Facial visible spectrophotometric determination of metformin hydrochloride in glucosam tablets and industrial waste water: Application to content uniformity testing

Nief Rahman Ahmad*

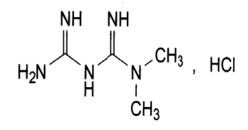
*Department of Environmental Technology, College of Environmental and Technology , University of Mosul

Received	<u>Accepted</u>
3.7.2011	8.1.2012

ABSTRACT

Objectives: To determine simple, accurate and highly sensitive spectrophotometric method for determination metformin hydrochloride in pharmaceutical preparations and in industrial waste water sample.

Materials and Method: The method is based on the oxidation of metformin by a known excess of sodium hypochlorite in alkaline medium.


Results: Formation of a yellow-colored chromophore having maximum absorbance at 385nm. Molar absorptivity was found to be 2×10^4 L.mol⁻¹.cm⁻¹. Beer's law is obeyed in the concentration range of 0.5-4 µg .ml⁻¹, relative standard deviation (RSD) is better than ±1.8 (n =10) .The limits of detection and quantitation are 0.083 and 0.25 µg .mL⁻¹, respectively. The method is applied successfully to determination of metformin pharmaceutical formulation (tablets).The common excipients do not interfere with the proposed method. A statistical comparison of these results with those of official method using t and F values at 95% confidence level shows good agreements and indicated no significant difference in the precision, and the present method has good validity.

Conclusion: The proposed method can be used as a routine quality control and content uniformity tests for determination of metformin in pure form, tablet formulations and industrial waste water sample.

Keywords: Metformin hydrochloride, spectrophotometry, content uniformity.

الخلاصة الهدف: تم تطوير طريقة بسيطة ذات دقة وحساسية عالية لتقدير الميتفورمين هيدروكلورايد في بعض مستحضراته الدوائية وفي نموذج من المياة الصناعية المطروحة . المواد وطرق العمل: تعتمد الطريقة على أكسدة الميتفورمين بواسطة هايبوكلورات الصوديوم في وسط قاعدي. النتائيج: تكوين ناتج كروموجيني أصفر اللون له أقصى امتصاص عند 385 نانوميتر وبامتصاصية مولارية⁴01×2 لتر مول¹. سم¹ . وقد لوحظ أن قانون بير يسري على الكميات التي تتراوح بين 5.0 - 4.0 مايكروغرام /مل . إن الانحراف القياسي النسبي للطريقة احسن من± 18.8 وان حدي الكشف والكمي الطريقة هما 2003 و 25.5 مايكرو غرام /مل على التوالي. استخدمت الطريقة بنجاح لتقدير الميتفورمين في الطريقة القياسية الدستورية المعتمدة باستخدام اختباري (t) و(F) عند حدود ثقة %59 الطريقة القياسية الدستورية المعتمدة باستخدام اختباري (t) و(F) عند حدود ثقة %59 المريقة رمين على مستحضر الحوب وكذلك في منه المريقة وقد أختبر نجاح الطريقة لمقارنتها م الطريقة القياسية الدستورية المعتمدة باستخدام اختباري (t) و(F) عند حدود ثقة %59 المريقة رمين برحان على صلاحية التطبيق التحليلي للطريقة في التحليل الروتيني وفي الميومية الموحية لتقدير المريقة رمين مورية المعتمدة باستخدام اختباري (t) ورج) عند حدود ثقة %59

etformin hydrochloride (glucophage)¹, chemicals 1,1-Dimethyl biguanide hydrochloride with a molecular formula of C₄H₁₂Cl It is an oral antidiabetic N₅ (Fig 1). drug that has been used in the treatment of non- insulin dependent diabetes which improves control of glycemia primarily by inhibiting hepatic gluconeogenesis and glycogenolysis² and seems to ameliorate hyperglycemia by improving preipheral sensitivity to reducing gastrointestinal insulin, glucose absorption and hepatic glucose production. Recently, metformin has also become available for the treatment of polycystic ovary syndrom and has been found to improve vascular function, prevent pancreatic cancer and revers fatty liver diseases³.

M. Wt = 165.6

Fig 1. Chemical structure of metformin- HCl.

