قزٌب من اىحو الأمثو )heuristic methodىذه اىمسأىت حم اقخزاح طزٌقت حقزٌبٍت )

solution.) 

 

1.   Introduction 
Consider a production to order system in which the product range can be decomposed to a 

number of product families. Between production of orders for products belonging to the same 

family almost no setup is required, where as a serious setup is incurred between orders for products 

belonging to different families. Hence for reasons of efficiency, we prefer to continue with orders 

for products belonging to the same family as long as possible. 

However the need to finish order as class as possible to their required due date may conflict 

with the efficiency. 

We consider a single machine production system in which production is to order. Jobs are 

characterized by their type (the family the belong to) their processing times. We assume that jobs of 

the same family have the same setup time. Each time we start producing jobs of a type different 

from the one just completed, a setup is required. 

Many practical-scheduling problems involve sequencing number of jobs divided into several 

families, by a machine set-up times. Most of these problems are Np-hard, even without setup times 

and thus are difficult to solve to optimality. Various scheduling problems in manufacturing and 

service organizations can be formulated as single facility problems with job classes (families). For 

example Bruno and Downey [4], Monma and Potts [12] and Chen [6] described a computer system 

application, in which computer jobs requires different compilers. A setup is not incurred if the next 

job requires a compiler that is already resident in memory. However, if the next job requires a non-

resident compiler, a setup time that depends only on the time needed to load the new compiler is 

incurred [3]. Little work has been done on scheduling problems multiple objectives with and 

without setup times. Abdul-Razaq and Potts [2], Moghaddam and et. al. [11], discussed a 

scheduling problem without setup times to minimize the total cost of earliness and tardiness. Van-

Wassenhove and Gelders [15] discussed scheduling problem without setup times to minimize the 

sum of completion time and the maximum tardiness, where the objective is to minimize two 

different criteria. 
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In this paper we will use heuristic methods to solve the problem of scheduling number of jobs 

n, (N = {1, …, n}) on a single machine where the machine can process only one job at a time, and it 

is permanently available at time zero, no idle time is permitted, no preemption of jobs is allowed 

and all the jobs are initially available. The jobs are divided into several families a setup time for a 

job from family f if it is the first job in the schedule or if it is scheduled immediately after a job 

from different family, the machine cannot perform any processing while undergoing a setup. 

Each family f, for f = 1, …, F, contains nf jobs. A job i in the f-th family can be denoted as                

(i, f), each job (i, f) (i = 1, …, nf, f = 1, …, F) has a processing time pif the problem to find a feasible 

schedule with minimum maximum completion time and maximum weighted earliness time with 

setup time wEC maxmax   the problem, denoted as w

f ECS maxmax1  . 

2.   Problem Formulation 
The scheduling groups of jobs on a single machine problem can be described as follows: we 

are given N jobs that are divided into families. Each family f, for Ff 1 , contains nf jobs. 

Sometimes it is more convenient to refer to job (i, f) which is the i-th job in f, for fni1 . 

All jobs are available for processing at time zero, and they are to be scheduled on single 

machine. We let  pif denote the processing time of job (i, f). A machine setup time Sf is incurred 

whenever a job in family f is processed, immediately after a job in different family. Also, a setup 

time Sf is required for processing the first job in the scheduling. 

Suppose the processing order     n ...,,1  a vector     n  ...,,1  of corresponding 

setup times is easily constructed. The setup time required immediately before the processing of job 

   nii ...,,1,   is given by: 

 1 : is the setup time of the first job (positive integer constraint). 
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Where fg  is a positive integer constant.  

Our object is to find a sequence with an associated completion time  fiC  and weighted 

earliness time    ff ii Ew   for each job (i, f) that minimize the maximum completion time and 

maximum weighted earliness time wEC maxmax  . This problem denoted by (Pf) can be stated as 

follows: 
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Where  is a schedule,        ,...,,1 fn  and   is the set of all schedules and 

 fid and  fiw denoted the due date and weighted jobs respectively and fS is the setup time. 
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3.   Initial Solution and Special Cases 
3.1   Initial Solution (Ini) 

When we start with the initial solution before using the local search means we start with good 

solution may be gives the optimal solution.  

Lemma (1): There is permutation on machine M, given by non-increasing order of their weighted 

slack time   jjjj wpds  which minimizing wEmax  (MSWT). 

Lemma (2): For heuristic MSWT [the sequencing the job in non-increasing order of their weighted 

slack time  
jjjj wpds  ] each of the first  fn  jobs scheduled has earliness which don‟t 

exceed wEmax . 

3.2   Special Cases  

Finding a special case for scheduling problem means finding an optimal schedule directly 

without using BAB method or DP algorithm. A special case depends on satisfying some conditions 

in order to make the problem easily solved.  

