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Distal in Topological Transformation Group
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Abstract:

Abstract. In this paper we define distal in a topological transformation group and it will
given necessary condition for a function to be a distal, and we obtain strongly distal by using
the concept of the automomorphism as well as some of it property is studied.
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1- Introduction

Let (X,T,xz) be a right topological transformation group whose phase space X is compact
hausdorff. The distal of (X,T,z) was first defended by Ellis ([1]), The strongly distal of (X,T,7x)
was introduced and studied intensively it relation some properties dynamics . Woo ([5],[6]) define
distal in function which is continuous for certain properties ,In this paper ,we introduce semi distal
point by using concept of the syndetic set Finally introduced the & —homomorphism between two
transformation group on a basis of the notions in the distal function and strongly distal .W use
symbol A to indicate the end.

2- Basic definitions

In this section we recall the basic definitions needed in this work.
Definition 2-1 [3]:

A topological group is a set T with tow structures :

1- T isagroup

2- T is atopological space

Such that the two structures are compatible i.e. the multiplication map f :T xT — T the inversion
map are both continuous.v:T —T and

Definition 2-2 [2]:

A subset Aof T issaid to be {left}{right} syndetic in T provided that
for some compact subset K of T. {T = AK T = KA}
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Definition 2-3 [1]:

A right topological transformation group is a triple (X, T,z) where X is a topological space called

the phase space, T is a topological group called the phase group and
7. X xT — X, 7z(x,t) > xt is a continuous mapping such that

1- xe=x (x € X),where e is the identity of T .
2- (xt)s=x(ts) (xeXtseT).

Definition 2-4 :

Let (X,T,x) be a topological transformation group and let 7: X x X xT — X x X define by
7((x,y),t) = (z(x,t), z(y,t)) forall (x,y)e X x X and teT then (X x X, T, ) be atopological
transformation group.

Definition 2-5:

Let (X,T,7) be atopological transformation group.

1) A subset A c X issaid to be invariant set if AT = A.
2) A non-empty closed invariant set A < X is minimal if it contains no
non-empty, proper, closed invariant subset. (X, T, ) is minimal if X itself

isa minimal set.

Definition 2-6 [1]:

Let (X,T,7) beatopological transformation group and x € X .Then the set XT = {xt te T} is
called the orbit of x and the set XT the orbit closure of x.

Remark 2-7 [2]:

1- If x e X ,then the orbit of x under T is the least T- invariant subset of X which contains the
point Xx.

2- If x e X ,then the orbit- closure of x under T is the least closed T- invariant subset of X
which contains the point x.

Definition 2-8 [2]:

Let (X,T,7) be atopological transformation group.

1. Let x e X .the period of T at x or the period of x under T is defined to be greatest subset P of
T such that xP = x.
2. X e X,the transformation group T is said to be periodic at x and the point x is said to be

periodic under T provided that the period of T at x is a syndetic subset of T.
3. Termsof (X x X,T,xz) thismeansif x =y then (xt, yt) =(x,y)t=(X,y) (teP)

271



Journal of Kerbala University , VVol. 10 No.1 Scientific . 2012

Definition 2-9 [2]:

Let xe X, The transformation group (X,T,x) is said to be transitive at x and the point X is said to
be transitive under (X,T, ) provided that if U is a neighborhood open subset of X , then there
exists t T such that xt eU.

Definition 2-10 :

Let (X,T,7) be atopological transformation group is said to be free effective if there exist x e X
with xt =x, then t=e foreach teT.

Definition 2-11:

A continuous map T from (X,T)to (Y,T)with T (xt) = M(x) t (xeX) is called a
homomorphism. if Y is minimal , 7 is always onto .A homomorphism Tt from (X,T) onto
itself is called an endomorphism of (X, T), and an isomorphism 7 :(X,T) = (X,T) is called an
automorphism of (X,T) .we denote the group of automorphism of X by A(X) .

3-Main Results:
In this section, we introduce distal in topological transformation group and continuous map
as the generalized notions of semi distal point and transitive transformation group.

Definition 3-1 [4]:

A topological transformation group (X,T,x)is called distal if given X,y e X with x = y there exist
anindex a of X with(xt,yt) ¢ ax(t T).