Literature survey reveals that many HPLC methods for the detremination of metformin are reported. But most of the methods used either ion-pair reagent or cation exchange column⁴⁻¹⁵. Another different methods for the determination of metformin have been described , such as conductometric titration¹⁶, flow-injection chemilumine-

scence¹⁷⁻¹⁹, capillary electrophoresis²⁰, ion-selective electrode²¹ and adsorptive catalytic squar-wave voltammetry²². Very few spectrophotometric methods for the determination of metformin hydrochloride, in pharmaceutical formulation are described. The official method includes UV spectrophotometric method for estimation of the drug in the tablets²³. The colorimetric methods include charge transfer complex with iodine in acetonitrile medium²⁴, reaction of metformin with Cu^{+2} in basic cyclohexylamine medium²⁵ and the reaction with ninhydrin to form a $complex^{26}$, violet colored and spectrophotometric method using multi variate technique²⁷. However, all of these methods suffered from several disadvantages including use of complex extraction procedures which were tedious and time consuming, ultra filtration and column-switching technique, have been suggested to improve specificity and selectivity. The proposed method can be applicable to routine analysis and content uniformity test of metformin hydrochloride in tablets and complies well with the validation requirements in the pharmaceutical industry ²⁸.

Material and methods Apparatus

A spectro scan 50 UV visible spectrophotometer with 1.0 cm quartz cells was used .

Reagents

All chemicals used were of analytical grade and the metformin hydrochloride standard material was provided from

Ninevah drug industry and medical appliance (NDI), Iraq.

Metformin hydrochloride stock solution (100 ppm) was prepared by dissolving 0.1 g of metformin hydrochloride in 1L distilled water in a volumetric flask.

Metformin hydrochloride standard solution (25 ppm) was prepared by diluting 25 mL of stock solution to 100 mL by distilled water in a volumetric flask.

Sodium hypochlorite solution (0.1%) was prepared by dilution 1.25 mL of 8% sodium hypochlorite to 100 mL by distilled water, this solution was standardized every 4-5 days and stored in a dark bottle²⁹.

Sodium hydroxide solution (10 N) Recommended procedure

Aliquots of standard solution of metformin hydrochloride (12.5-100 μ g) were transferred into a series of 25 ml calibrated flasks, 5 mL of 10 N sodium hydroxide and 2 mL of 0.1% sodium hypochlorite solution, and the solution was diluted to the mark with distilled water . The absorbance of the yellow-colored product was measured at 385 nm against a reagent blank.

Procedure for pharmaceutical preparations (tablets)

Weigh and powder 10 tablets . Dissolve a quantity of the powdered tablets containing 0.025 g of metformin hydrochloride in about 100 mL distilled water and mix for 20 min and then filtered. The filtrate was made up to 1L with distilled water. Treat 3 ml of this solution as mentioned under recommended procedure.

Procedure for industrial waste water

То demonstrate the practical applicability of the proposed method, industrial waste water sample from the state company for drug industries and medical appliances, Mosul, Iraq, were analyzed bv spiked with the concentrations ranging from 0.5-3.0 µg.mL⁻¹ of metformin hydrochloride and aliquot of this solution was treated as described above for recommended procedure.

Results and discussion

Metformin hydrochloride is oxidized in alkaline medium by sodium hypochlorite solution forming а yellow-colored chromophore which absorbs maximally at 385 nm as shown in Figure 2. The colorless reagent blank has practically negligible absorbance at this wavelength and this wavelength was recommended for determination.



Figure 2. Absorption spectra of metformin hydrochloride product (B) against blank (A), metformin hydrochloride taken ($75\mu g/25 mL$)

The reaction variables were optimized by varying each variable, while keeping others constant for obtaining maximum absorbance. The oxidation reaction was found to be quantitative in sodium hydroxide medium .It was found that 5 ml of 10 N sodium hydroxide solution give high sensitivity and this amount has been used for subsequent experiments . The effect of the amount of sodium hypochlorite on the absorbance was investigated. A maximum and constant

absorbance was found with 1-5 ml of 0.1% sodium hypochlorite solution and 2.0 ml has been used for subsequent experiments . The color reaction occurred at room temperature immediately and remained stable for at least six hours and a reaction time of 5 min was selected for reproducible results. Under the experimental conditions described, Beer's law is obeyed over the concentration range 0.5-4.0 µg/mL (Figure 3)