Case (1): For the problem Pf, if the all jobs are late then we ordered the sequence   by non-

increasing setup times give optimal solution. 

Proof: Suppose we have non-increasing setup times sequence ) ,… 2, (1, = n  

  0
fiE , since    ff ii Cd    for all fni ...,,1 and Ff ...,,1 . 

maxmaxmaxmax 0min CCECZ w   

That implies the non-increasing setup times sequence gives optimal solution for the problem 

max1 CS f                                                                                                           

Case (2): For the problem Pf, if we have the sequence   satisfy the weighed slack time and non-

increasing setup times then   give optimal solution. 

Proof: By lemma (1) and case (1)                                                                                   

4.   Memetic Algorithm Approach 
Memetic algorithms (MAs) (Moscato, 1989), combines the recognized strength of the population-

based methods with the intensification capability of a local search. In an MA, all individuals of the 

population evolve solutions until they become local minima of a certain neighborhood (or highly evolved 

solutions of individual search strategies), i.e., after the recombination and mutation steps, a local search is 

applied to the resulting solutions. A more formal introduction to MAs and polynomial merger algorithms can 

be found in Moscato (1999). Figure 1 shows a pseudo-code representation of a local search-based memetic 

algorithm.  

1. procedure Local Search-based Memetic Algorithm; 

              BEGIN 

2.               Initialize Population Pop using First Pop(); 

3.               For Each individual i Pop DO :i Local-Search(i); 

4.               For Each individual i  main Pop DO Evaluate Fitness(i); 

                     REPEAT /*generation loop */ 

5.                      FOR :i  1 to #recombinations DO 

6.                             Select To Merge a set Spar   Pop; 

7.                             offspring : Recombine(Spar, x); 

8.                             IF (select To Mutate offspring) THEN offspring :  Mutate (offspring); 

9.                             offspring :  Local-Search(offspring); 

10.                             Evaluate Fitness(offspring); 

11.                             Add In Population individual offspring to Pop; 

12.                      End For; 

13.                      IF (Pop has_converged) Pop :  RestartPop(Pop); 

                    UNTIL stop criterion; 

       END 

Figure 1. Pseudo-code of a memetic algorithm 
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The initialization part begins at initialize Population and ends just before the repeat 

command. This part is responsible for the generation, optimization and evaluation of the initial 

population (Pop). The second part includes the so-called „generation loop‟. At each step, two parent 

configurations are selected for recombination and an offspring is produced and, if selected to 

mutate, it suffers a mutation process. The next steps are local search, evaluation and insertion of the 

new solution into the population. If the population is considered to have lost diversity, a mutation 

process is applied on all individuals except the best one. Finally, a termination condition is checked. 

4.1   Population Structure 

In our implementation we use a hierarchically structured population organized as a complete 

ternary tree of individuals clustered in 4 subpopulations or clusters, as shown in figure 2. In contrast 

with a non-structured population it restricts crossover possibilities. Other studies have shown that 

the use of structured populations is more effective when compared to non-structured populations 

(e.g. França et al. 1999; Buriol et al. 1999). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Population structure 

The structure consists of several clusters, each one composed of a leader and three supporter 

solutions. The leader of a cluster is always better fitted than its supporters. This hierarchy ensures 

top clusters have better fitted individuals than bottom clusters. As new individuals are constantly 

generated, replacing old ones, periodic adjustments to keep this structure well-ordered are 

necessary. The number of individuals in the population is restricted to the numbers of nodes in a 

complete ternary tree: 13, 40, 121, etc. That is, 13 individuals are necessary to construct a ternary 

tree with 3 levels, 40 to one with 4 levels and so on. 

4.2   Representation of Individuals 

The representation we have chosen for the w

f ECS maxmax1   is quite intuitive, with a solution 

represented as a chromosome with the alleles assuming different integer values in the [1, n] interval, 

where n is the number of jobs. There are m-1 cut-points in the chromosome that define the 

subsequences assigned on machine. For instance, < 4 9 6 * 2 8 5 1 * 3 10 7 > is a possible solution 

for a problem with 10 jobs. The cut-points (*) are in positions 4 and 9. Therefore, subsequence 1 

executes operations 4 - 9 - 6, in this order; subsequence 2 executes operations 2 - 8 - 5 - 1 and 

subsequence 3 performs operations 3 - 10 - 7.  

4.3   Recombination 

The command selectToMerge indicates the task of selecting a subset of individuals (called 

SparPop) to be used as input for the crossover operation, represented by the Recombine( ) 

function. In the pseudocode, the symbol 'x' stands for the instance of the problem. In this case, since 

we are addressing the w

f ECS maxmax1  , the 'x' refers to matrix sij and vector pj. The crossover 

operator implemented is the well-known Order Crossover (OX). After choosing two parents, a 

fragment of the chromosome from one of them is randomly selected and copied into the offspring. 