1-In general (X,T,7) is distal iff xt, -z and yt, — z implies x = y(X,y,z € X and
(t,)anetinT).

2- Terms of (X x X,T)this mean that if x = y,then (x, y)T < A, and A are the diagonal of X x X .

Definition 3-2:

A topological transformation group (X,T,)is called strongly distal if for a given automorphism h
of (X,T) ,thereexistan index « of X suchthat(xt,yt) g a(teT).

Remark 3-3:

Let (X,T,x) be adistal topological transformation group, then (X,T)is strongly distal
transformation group (take h to be the identity).

Definition 3-4:

Let (X,T,z) be atopological transformation group, xe X is called semi distal point if for each

index a of X, there exists syndetic subset A of T such that XA c «
The set of all semi distal points is denoted by D where D = {xa e a: a € A}.
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Lemma 3-5

Let (X,T,x) be atopological transformation group, y € X .The followings hold:

1- If x be semi distal point then ¢(x) is semi distal point.

2- If x be semi distal point then XT < «.
3- If (X,T,x) beadistal and x be semi distal point then y is semi distal point.

Theorem 3-6:

Let (X,T,x) be a topological transformation group and A be a syndetic set then (x, y)T =(x, y)A
Proof:

Let x,y e X since A be a syndetic subset of T then there exist compact subset K of T

withT = AK ,Moreover (x, y)A=(x, y)TK* = (XTK™, yTK™) since T syndetic and K *compact
set .Thus we obtain (x,y)A=(XT,yT)=(x,y)T .A

Theorem 3-7:

Let (X,T,x)be atopological transformation group, and let A be a syndetic subgroup of T then
following hold:

1. If I be aninvariant under T then | be an invariant under A.
2. If T is free effective then (X, y) periodic points.

3. If A beaperiod of (X, y)then there exist compact set K with
X T =(x, K.
4. If A be aperiod of (x,y)then there exist compact set K with
(X, Yk =(xY) (keK).
Proof:
(1) Clearly I — IA. Let | be an invariant under T then IT =1, since Asyndetic then there exist

compact subset K of Tsuch that | = IAK , since T is group there exist K™ such

that IA= IK™ < IT =1 Thus we obtain IAc | , therefore | be an invariant under

A. A

(3) Let A be a period of (x,y) and AcT ,then (x,y)Ac(x,y)T since T be a syndetic there
exist compact subset K of Tsuch that T = KT hence (x, y)AK < (X, y)T and Abe a period ,thus
(X, yY)K < (x,y)T, since A be a syndetic ,for each teT there exist k e Kand a e A such that
t=ak and (x, y)t=(x,y)ak implies(x, y)t = (X, y)k

thus (x, y)T < (X, y)K Then we obtain (x,y)T =(x,y)K . A

Theorem 3-8 :

Let (X,T,x)be atransitive of x and let |1 be an invariant set then following hold:
1. (X,T,7x) transitive of vy.
There exist compact set K withU nUK = ¢.

U be an invariant set.
There exit t e T withxt = x..
(X,T,7) be free effective.

aogrwDd

273



Journal of Kerbala University , VVol. 10 No.1 Scientific . 2012

Proof:
(2) Let (X,T,x)be transitive of x ,then for each U neighborhood open of x there exist t T such

that, xt eUand XT < U ,since T is syndetic then there exist compact subset K of T such that
TK =T and XTK c UK, implies XT < UK, Moreover x e UK (Y-Y (Y)then U nUK = ¢.A

(3) Let I be an invariant set and xel, since (X,T,z)be transitive of x then for each

U neighborhood open of x there exist teT such that, xt e U and XT cU
Moreover | N XT #¢ ((2-7 (number (1), xeUT thus IT N"XT < IT NUT and | n"UT # ¢ ,then

Xt = X.A
Theorem 3-9:

Let (X,T,x) be atransformation group, and T is abelain group then (X,T) distal if and only if
(X ,%) distal.