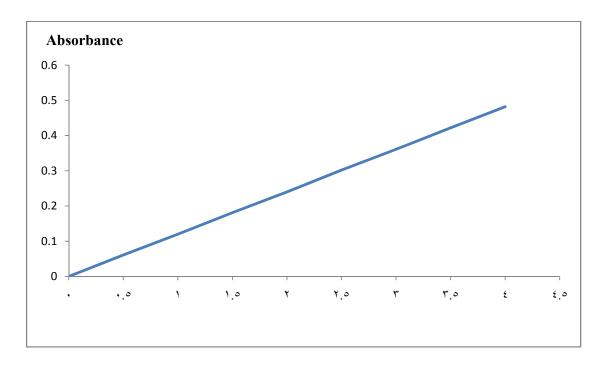


Figure 3. Calibration graph of metformin hydrochloride

A regression analysis of Beer 's law plot at 385 nm revealed a good correlation (r=0.9999, n=8) the graph of the absorbance versus the concentration of metformin hydrochloride showed a low intercept (6.097×10^{-6}) and slope (0.120) and is described by a regression equation Y = ax + b (where x is the concentration of metformin hydrochloride in µg/mL, the absorbance is Y, the slope is a and the intercept is b. The apparent molar absorptivity was 2×10^4 L.mol⁻¹.cm⁻¹ .The limit of detection and quantification were evaluated ³⁰.

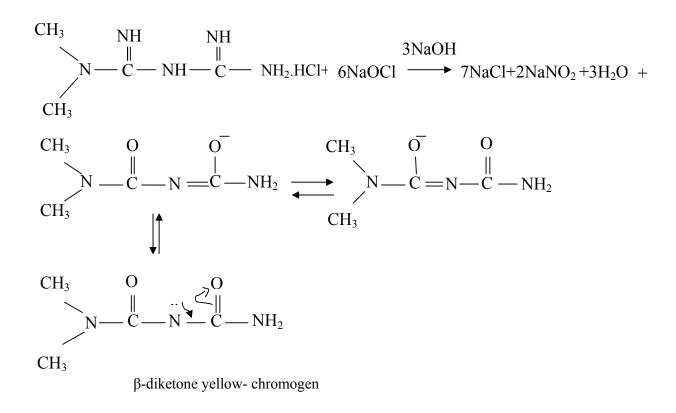
 $LOD = 3.3 \frac{So}{b}$ $LOQ = 10 \frac{So}{b}$

Stoichiometry of reaction

The stoichiometry of reaction was investigated by the mole ratio

Where b is the slope and So is the standard deviation of the regression line. The limit of detection was 0.083 μ g .ml⁻¹ and limit of quantification(as the lowest standard concentration which could be determined with acceptable accuracy and precision) was 0.25 μ g .mL⁻¹.

Accuracy and precision


The accuracy and precision of the method was established by analyzing the pure drug solution at three different levels. The average recovery which is a measure of accuracy was 100 ± 0.73 revealing high accuracy of the method. The relative standard deviation (RSD), which is the indicator of precision is better than $\pm1.8\%$. The results are complied in Table 1.

method³¹. The results obtained indicated the existence of 1:6 metformin hydrochloride – sodium hypochlorite. Thus the suggested reaction might be written as in other

Table 1. Optical characteristics and statistical data for regression equation of the proposed method

study³².

Parameters	Value
$\lambda \max(nm)$	385
Beer's law limits ($\mu g .ml^{-1}$)	0.5 - 4.0
Molar absorpitivity (1.mol ⁻¹ .cm ⁻¹)	$2.0 imes 10^4$
Limit of detection $(\mu g .ml^{-1})$	0.083
Limit of quantification ($\mu g .ml^{-1}$)	0.25
Determination coefficient (r^2)	0.9999
Regression equation $(Y=a \times + b)$	
Slope (a)	0.125
Intercept (b)	$6.097 imes 10^{-6}$
Recovery %	100 ± 0.73
Relative standard deviation (%)	< 1.8

Effect of interferences

The interfering effect of foreign species often accompanied with

metformin hydrochloride in the pharmaceutical preparations were studied by adding different amounts of foreign species to 75 µg/25ml of metformin hydrochloride in solution and the recommended procedure for the determination of metformin was followed. The hydrochloride species are considered to interfere

seriously if the cause aching of more than 2% in the absorbance obtained for metformin hydrochloride a lone³³. Results of the recovery analysis are presented in Table 2. Excipients at the concentration show in Table [2] do not interfere with the assay .In addition recoveries in most cases were around 100%.

Excipients	Amount taken, (µg/ml)	Average recovery, * %
Talc	500 1000	99.98 100.06
Mannitol	500 1000	100.09 99.92
Mg – stearate	500 1000	100.05 100.03
Starch	500 1000	100.06 100.03
Microcrystalline cellulose	500 1000	99.92 99.90

Table 2. Determination of metformin hydrochloride in the presence of excipients

* Average of five replicate determinations .