In the second phase, the offspring's empty positions are sequentially filled according to the 

chromosome of the other parent. 
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Parent A                                  2 4 * 7 6 3 * 1 5 

Parent B                                  6 5 2 * 7 1 4 * 3 

Initial Offspring                      1 1 1 7 6 3 * 1 1 (A) 

Construction phase                 5 2 2 7 6 3 * 2 1 (B) 

                                                5 2 2 7 6 3 * 2 1 (B) 

                                                5 2 * 7 6 3 * 2 1 (B) 

                                                5 2 * 7 6 3 * 1 1 (B) 

Final Offspring                       5 2 * 7 6 3 * 1 4 (B) 

In the example above, the fragment is selected from the parent A and consists of the alleles < 

7 6 3 * >. The child's empty positions were then filled according to the order that the alleles appear 

in the chromosome of parent B. The number of new individuals generated in every iteration is 

controlled by a parameter named cross_rate which is expressed as the percentage of new 

individuals over the total population. 

4.4   Mutation 

In our method, a traditional mutation strategy based on job swapping was implemented. 

According to it, two positions are randomly selected and the alleles in these positions swap their 

values. The alleles that are swapped can be both related to two jobs (two integers) or one to a job 

and other to a cut-point. In the first case the number of jobs on each machine remains the same. In 

the second case the structure of the solution is changed, because the number of jobs on each 

machine is modified. The case in which both positions selected are cut-points does not change 

anything at all. 

We implemented two mutation procedures - Mutate( ) and RestartPop( ); the first can be 

considered a light mutation and the other is a heavy mutation procedure. The Mutate( ) function is 

applied to each individual with a probability of mut_rate and, once applied, it mutates two alleles. 

Implementations with more changes per individual showed no improvement. In fact, when the 

number of alleles to be mutated increases, valuable information tends to be lost, worsening the 

MA's overall performance. The RestartPop( ) procedure, on the other hand, mutates all individuals 

in the mainPop except the incumbent solution. The swapping procedure is applied to each 

individual 10n times, so the resulting population almost resembles a randomized restarting 

procedure. 

4.5   Fitness Function 

As in this problem the goal is to minimize the maximum completion time and maximum 

weighted earliness time with setup times, the fitness function was chosen as randomly. 

4.6   Selection of Parents 

Recombination is only allowed between a leader and one of its supporters and both are 

randomly selected. An intensification procedure was implemented, forcing the best individual to 

take part in approximately 10% of the crossovers. This procedure showed itself to be very effective 

when compared to a standard selection policy. Tests revealed small but repeated improvements over 

the scheme without intensification. 

4.7   Offspring Insertion into Population 

Once the leader and one supporter are selected, the recombination, mutation and local search 

take place and an offspring is generated. If the fitness of the offspring is better than the supporter's 

that took part in the recombination, the offspring replaces the supporter. If the new individual is 

already present in the population, it is not inserted in it. We adopted a policy of not allowing 

duplicated individuals to reduce loss of diversity. After the generation is over and all individuals 

were inserted, the population is restructured. The hierarchy forces the fitness of an individual to be 

lower than the fitness of the individual just above it in the ternary tree. Following this policy, the 

higher clusters will have leaders with better fitness than the lower clusters and the best solution will 

be the leader of the root cluster. The adjustment is made by comparing each individual to the 
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individual just above which it is connected to. If the lower individual becomes better than the upper 

one, they swap places. 

 

5. Threshold Acceptance Method (TH) 
A variant of simulated annealing is the threshold acceptance method (Brucker 2007). It 

differs from simulated annealing only by the acceptance rule for the randomly generated solution 

sNs  . is accepted if the difference    sZsZ   is smaller than some non-negative threshold t. t 

is a positive control parameter which is gradually reduced. 

Algorithm Threshold Acceptance 

1. i : 0; 

2. Choose an initial solution Ss ; 

3. best :  Z(s); 

4. ss :* ; 

      REPEAT /*generation loop */ 

5.        Generate randomly a solution  sNs  ; 

6.        IF     itsZsZ   THEN ss : ; 

7.               IF  sZ   < best THEN 

       BEGIN 

8.               ss :* ; 

9.              best  sZ : ; 

       END; 

10.         ii tgt  :1 ; 

11.        1:  ii  

            UNTIL stop criterion; 

      END 

g is a non-negative function with   ttg   for all t. 

Figure 3. Threshold acceptance structure  

The threshold acceptance method has the advantage that they can leave a local minimum. 