Proof:

Let P be syndetic normal subgroup of T.and x = y,since (X,T) distal .Then there exist an index
aof Xwith(xt,yt) ga(teT).(X, )T < a,(X,y)TP & aP,and (x, y)TPT & oPT .since P normal
subgroup of T.We obtain (x, y)T*P & oPT ,since P = T implies aP < T .There exist p € P such
that op = ot, apt™ = 2,50 aPT < « therefore (x, y)TP ¢ oPT < « ,implies (xtp, ytp) ¢ o thus
(X,%) distal. Conversely let (X,%)distal. There exist an index « of

X with (xtp, ytp) ¢ a(t €T, p € P) .From Theorem ( 3-6 ),we have obtain (x, y)P = (X, y)T ,since
T is abelain group .Then (x, Y)PT =(x, y)TPthen (x, y)TP = (x, y)T 2and (X, y)T < « so
(xt, yt) ¢  therefore (X,T) distal. A

Theorem 3-10

Let (X,T,x)be atransformation group, P period of (x,y),(X,y) € athen (X,T) be distal

transformation group.
Proof:
We show that (X,T) be distal .Let Pis a period of (x,y)in X ,and PcT ,since T be syndetic

there exist compact subset K of T such that T =TK,P < TK, for eacht €T there exist p € Pand
k e K such thatp =tk ,sinceT group there exist t*eT with
pt™ =k, (x, Y)PT < (x, y)K by hypothesis (x, y)T < (x, y)K .From theorem

(3-7 number (3)) we obtain (x, y)T =(x, y)K, sine Pis a period of (x,y) then (x,y) e (X, y)K
(3-7 number (4)) then for each t € T, thereexist k € K such that

(X, Yt=(X,y) ¢ a .Thus we have (X,y)T &« «.Therefore (X,T) be distal transformation group.
A

Theorem 3-11

Let (X,T,z)be atopological transformation group, and x be is a semi distal point then following
hold :

1- D is an invariant set

2-« is an invariant set

3-(D,T) is minimal transformation group.
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1-Clearly D < DT .Let x be semi distal point. then if for each index a of X, there exists
syndetic subsetA of T such that XAcaand xeD.From remark ( 2-7 number
1)) we have x € XT .Therefore D xT and DT < XT ,since Ac T From lemma

(3-5 number (2))we have DT c{xtea:teT} implies DT cD.Thus we have D is
an invariant set. A

2- Let x be semi distal point . then if for each index « of X, there exists syndetic subset A of T
such that xA < «.Since T syndetic set there exist compact set K of T
such that Ac TK, xA < xTK ,since T be a belain then xA < xKT put XK c «

Then XA < XKT < oT by hypothesis we obtaina ~aT = ¢@then for each teT such that
ot = aand al < a Thus we obtain « is an invariant set. A

Theorem 3-12

Let P be period of (X, y), then (X, T) distal transformation group iff (x, y)P N A = o.

Proof : Let (X, y)T be a least an invariant subset of X x X contain (x,y)and PcT.

Thus we have (x,y)Pc<(x, y)T and(x y)T< (x y)Timplies (x,y)P < (x,y)T shows that
(x,Y)T N"A = @.Hence (X, y)T < A.therefore (x,y)P = A.Hence we have (X, Y)P A= g.
Conversely .Letx,y € X and (X,Y)PNA=¢,(X,y)PcA

,since P < T.then (X, Y)P (X, ¥)T #¢ so (x,y)T N"A = ¢. Therefore x =y Thus
(X,T)distal. A

Theorem 3-13
Let (X,T,x) be atransitive of x ,then (X,T) distal transformation group iff XT = yT.

Proof:
We show that XT =yT. Let x,ye X, since (X,T)be transitive of x ,then for each U be an

invariant neighborhood of x there exist t € T such that, xt cU .From theorem (3-8 number (1)) we
obtain (X,T) be transitive of y and for each ueU thereexsitt, eT such that

xt =u,yt, =u,xt = yt,implies XT — yT shows that  ((x,y)T "A=¢ .Hence we have
yT < XT .Therefore we obtain XT = yT. Conversely

Let (x,¥)e(x,y)T N"A. by hypothesis there exist teT such that xt=yt and
z(xt,t™) = z(yt, t H.z(x, ™) = z(y, ttand z(x, e) = z(y,e) implies x =y Hence (X, T)

be adistal .A
Corollary 3-14

Let (X,T,x) be transitive of x ,and ¢:(X,T) — (Y, T) be homomorphism then (Y,T) be distal.

