Investigation of Some Even -Even Nuclei with Mass Numbers ($\mathrm{A}=\mathbf{9 8}, 100$) by Interacting Boson Model

*A.R.H Subber *** Mohammed A. Al Sharefi $\quad{ }^{* * *}$ Ahmed M. Shuaib
"Department of Physics - College of Education - Basrah university
,* Department of Physics - College of Science - Babylon university

Abstract

: In this work, some nuclei with mass numbers $(\mathrm{A}=98,100)$ have been investigated by using the both (IBM-1 and IBM-2) versions of interacting boson model (IBM). In calculations, the theoretical energy levels have been obtained by using PHINT and NP-BOS program codes. The presented results are compared with the experimental data in respective tables and figures. At the end, it was seen that the obtained theoretical results are in good agreement with the experimental data. Also the mixing ratios are calculated . $$
\begin{aligned} & \text { الخلاصة : } \\ & \text { تم في هذه العمل در اسة بعض النوى ذات العدد الكتلي (A=98,100) باستعمال أنموذجي IBM-1 و IBM-2 , } \\ & \text { تم الحصولّ على قيم مستويات الطاقة النظرية باستعمال برنامجي PHINT و NP-BOS , Nقورنت النتائج مع القيم العملية } \\ & \text { وكانت النتائج في هذه الدر اسة ذات نو افق جيد مع القيم العملية , وكذللك تم في هذه الدر اسة حساب قيم نسب الخلط. } \end{aligned}
$$

1-Introdution:

A good deal of works has been carried out on studying the structure and properties of complex nuclei, which propose several types of nuclear model. In order to understand the structure of complex nuclei, it must therefore be resorted to approximations. The choice of an appropriate approximations depends on nuclei nature. a nuclear model was proposed by Arima and Iachello, called Interacting Boson Model (IBM) to study the structure and properties of even - even nuclei [1].
The existence and role of symmetries in the IBM framework represents its most unique and characteristic feature. Their description is simple and analytic. They have clear geometrical relationships and physical interpretations, and their predictions depend on an absolute minimum of parameters [2] .over the last decade the IBM has generated considerable interest, as well as its fair share of controversy, and has prompted a large number of new studies in nuclear structure and spectroscopy [3]. In previous years, some nuclear properties of nuclei are studied by (IBM) such as : Maras et al. [4] calculate the energy levels and the electric quadrupole transition probabilities $\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{I}_{\mathrm{i}} \rightarrow \mathrm{I}_{\mathrm{f}}\right)$ and gamma-ray $\mathrm{E} 2 / \mathrm{M} 1$ mixing ratios for selected transitions of some even-even erbium isotopes, Turkan et al. [5] studied some Pd isotopes of the mass region of A ~ 100 by the IBM-2 .

2- Theoretical Basis :

2-1 Interacting Boson Model : (IBM-1)

The early version of the Interacting Boson Approximation Model (IBA), or (IBM-1), in which there was no distinction made between proton and neutron bosons, and
number of bosons taken to be the number of nucleons outside the closed shell divided by two, and the most general Hamiltonian written as: [4]

$$
\begin{equation*}
H=\varepsilon n_{d}+a_{0} P \cdot P+a_{1} L \cdot L+a_{2} Q \cdot Q+a_{3} T_{3} \cdot T_{3}+a_{4} T_{4} \cdot T_{4} \ldots, \tag{1}
\end{equation*}
$$

Journal of Kerbala University , Vol. 10 No. 1 Scientific . 2012

where $\varepsilon, a_{o}, a_{1}, a_{2}, a_{3}, a_{4}$ are the model parameters, n_{d} is the d-boson number operator, P and Q represent pairing and quadrupole operators written in the language of second quantization $\mathrm{s}, \mathrm{s}+$, $\mathrm{d}, \mathrm{d}+$, where $\mathrm{s}, \mathrm{s}+, \mathrm{d}, \mathrm{d}+$ are the annihilation and creation operators of s - and d-bosons, respectively,

$$
\begin{equation*}
Q=\left(s^{\dagger} \tilde{d}+d^{\dagger} \tilde{s}\right)^{(2)}+\chi\left(d^{\dagger} \tilde{d}\right)^{(2)}, P=\frac{1}{2}(\tilde{d} . \tilde{d}+\tilde{s} . \tilde{s}) \tag{2}
\end{equation*}
$$

The reduced quadrupole transition probability calculated from the relation:

$$
\begin{equation*}
B\left(E 2 ; I_{f} \rightarrow I_{i}\right)=\frac{1}{2 I_{f}+1}\left\langle I_{f}\left\|T^{E 2}\right\| I_{i}\right\rangle^{2}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{(E 2)}=\alpha_{2}\left(d^{+} s+s^{+} d\right)^{(2)}+\beta_{2}\left(d^{+} d\right)^{(2)} \tag{4}
\end{equation*}
$$

α_{2} and β_{2} are two parameters which refer to the effective charge.