They have the disadvantage that it is possible to get back to solutions already visited. Therefore 

oscillation around local minima is possible and this may lead to a situation where much 

computational time is spent on a small part of the solution set. 

 

6.   Tabu Search (TS) 
In this section we describe the tabu search procedure used to solve the Pf. Tabu search (see 

Glover and Laguna [1997] and Gendreau [2003]) is one of the most popular techniques to find near 

optimal solutions to hard combinatorial optimization problems. A simple way to avoid such 

problems is to store all visited solutions in a list called tabu list T and to only accept solutions which 

are not contained in the list. However, storing all visited solutions in a tabu list and testing if a 

candidate solution belongs to the list is generally too consuming, both in terms of memory and 

computational time. 

To make the approach practical, we store attributes which define a set of solutions. The 

definition of the attributes is done in such a way that for each solution visited recently, the tabu list 

contains a corresponding attribute. All moves to solutions characterized by these attributes are 

forbidden (tabu). In this way cycles smaller than a certain length t, where t usually grows with the 

length of the tabu list, will not occur. 

Besides a tabu status, a so-called aspiration criterion is associated with each attribute. If a 

current move leading to a solution s' is tabu, then this move will be considered admissible if s' 

satisfies the aspiration criterion associated with the attribute of s'. For example, we may associate 
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with each attribute a threshold k for the objective function and allow a move m to a solution s' if 

  ksZ  , even though m is tabu. 

The following algorithm describes the general framework of tabu search. 

Algorithm Tabu Search 

1. Choose an initial solution Ss ; 

2. )(: sZbest  ; 

3. ss :* ; 

4. Tabu-list : ; 

      REPEAT /*generation loop */ 

5.       Cand(s) := { )(sNs  the move from s to s  is not tabu OR s  satisfies the aspiration 

criterion}; 

6.        Generate a solution s Cand(s); 

7.        Update the tabu list; 

8.        ss : ; 

9.        IF Z(s) < best THEN 

BEGIN 

10.        ss :* ; 

11.        best := Z(s); 

            UNTIL stop criterion; 

      END 

Figure 4. Tabu search structure  

Different stopping criteria and procedures for updating the tabu list T can be developed. We 

also have the freedom to choose a method for generating a solution s Cand(s). A simple strategy 

is to choose the best possible s with respect to function Z: 

      sCandssZsZ min                                                         … (1) 

However, this simple strategy can be much too time-consuming, since the cardinality of the 

set  Cand(s)  may be very large. For these reasons we may restrict our choice to a subset 

V Cand(s): 

    VssZsZ min                                                                  … (2) 

Usually the discrete optimization problem (1) or (2) is solved heuristically. 

 

7.   Heuristic method  
It is well known that the computation can be reduced by using a heuristic to act as an upper 

bound on the optimal solution prior to the application of branch and bound, since our problem 
w

f ECS maxmax1   is Np-hard and hence the existence of a polynomial time algorithm for finding an 

optimal solution is unlikely. 

Therefore, developing fast heuristic algorithms, yielding near optimal solution is of great 

interest. 
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 and order these batches in non-decreasing order of ration Rf  (f = 1, ..., 

F), hence compute completion time 
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8. Computational experience  

 
This section reports the results of computational test to assess the effectiveness heuristics 

algorithms. These algorithms are coded in Matlab R2009b and runs on a Pentium IV at 2.00 GHz, 

2.92 GB computer. 

Test problems with (10, 30, 50, 100, 200, 500, 1000, 2000, 5000) jobs and with (2,4,6) 

families were generated as follows: jobs are distributed uniformly across families so that each 

family contains  fn  or  fn  jobs. 

The processing time has been observed in the literature (e.g. [1]) that problem hardness is 

related to two parameters RDD and LF, called the relative range of due dates and the average 

lateness factor, respectively. In our experiment, RDD = 0.2, 0.4, 0.6, 0.8, 1.0 and LF = 0.2, 0.4 are 

used. Corresponding to each of these 5 × 2 = 10 cases, one problem instance is generated by 

selecting integer due dates  nNjd j ...,,2,1,  , from interval [(1 – LF – RDD / 2) SP, (1 – LF + 

RDD / 2) SP], where  


Nj jpSP . Sizes   n = 10, 30, 50, 100, 200, 500, 1000, 2000 and 5000 are 

chosen. 

The setup times are randomly generated integers from uniform distribution defined on [1,10]. 

Since the size of setup time's relation to processing times may affect problem "hardness", we 

generated problems with small (S), medium (M) and large (L) setup times. Medium setup times are 

randomly generated integers from the uniform distribution defined on [1,10]. Having generated an 

instance with small setup times  2fS  and with large setup times  fS2  were constructed.  