Application of the proposed method

The proposed method was successfully applied to the analysis of metformin hydrochloride in tablets and industrial waste water sample. The result of analysis for pharmaceutical formulations Table 3 were compared statistically by student t-test and by variance ratio F-test with those obtained by official method²³ at 95%

confidence level. The calculated t and F values did not exceed the theoretical values indicating that there was no significant difference between the precision of proposed and official methods. The results of waste water sample Table 4 show that the recovery values obtained were closed to 100%.

Table 3. Assay of metformin hydrochloride in pharmaceutical formulations

Pharmaceutical formulation	Amount of metformin hydrochloride *		t value	F value
supplied by NDI	Proposed method method	Official		
Glucosam tablets (500 mg/ tablet)	498.9	496.8	1.74	2.44
Glucosam tablets (850 mg/ tablet)	849.1	850.1	1.92	2.31

*Mean of ten determinations, t values (n=10) at 95% confidence level, tabulated value =2.262, F values (n1 and n2 =10) at 95% confidence level, tabulated value =3.18

	Metformin .HCL (µg /ml) *		% Recovery (n=10)
Water sample	Taken	Found	
	0.5		100
Industrial waste water	0.5		101
	1.0 1.01		100.6
	3.0	3.02	

Table 4. Determination of metformin HCl in industrial waste water sample

*Mean of ten determinations

Table 5. Content uniformity testing of metformin hydrochloride tablets using the proposed method

Parameter	% of the label claim
Tablet NO. 1	100.52
Tablet NO. 2	100.73
Tablet NO. 3	99.35
Tablet NO. 4	100.48
Tablet NO. 5	99.38
Tablet NO. 6	99.56
Tablet NO. 7	99.72
Tablet NO. 8	100.25
Tablet NO. 9	100.66
Tablet NO. 10	99.71
Mean (x)	100.03
% RSD	0.54
Max. allowed unit ⁽²⁸⁾	±15%

Application of the method to content uniformity

The proposed method proved to be suitable for the content uniformity test, where a great number of assays on individual tablets are required. Data presented in Table 5 indicate that the proposed method can accurately and precisely quantitate metformin hydrochloride in its commercially available tablets. The mean percentage (with RSD) of the labeled claim found in ten tablets was (0.54%) which fall within the content uniformity limits specified by the USP 30²⁸.

Conclusion

In this work, a simple, rapid, precise spectrophotometric and accurate method was developed and validated for the determination of metformin hvdrochloride in pharmaceutical preparations and industrial waste water samples. The method free from such experimental variables as heating or solvent extraction step. The method rely on the use of simple and cheap chemicals and techniques and can be used for rapid routine determination and quality control of metformin hydrochloride in pure form, bulk sample, pharmaceutical preparations and real industrial waste water sample.

References

- 1. The pharmaceutical codex, Incorporating the British pharmaceutical codex, 11th Edn, pharmaceutical press, London 1979, p. 544
- Nelson R, Spann D, Elliott.D, et al. Evaluation of theantihyperglycemic drug metformin in normal and diabetic cats. J Vet Int Med 2004;18:18-24
- Wang S, Kusuhara H, Kato Y, et al. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin ,"molecular pharmacology, 2003;16 (4):844-8.
- 11. KolteB, Raut B, Deo A, Shinde.D. Simultaneous HPLC determination of pioglitazone and metformin in pharmaceutical dosage form. J

- Zarghi A, Foroustan S, Shafaati A, Khoddam.A. Rapid determination of metformin in human plasma using ion-pair HPLC. J Pharma Biomed Anal 2003;31(1):197-200.
- Bonfigli A, Manfrini S, Testa R, Coppa G. Determination of plasma metformin by new cation exchange HPLC technique, The Drug Monit. 1999;21(31):330-4
- Ali M, Maha.F, Charl A. Determination of metformin in human plasma using normal phase high performance liquid chromatography. Saudi pharmaceut J 2006,14(2),108-14
- Amini H, Alhamdani A, Gazerani.P. Determination of metformin in human plasma by HPLC. J Chromatogr B 2005;824(1-2):319-22
- 8. Aburuz , Millership J, Elany J. Determination of metformin in plasma using a new ion-pair solid phase extraction technique and ion-pair liquid.
- Rahman B, Ahmed M, Islam.M, et al. Simultaneous HPLC determination of metformin hydrochloride and rosiglitazone maleate in pharmaceutical–dosage form Research. J Med Med Sc 2007;2(2):115-21.
- 10. Ghassempor A. Ahmadi M. Ebrahimi S, Enein H. determination Simultaneous of metformin and glyburide in tablets HPLC. Chromatographia by 2006;64:101-104.