Theorems 3-15

Let ¢:(X,T) — (Y,T)be homomorphism and (X,T) be distal then following hold:

1. XT is a minimal set
2. If X be aminimal then (xT, X)be a distal.
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Proof:

We prove only (1).Let x e yT and (X,T) is distal then (X, y)T N A = ¢. implies x =y and xt = yt
for some teT.Hence XT < yT cyT ,moreover XT <XT,yT NXT #gthen yT < xT by
hypothesis , XT < yT ,therefore xT = yT ,sinceXT non-empty, closed and invariant and dose not
have any proper subset with these three properties. Then XT is a minimal set. A

3-16 Definition [5] [6]

The homomorphism ¢: (X, T) — (Y,T)is said to be distal provided ¢(x) = ¢(y)
and x=y .
3-17 Definition

Let (X,T) and (Y,T) be atransformation group .An endomorphism ¢: X — Y is called an o —
homomorphism if a given automorphism h of (X,T) suchthat gh=¢.

Remark 3-18

1-1f x be semi distal point then h(x) be semi distal point.
2- p"h=¢" forn=123,...

Theorem 3-19

Let (X,T,7) be a strongly distal topological transformation group then ¢@:X — X be a-
homomorphism if and only if ¢ is distal.

Proof:

Let x,ye Xand (X,T) be a strongly distal .Then for each automorphism h of (X,T) there exist
index o of Xsuch that (h(x)t, yt) ¢ « .Hence (h(x), y)T c A.

implies h(x) =y since @be a— homomorphism we obtain ¢(x) =¢@(y).Thus we have ¢ is
distal. Conversely Let ¢(x) =¢@(y) we show that ¢ be a— homomorphism .By hypothesis we
have h(x)=yand ¢h(x)=¢(y)=¢@(x).Thus ¢h and @agree atapointof (X,T).Therefore
¢h =@ and pbe a— homomorphism. A

Theorem 3-20

Let (X,T,x) be astrongly distal and ¢ : X — X be a— homomorphism ,and P be a period of x
the followed hold :

1- there exist y € X then x = yP.
2- (X, T) be adistal transformation group .

Proof:
We need prove only (1) .Let P be period of x under T .Since (X, T) be a distal strongly distal

.Hence we obtain h(x)=y and ¢ be o — homomorphism. Then we have ¢(x)P =¢gh(X)P =¢(y)P
and p(X) = e(XP) = p(yP), we obtain x = yP.
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Theorem 3-21

If :(X,T)—(Y,T) homomorphism and (X,T) bea transitive of x then following hold:
1.If @: (X, T)—(Y,T) distal then (X,T) be a distal.

2. If I invariant set then ¢ distal.

Proof:
We need prove only (2).We shows that ¢ distal. Since (X,T)be a transitive of x then for each U

neighborhood of x there exist t €T ,such that xt €U .From theorem (3-18 number (1))we obtain
(X,T) be a transitive of y, therefore XT N yT =¢,then xt = ytforall teT and ¢@(xt) =g¢(yt) so

P(X)t = @(y)t exist t™ T such thatp(X)tt™ = p(y)tt™" thus ¢ distal . A
3-22 Example

If @:(X,T)—(Y,T) constant homomorphism then ¢ is distal .in general the converse
dose not holds.

3-23 Theorem

Let ¢:(X,T) — (Y, T)be distal homomorphism and y € xT then

1- o' = .
2-1f (X,T) be free effective then ¢(x) is periodic point.

Proof:
Let y e XT ,then there exist t e T such that y = xt now we have gz’ (x) = @(xt) = @(y) since

@1 (X, T) = (Y,T)be distal then ¢z' (X) = @(x) thus @z' and ¢ agree at a point of (X,T)
Therefore we have o7z' =@ .A

3-24 Remarks:

1- If (X,T)distal transformation group then ¢" be a distal.
2-If @: (X, T) —>(Y,T) distal then (X,T) be a transitive of x.
3-1If ¢:(X,T) — (X,T)be a automorphism then ¢" be a distal.
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