We generate problem for each contribution of  and setup times. Ten test problems created 

this method of data generation follows the one given in Hariri and Potts [10]. 

 

9.   Comparative computational results  

 
This section will report the results of our computational test to show the effectiveness for the 

local search methods (Memetic algorithms (MAs), Threshold acceptance method (TH) and Tabu 

search (TS)), we present tables of results which shows the importance of each of the methods. In 

each tables the first column gives the number of jobs the second column gives the number of 

families. The third column describes the average solution initial solution (Ini) which describe in 

section 3.1. The fourth, fifth and sixth columns describes the average computation for the local 

search MA, TH and TS respectively and the last three columns describes the average computation 

for the same local search but we started with the initial solution (Ini). 
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Table (1) Comparative results values for local search for w

f ECS maxmax21   problem with small 

setup 

n Sf Ini MA TH TS MA+ Ini TH+ Ini TS+ Ini 

10 

2 173.6 127.4 139.7 125.3 124.2 132.9 124.6 

4 181.5 128.3 137.1 127.8 130 139.6 129.7 

6 182.9 132.6 142.1 132.3 131.9 135.6 131.9 

30 

2 781.2 476.5 603.9 937.5 453.2 597.1 557 

4 789.1 483.5 595 818.2 479.8 597.5 554.8 

6 791.7 487.3 610.5 761 461 617.2 563.5 

50 

2 1239.3 996 1046.5 1898.2 864.8 1038.1 994 

4 1238.2 964.1 1041.1 1945.6 860.2 1017.2 970.6 

6 1245 972.6 1021 1827.2 916 1026.5 968.5 

100 

2 2611.1 2660.8 2307.7 4588.6 1983.2 2330 2276.6 

4 2626.3 2770.8 2325.3 4653.7 1908.2 2327.4 2292.1 

6 2627.3 2777.9 2323.1 4643.9 2035.6 2313.5 2275.7 

200 

2 5484.6 7132.3 5256 10105.2 4674.5 5276.6 5239 

4 5606.3 7496.7 5339.4 10038.8 4758.8 5335.8 5306.9 

6 5650.6 7145 5379.3 10005.9 5046.4 5382 5364.7 

500 

2 13966.8 22188.2 13779.3 27603 13236.4 13779.9 13767.3 

4 14252 21984.4 14051.3 26525.9 13533.4 14064.6 14041.8 

6 14390 22008.9 14193.4 25750.5 13698.6 14208.8 14183.7 

1000 

2 28236.5 47770.9 28079.2 53649.2 27370 28078.3 28070.2 

4 28890.4 48747.1 28689.1 54508.4 28273.7 28689.3 28676.3 

6 29126.5 49111.6 28953.3 54641.7 28283.3 28958.2 28942.6 

2000 

2 57740 104370.6 57453.7 113057 56997.9 57457.7 57448.3 

4 59231 106132.4 58941.3 114372.1 58194.5 58936.7 58928.6 

6 59571.2 107192.1 59258.5 113988.6 58451.6 59262.1 59256.7 

5000 

2 144964.6 274167.4 144653.7 290780.8 144233.2 144647.1 144637.2 

4 147920.8 282533.9 147641.4 295423.8 147325.8 147635.1 147629.4 

6 148809.7 279114.8 148539.7 294655.7 148248.8 148546.3 148534.3 

 

For the small setup times, the table (1) shows that TS with 10 jobs and the jobs (30, 50) with 

MA and TH with the large jobs all of them without using the initial solution gives the best values 

and (MA+Ini) with using initial solution gives the very best values for all test problems. 
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Table (2) Comparative results values for local search for w