2-2 Proton-Neutron Interacting Boson Model : (IBM-2)

the IBM-2 Hamiltonian that has been used to calculate the level energies is:[4,5]

$$
\begin{equation*}
H=\varepsilon_{v} n_{d v}+\varepsilon_{\pi} n_{d \pi}+\kappa Q_{\pi} Q_{v}+V_{\pi \pi}+V_{v v}+M_{\pi v} \tag{5}
\end{equation*}
$$

where $\left(\mathrm{n}_{\mathrm{d} \rho}\right)$ is the neutron (proton) d-boson number operator.

$$
\begin{aligned}
& n_{d \rho}=d^{\dagger} \tilde{d}, \rho=\pi, v \\
& \tilde{d}_{\rho m}=(-1)^{m} d_{\rho,-m}
\end{aligned}
$$

Where $\mathrm{s} \dagger_{\rho}, \mathrm{d} \dagger_{\rho \mathrm{pm}}$ and $\mathrm{s}_{\rho}, \mathrm{d}_{\rho \mathrm{m}}$ represent the s and d -boson creation and annihilation operators. The rest of the operators in the Eq. (5) are defined as: [5]

$$
\begin{align*}
& Q_{\rho}=\left(s_{\rho}^{\dagger} \tilde{d}_{\rho}+d_{\rho}^{\dagger} s_{\rho}\right)^{(2)}+\chi_{\rho}\left(d_{\rho}^{\dagger} \tilde{d}_{\rho}\right)^{(2)} \\
& V_{\rho \rho}=\sum_{L=0,2,4} C_{L \rho}\left(\left(d_{\rho}^{\dagger} d_{\rho}^{\dagger}\right)^{(L)} \cdot\left(d_{\rho}^{\dagger} \tilde{d}_{\rho}\right)^{(L)}\right)^{(0)} \quad ; \rho=\pi, v \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
M_{v \pi}=\frac{1}{2} \xi_{2}\left[\left(s_{V}^{\dagger} d_{\pi}^{\dagger}-d_{v}^{\dagger} s_{\pi}^{\dagger}\right)^{(2)} \cdot\left(s_{v} \tilde{d}_{\pi}-\tilde{d}_{v} s_{\pi}\right)^{(2)}\right]-\sum_{L=1,3} \xi_{L}\left[\left(d_{v}^{\dagger} d_{\pi}^{\dagger}\right)^{(L)} \cdot\left(\tilde{d}_{v} \tilde{d}_{\pi}\right)^{(L)}\right] \tag{7}
\end{equation*}
$$

In this case $\mathrm{M}_{\pi v}$ affects only the position of the non-fully symmetric states relative to the symmetric ones. For this reason $\mathrm{M}_{\pi \mathrm{v}}$ is often referred to Majorana force. $[6,7]$

The mixing ratio $\mathrm{E} 2 / \mathrm{M} 1$, where $T(\mathrm{E} 2 ; J i \rightarrow J f)$ is the number of E 2 transitions per secondand $T(\mathrm{M} 1$; $J i \rightarrow J f)$ is the number of M1 transitions per second, is given by:[8,5]

$$
\begin{equation*}
\delta\left(E 2 / M 1 ; J_{i} \rightarrow J_{f}\right)=\frac{\sqrt{T\left(E 2 ; J_{i} \rightarrow J_{f}\right)}}{\sqrt{T\left(M 1 ; J_{i} \rightarrow J_{f}\right)}} . \tag{8}
\end{equation*}
$$

The ratio of $\delta(\mathrm{E} 2 / \mathrm{M} 1)$ can be written in terms of matrix elements as follows :

$$
\begin{equation*}
\delta(E 2 / M 1)=0.836 E \gamma(M e V) \frac{\left\langle J_{f}\|M(E 2)\| J_{i}\right\rangle}{\left\langle J_{f}\|M(M 1)\| J_{i}\right\rangle} \tag{9}
\end{equation*}
$$

Journal of Kerbala University , Vol. 10 No. 1 Scientific . 2012

3- Result s and Discussions :