Chromatoger Sci 2004;42(1):27-31

12. Chen X, Gu Q, Qiu F, Zhong.D. Rapid determination of metformin in human plasma by liquid chromatography- tandem mass spectrometry method. J chromatogr B,2004,802,377-81.

- Cheny C, Chou.C. Determination of metformin in human plasma by HPLC with spectrophotometric detection. J Chromatogr B Biomed Sci 2001;762(1):51-8.
- Heinig K, Bucheli.F. Fast liquid chromatographic- tandem mass spectrometric(LC-MS-MS) determination of metformin in plasma samples. J pharma Biomed Anal 2004;34(5):1005-11.
- 15. Kar M, Choudhury P. HPLC method for estimation of metformin. hydrochloride in formulated microspheres and tablet dosage form. Indian J Pharmaceut S 2009;71(3):318-20
- 16. Abo-dan M , ShourS, Abo.dan H. Conductometric titration of metformin in pure form and in pharmaceutical preparations using sodium-tetraphenylborate and cetylpyridinium bromide. Asian J Chem 2001;13:1-7
- 17. Wang Z, Zhang Z Wf, Zhang X. Sensitive flow-injection chemiluminescence determination of metformin based on Nbromosuccinimide-fluorescein system. Anal Lett 2003;36(12):2683-97.
- Karine L, Santos M, Lima C. A catalytic multi-pumping flow system for chemiluminometric determination of metformin. Anal Bioanal .Chem 2005;382:452-457.
- 19. Chao.H, Zhang.Z, Deyong H, Xiong.Y. Chemiluminescence determination of metformin based on hydroxyl radical reaction and

molecularly imprinted polymer online enrichment. Anal Bioanal Chem 2006;385:128-33.

- 20. Edward P, Shery.F. Non-aqueous capillary electrophoresis for the determination of metformin ,phenformin and glyburide in human plasma. J Chromatogr B 2006;843(1):94-99.
- Dobaria N, Shan Sm Rajput S. Development of novel plastic membrane ion - selective electrode for metformin hydrochloride. Indian J Pharmaceutl Sc 2006;68(5):562-5.
- Slawomira S, Valentine M, Witold C, et al. Direct determination of metformin in urine by adsorptive catalytic square-wave voltammetry. J pharma Biomed Anal 2007;45 (2):275-81.
- 23. British pharmacopeia. Her Majesty, Stationary Office, London, 2009,P.3813.
- 24. Ashour A, Kabbani R. Direct spectrophotometric determination of metformin hydrochloride in pure form and in drug formulations. Anal Lett, 2003;36(2):361-70.
- 25. Hassan S, Mahmoud W, Elmosallamy M, Othman A. Determination of metformin in pharmaceutical preparations using potentiometry,spectrofluorimetry and uv-visible spectrophotometry. Anal Chim Acta 1999;378(1-3):299-311.
- 26. Mubeen G, Noor.K . Spectrophotometric method for analysis of metformin hydrochloride. Indian J Pharmaceutl Sc 2009;71(1):100-2.
- 27. Araynce M, Sultana N, Zuberi M, Siddiqui.F. Spectrophotometric

quantitation of metformin in bulk drug and pharmaceutical formulations using multivariate technique. Indian J pharmaceut S 2009;71(3):331-5.

- 28. The United State Pharmacopeia Convention, Inc,32-N 27,2009,P.2905.
- 29. Kolthoff IM, Belcher R. Stenger.V.A and Matsuyama.G. Volumetric Analysis. Interscience publishers, New York,Volume III, 1957, P.580
- 30. Bassavaiah K, Somashekar B. Quantitation of rantidine in pharmaceuticals by titrimetry and spectrophotometry using

dichromate as the oxidimetric reagent. Journal Iranian Chem Soc 2007;4:78-88.

- Bouer HH, Christan GD, Oreily JE. Instrumental analysis. Allyn and Bacon ,Inc, Boston, 1978,PP. 178-9.
- Marczenko Z. Spectrophotometric determination of elements. Ellits Howard, Chaichester, 1976, p. 399
- 33. Hung SCh, Qu CL, Sh WuS. Spectrophotometric determination of uranium with 2-(3,5) dibromo-2pyridylazo-5- diethylaminophenol in the presence of an ionic surfactant. Talanta 1982;29:629-31.