f ECS maxmax1   problem with medium 

setup 

n Sf Ini MA TH TS MA+ Ini TH+ Ini TS+ Ini 

10 

2 180.9 126.5 142.4 126.6 126.1 138.2 125.9 

4 196.1 133.9 152.5 137.2 134.4 152.3 135.4 

6 198.9 140.2 152.1 140.2 140.1 146.2 141.5 

30 

2 817.2 480.1 606.8 983.5 469.1 614.3 556.6 

4 828.7 517.8 621.8 692.2 443.8 625.1 566.3 

6 830.2 545.5 626.4 674.3 465.1 616.4 576.8 

50 

2 1254.8 1103.8 1045 1899.4 845.3 1039.3 964.3 

4 1255.3 971.5 1023.9 1969.8 856.2 1024.6 937.7 

6 1274.7 988.1 1020.9 1712.2 858.1 1030.8 953.3 

100 

2 2673.6 2737.9 2303.9 4509.4 1918.1 2326.2 2263.6 

4 2721.7 2710.4 2364.1 4521.1 2049.6 2361.1 2294.5 

6 2741.4 2732.3 2348.6 4726.5 2076.6 2326.4 2269.9 

200 

2 5664.7 7526.8 5326.7 10106.3 4568.6 5321.2 5311.3 

4 5894.9 7036.3 5513 10045.5 4770.3 5501.5 5465.5 

6 5993.5 6870.5 5613.3 10017.8 4878.2 5613.1 5553.4 

500 

2 14377.3 21730 14107.9 27702.2 13670.9 14109.2 14081.8 

4 14909.9 22229.3 14613.6 26531 13808 14630.5 14591.7 

6 15147 21347.7 14874.2 25986.6 14233.3 14863.9 14835 

1000 

2 29508.3 48695.1 29236 53596.5 28144.2 29237.3 29222.3 

4 30695.3 48737.3 30331.9 54719.7 29321.5 30336.1 30308.5 

6 31149.9 48606.6 30870 53966.5 29814.5 30849.2 30826.5 

2000 

2 60469.5 103838.9 60060.9 113059.3 59045.3 60058.8 60027.4 

4 63074.9 105811.6 62650 114354 61464.9 62651.7 62622.1 

6 63697.3 104952.8 63270.8 114000.1 61760.4 63263.8 63258.5 

5000 

2 150984.8 279512.1 150526.7 290782.4 149663 150551.3 150503.7 

4 156327 280041 155937.2 295409.4 154879.6 155912.5 155904.4 

6 158059.6 279012.8 157681.9 294665.4 156812.3 157668.4 157660.3 

 

 

For the medium setup times, the table (2) shows that MA with the small jobs and TH with the 

large jobs together without using the initial solution gives the best values and (MA+Ini) with using 

initial solution gives the very best values for all tests. 
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Table (3) Comparative results values for local search for w

f ECS maxmax21   problem with large 

setup 

n Sf Ini MA TH TS MA+ Ini TH+ Ini TS+ Ini 

10 

2 200.7 130.1 151.5 133.9 128.1 148.2 131.5 

4 227.9 147.1 158.6 154.9 145.9 161.6 144.6 

6 234.5 162.5 174.3 162.5 163.6 175.2 163.9 

30 

2 896.3 476.6 994.6 987.8 464.8 667.5 584.9 

4 919.3 493 709.3 594.9 486.1 678.2 644.9 

6 924.5 521.1 707.7 586.1 508.3 707.2 656.8 

50 

2 1311.4 1030.3 1912 1902.4 840.9 1072.2 984.7 

4 1384.6 959.6 1982 1973.5 928.5 1107.7 1012.9 

6 1416 1125.3 1508.3 1480.8 921.1 1152 1038.6 

100 

2 2815.1 2639 4511.7 4511.7 1958.3 2352.9 2277 

4 3009.4 2809.7 4528.6 4528.6 2044.7 2505 2381.7 

6 3058.4 2660.6 4739.3 4739.3 2150.4 2535.9 2418.5 

200 

2 6077 6973.3 10109.3 10109.3 4869.7 5568.4 5555 

4 6612.9 6972.5 10060.8 10060.8 5273.2 5987.7 5865.6 

6 6810.1 6998.7 10044.6 10044.6 5437 6176.6 6080 

500 

2 15319.5 21738.8 27705.3 27705.3 14206.8 14895.7 14812.9 

4 16384 22671.3 26542.4 26542.4 14796.1 15918.7 15814.3 

6 16965.2 22146.6 26008.9 26008.9 15534.6 16541.2 16430.3 

1000 

2 32253.8 47365.8 53601.2 53601.2 29939.8 31754.4 31737.5 

4 34627.8 49374 54734 54734 31965.4 34037.9 33949.6 

6 35537 49680.8 53990.2 53990.2 33075.3 35017.6 34949.3 

2000 

2 66270.5 104653.1 113064.1 113064.1 63136.7 65603.1 65545.3 

4 71591.9 105038.8 114369.5 114369.5 68902.2 70895.5 70867.1 

6 72847.5 105937.1 114025.7 114025.7 70023 72177.9 72150.7 

5000 

2 164386.8 280971.6 290786 290786 161532.6 163661.4 163575.6 

4 175075.2 283666.4 295422 295422 172155.6 174451.2 174381 

6 178540.4 281541.6 294687 294687 176169.4 177902.8 177880.8 

 