In this section, the general features of some nuclei with the mass numbers $(A=98,100)$ are reviewed and it was seen that the presented results have better agreement with the experiment.[9,10] some of the energy results calculated by IBM- 1 are compared with the values obtained by IBM-2 .It must be stressed that the choice of parameters is undertaken iteratively by allowing one parameter to vary while keeping the others constant until an overall best fit was achieved. They are treated as free parameters that have been determined so as to reproduce as closely as possible the excitation energy of all positive parity levels for which a clear indication of the spin value exists. Tables (1 and 2) are showing such IBM-1 and IBM-2 parameters mentioned with the fit to the experimental data.

Table 1. The Hamiltonian parameters set used in the present study for the IBM-1 calculations of some nuclei with mass numbers $(\mathrm{A}=98,100)$ (in MeV except $\mathrm{CHI} \& ~ S O 6$)

Nucleus	EPS	P.P.	L.L.	Q.Q.	$\mathbf{T}_{3} \cdot \mathbf{T}_{3}$	$\mathbf{T}_{\mathbf{4}} \mathbf{T}_{\mathbf{4}}$	CHI	SO6
${ }^{\mathbf{9 8}} \mathbf{R u}$	0.5019	0.000	0.0114	0.000	0.000	0.0445	0.000	1.000
${ }^{\mathbf{9 8}} \mathbf{S r}$	0.000	0.000	0.0184	-0.0058	0.000	0.000	-1.320	1.000
${ }^{\mathbf{9 8}} \mathbf{M o}$	0.6780	0.000	0.0011	0.000	0.0587	0.011	0.000	1.000
${ }^{\mathbf{1 0 0}} \mathbf{P d}$	0.6569	0.000	0.0093	-0.028	0.000	0.000	0.000	1.000
${ }^{\mathbf{1 0 0}} \mathbf{Z r}$	0.000	0.0611	0.0301	0.000	0.0219	0.000	0.000	1.000
${ }^{\mathbf{1 0 0}} \mathbf{R u}$	0.2920	0.000	0.0181	0.000	0.0022	0.0761	0.000	1.000

Table 2. The Hamiltonian parameters set used in the present study for the IBM-2 calculations of some nuclei with mass numbers ($\mathrm{A}=98,100$)

Nucleus	\mathbf{N}_{π}	\mathbf{N}_{v}	$\begin{gathered} \varepsilon \\ (\mathbf{M e V}) \\ \hline \end{gathered}$	$\begin{gathered} \kappa \\ (\mathbf{M e V}) \\ \hline \end{gathered}$	χ_{v}	χ_{π}	$\begin{gathered} \hline \mathbf{C}_{\mathbf{L v}}(\mathbf{L}=\mathbf{0 , 2 , 4}) \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \hline \mathbf{C}_{\mathbf{L} \pi}(\mathbf{L}=\mathbf{0 , 2 , 4}) \\ (\mathrm{MeV}) \end{gathered}$
${ }^{98} \mathrm{Ru}$	3	2	0.799	-0.064	-0.57	-0.6	0.10,-0.5,0	-0.6,-0.35,0
${ }^{98} \mathrm{Sr}$	6	5	0.686	-0.165	0.21	-1.05	0.94,-0.44,0	0.82,0,0
${ }^{98} \mathrm{Mo}$	4	3	0.953	-0.047	-1.00	-1.00	-1.0,0.2,0.06	0.6,0. 5,-0.25
${ }^{100} \mathrm{Pd}$	2	2	0.795	-0.083	-1.20	0.60	0.2,-0.4,0	0.2,-0.4, 0
${ }^{100} \mathrm{Zr}$	5	5	0.577	-0.118	0.27	-0.26	- 0.68,-0.38,0.1	0.6,0.7,0
${ }^{100} \mathrm{Ru}$	3	3	0.748	- 0.074	-0.51	-0.6	0.15, 0,0	-0.6,0.25,0.2

Also, we calculated the mixing ratios of some transitions in this nuclei by evaluation The reduced E2 and M1 matrix elements for a selected transitions .
The ratio $\delta(\mathrm{E} 2 / \mathrm{M} 1)$ is defined as the ratio of the reduced E 2 matrix element to the reduced M1 matrix element. This quantity is related to the usual δ - mixing ratio .
We have estimated multipole mixing ratios ($\delta(\mathrm{E} 2 / \mathrm{M} 1)$) of some transitions for this nuclei and then compared them with some previous experimental results. in Tables (3-5) There is no reference for transitions in some nuclei. The variations in sign of the E2/M1 mixing ratios from nucleus to nucleus for the same class transitions and within a given nucleus for transitions from different spin states suggest that a microscopic approach is needed to explain the data theoretically. For that reason, we did not take into consideration the sign of mixing ratios.