For the large setup times, the table (3) shows that MA without using the initial solution gives 

best values and (MA+Ini) with using initial solution gives the very best values for all tests. 
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Table (4) Comparative results times for local search for w

f ECS maxmax21   problem with small 

setup 

n Sf MA TH TS MA+ Ini TH+ Ini TS+ Ini 

10 

2 0.10883252 0.0137307 0.0403497 0.1105387 0.0137699 0.0144797 

4 0.11048101 0.0138458 0.012466 0.1114002 0.0137314 0.012437 

6 0.11036361 0.0133961 0.0135027 0.1103316 0.0137228 0.0131068 

30 

2 0.22324126 0.0139976 0.1915203 0.2205693 0.0139399 0.0154965 

4 0.22740866 0.0140644 0.029107 0.2381176 0.0142483 0.0135868 

6 0.21863862 0.0148078 0.0133969 0.2230498 0.0140883 0.0140049 

50 

2 0.34645271 0.0145218 0.3184211 0.331147 0.0146659 0.0196939 

4 0.34149563 0.014797 0.0996897 0.3636968 0.0151488 0.0148629 

6 0.32912527 0.0145969 0.0744137 0.3389998 0.0149821 0.0176986 

100 

2 0.64924318 0.0170516 0.5841508 0.6247026 0.0172662 0.0284134 

4 0.63836089 0.0169497 0.1807206 0.6898889 0.0171697 0.0192134 

6 0.62831271 0.0170007 0.1685608 0.6349765 0.0173874 0.0266064 

200 

2 1.31308241 0.0205188 0.7749002 1.2732417 0.0207114 0.0564775 

4 1.27441197 0.0212383 0.3445733 1.392774 0.0210271 0.0233039 

6 1.25789829 0.0210567 0.3043784 1.2986465 0.0211 0.0340326 

500 

2 3.9258198 0.0330525 1.7029673 3.914724 0.0328222 0.1559675 

4 3.91361761 0.0345531 1.0548164 4.1727172 0.0337647 0.0503596 

6 3.91102405 0.0340997 1.0233085 4.0015693 0.0346768 0.0835088 

1000 

2 11.129667 0.0531074 3.1141879 10.426894 0.053756 0.4873669 

4 11.1068385 0.0541592 2.4239156 11.02323 0.0546023 0.0776813 

6 10.3818238 0.0542381 2.3411212 10.661138 0.0540688 0.1440078 

2000 

2 30.9140773 0.0923056 6.2917285 30.560293 0.0916355 0.4479757 

4 30.9976885 0.0950825 4.7600457 30.118925 0.094348 0.2598253 

6 30.5013775 0.0950872 4.7795274 31.679902 0.0950037 0.4940084 

5000 

2 143.213298 0.2085531 16.812922 142.651 0.2114291 0.5326033 

4 143.165858 0.2170247 12.406821 142.32892 0.2172664 0.6975278 

6 143.269384 0.2196926 12.633429 143.40932 0.2174381 1.14055 

 

For the small setup times, the table (4) shows that the TH without using the initial solution 

gives the best times and (TS+Ini) with the small jobs and (TH+Ini) with the large jobs together 

without using the initial solution gives best values. 
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Table (5) Comparative results times for local search for w

f ECS maxmax1   problem with medium 

setup 

n Sf MA TH TS MA+ Ini TH+ Ini TS+ Ini 

10 

2 0.1115604 0.0136401 0.0159931 0.1129919 0.0137395 0.0167597 

4 0.1095054 0.0137626 0.0127227 0.1109436 0.013559 0.0131628 

6 0.1085479 0.0138681 0.0140453 0.1102089 0.0137649 0.0129786 

30 

2 0.2299197 0.0140374 0.0636041 0.2210766 0.0136717 0.0151958 

4 0.2217523 0.0137109 0.0229393 0.2202173 0.0140356 0.0138933 

6 0.2240548 0.0141035 0.0140729 0.2207639 0.0137503 0.0142874 

50 

2 0.3476012 0.0145405 0.1100502 0.3332888 0.0148581 0.0196615 

4 0.3377080 0.0151462 0.1004303 0.3316289 0.0146339 0.0140731 

6 0.3332837 0.0148276 0.0709024 0.3310118 0.0150664 0.0144934 

100 

2 0.6241669 0.0164551 0.1517987 0.6308705 0.016684 0.0262763 

4 0.6318990 0.0173885 0.1816528 0.6268614 0.0171571 0.0175653 

6 0.6361715 0.0166663 0.1622131 0.6221015 0.0169756 0.0224208 

200 

2 1.2919197 0.0206132 0.2966748 1.2653245 0.0205798 0.0548671 

4 1.2858324 0.0213033 0.3422599 1.2724934 0.0213418 0.0229836 

6 1.2601809 0.0206085 0.3308933 1.2696572 0.02102 0.0336048 

500 

2 3.9914567 0.034162 1.0523205 3.8947271 0.0331786 0.1456234 

4 4.0022477 0.034393 1.1051942 3.9464552 0.0347637 0.0442465 

6 3.8958152 0.0338068 1.1845936 3.912345 0.0338649 0.0761994 

1000 

2 10.557029 0.0534388 2.3461806 10.392622 0.0525992 0.4698457 

4 10.492383 0.055572 2.4322482 10.400127 0.0542152 0.0733618 

6 10.385844 0.0546621 2.3666651 10.404557 0.0538453 0.138249 

2000 

2 30.742108 0.0913924 4.8846509 30.265746 0.0926708 0.3943389 

4 30.488132 0.0950017 4.9332271 30.028588 0.0940821 0.2410351 

6 30.475221 0.0946941 4.7403941 30.311575 0.0955163 0.396691 

5000 

2 142.77779 0.2110201 12.368691 141.82468 0.2109633 0.5856263 

4 142.11019 0.216591 12.531411 142.58962 0.2192247 0.6429186 

6 141.35881 0.2181644 12.714973 144.18198 0.2185565 1.1054644 

 

For the medium setup times, the table (5) shows that TH without using the initial solution and 

(TH+Ini) with using initial solution gives the best times. And with small jobs a few numbers for 

testing TS and (TS+Ini) gives good times. 
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Table (6) Comparative results times for local search for w

f ECS maxmax21   problem with large setup 

 

n Sf MA TH TS MA+ Ini TH+ Ini TS+ Ini 

10 

2 0.10896699 0.0135174 0.0178549 0.1106679 0.0137978 0.0183556 

4 0.10860462 0.0133129 0.0127746 0.115008 0.0142408 0.0132971 

6 0.10925139 0.0136384 0.0134243 0.1104732 0.0135868 0.0133486 

30 

2 0.21915571 0.0140236 0.0632078 0.2207647 0.014408 0.017724 

4 0.21369427 0.0139407 0.017807 0.2244495 0.013773 0.0142773 

6 0.21910201 0.0142965 0.0148293 0.2194332 0.014182 0.0142825 

50 

2 0.32694722 0.0145657 0.108624 0.3352672 0.0146524 0.0187651 

4 0.32840375 0.0144344 0.1003529 0.3394235 0.0159645 0.0148319 

6 0.33370958 0.0141846 0.0528694 0.3328943 0.0148509 0.0144555 

100 

2 0.63208899 0.0160474 0.152148 0.6338799 0.016436 0.0245161 

4 0.6214911 0.0163935 0.1778174 0.6389653 0.0171848 0.0171098 

6 0.62751383 0.0159664 0.1577434 0.6268194 0.0167408 0.0178948 

200 

2 1.2656667 0.0190432 0.3192943 1.2946297 0.0204723 0.0542499 

4 1.25827895 0.0184829 0.3479979 1.3080298 0.0212982 0.0231382 

6 1.25143191 0.0191695 0.3155637 1.2700352 0.0212266 0.0275675 

500 

2 3.896433 0.0289519 1.0648652 3.9246129 0.0330187 0.158508 

4 3.90758209 0.0295286 1.0575683 3.9801845 0.0342477 0.0446724 

6 3.88707638 0.0291678 1.0301988 3.9109548 0.0347245 0.0725726 

1000 

2 10.380885 0.0452365 2.4232781 10.301447 0.0531206 0.4842858 

4 10.5380927 0.0445134 2.4630021 11.615705 0.0542899 0.0724215 

6 10.4861636 0.044968 2.4022801 10.394567 0.0546751 0.1303602 

2000 

2 30.3273213 0.0746369 4.8613714 29.623444 0.092835 0.4144581 

4 30.3472568 0.0762397 4.7586922 30.109954 0.0946109 0.217272 

6 30.6621402 0.0760138 4.6319009 30.305964 0.0958078 0.4695093 

5000 

2 140.225481 0.1684806 12.40045 139.21983 0.2107117 0.5875704 

4 141.421382 0.1712416 12.216357 140.99398 0.215821 0.6082168 

6 143.013632 0.1685316 13.039484 140.95291 0.2178962 1.0377402 

 

For the large setup times, the table (6) shows that TH without using the initial solution and 

(TH+Ini) with using initial solution gives the best times. And with a few numbers for testing TS and 

(TS+Ini) gives good times. 

10.   Conclusions 

In this paper, we have developed a number of solution procedures for the single machine 

scheduling problem: 

Minimize the maximum completion time and maximum weighted earliness time wEC maxmax   

taking into account sequence with setup times. The local search methods that are used to solve all of 

the large problems in this paper, the results show the robustness and flexibility of local search 

heuristics. 

Future work Some suggestions for future research are described as follows: 

First, the propose of extension the exact for w

f ECS maxmax1   problem by driving a good lower 

bound or using the dominance rule in branch and bound algorithm. 

Second, using the local search heuristic should be explored finding an improvement potential 

of various polynomially bounded scheduling heuristic. 
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