$\underline{\text { Journal of Kerbala University, Vol. } 10 \text { No. } 1 \text { Scientific . } 2012}$

The mixing ratios values are given in following tables :
Table 3 . The mixing ratios values of ${ }^{98} \mathrm{Mo}$ and ${ }^{98} \mathrm{Ru}$

$\mathbf{I}_{\mathbf{i}} \rightarrow \mathbf{I}_{\mathbf{f}}$	${ }^{98} \mathbf{M o}$		$\mathbf{I}_{\mathbf{i}} \rightarrow \mathbf{I}_{\mathbf{f}}$	${ }^{98} \mathrm{Ru}$	
	Exp.	IBM-2		Exp.[11]	IBM-2
$2_{1}{ }^{+} \rightarrow 2_{2}{ }^{+}$	----	0.0103	$2_{1}^{+} \rightarrow 2_{2}{ }^{+}$	13	12.5734
$212^{+} \rightarrow 2{ }^{+}$	----	0.9798	$2{ }_{1}{ }^{+} \rightarrow 2_{3}{ }^{+}$	----	0.2292
$4_{1}{ }^{+} \rightarrow 4_{2}{ }^{+}$	----	0.0706	$4_{1}{ }^{+} \rightarrow 4_{2}{ }^{+}$	----	9.3824
$3_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	1.3847	$3_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	<-0.2	0.6390
$1_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	---	3.6156	$1_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	0.1916

Table 4. The mixing ratios values of ${ }^{98} \mathrm{Sr}$ and ${ }^{100} \mathrm{Zr}$

$\mathbf{I}_{\mathbf{i}} \rightarrow \mathbf{I}_{\mathbf{f}}$	${ }^{98} \mathrm{Sr}$		$\mathbf{I}_{\mathbf{i}} \rightarrow \mathbf{I}_{\mathbf{f}}$	${ }^{100} \mathrm{Zr}$	
	Exp.	IBM-2		Exp.	IBM-2
$21_{1}{ }^{+} 2_{2}{ }^{+}$	----	1.2903	$2_{1}{ }^{+} \rightarrow 2_{2}{ }^{+}$	----	0.8700
$212^{+} \rightarrow 2_{3}{ }^{+}$	----	0.0006	$212^{+} \rightarrow 2_{3}{ }^{+}$	----	0.0520
$4_{1}{ }^{+} \rightarrow 4_{2}{ }^{+}$	----	0.8918	$4_{1}^{+} \rightarrow 4_{2}{ }^{+}$	----	11.5679
$3_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	2.9903	$3_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	0.4884
$1_{1}{ }^{+} \rightarrow 2{ }_{1}{ }^{+}$	----	0.2588	$11^{+} \rightarrow 2_{1}{ }^{+}$	----	0.1393

Table 5 . The mixing ratios values of ${ }^{100} \mathrm{Pd}$ and ${ }^{100} \mathrm{Ru}$

$\mathbf{I}_{\mathbf{i}} \rightarrow \mathbf{I}_{\mathbf{f}}$	${ }^{100} \mathrm{Pd}$		$\mathbf{I}_{\mathbf{i}} \rightarrow \mathbf{I}_{\mathbf{f}}$	${ }^{100} \mathrm{Ru}$	
	Exp.	IBM-2		Exp.[11]	IBM-2
$2_{1}^{+} \rightarrow 2_{2}{ }^{+}$	----	5.5831	$2_{1}{ }^{+} \rightarrow 2_{2}{ }^{+}$	3.2	14.468
$2_{1}{ }^{+} \rightarrow 2_{3}{ }^{+}$	----	0.7701	$21^{+} \rightarrow 2_{3}{ }^{+}$	----	0.1362
$4_{1}{ }^{+} \rightarrow 4_{2}{ }^{+}$	----	0.9083	$4_{1}^{+} \rightarrow 4_{2}{ }^{+}$	----	6.7203
$3_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	1.0001	$3_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	1.0612
$1_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	1.0790	$1_{1}{ }^{+} \rightarrow 2_{1}{ }^{+}$	----	0.0754

4- Conclusion :

We have determined some the energy levels for a nuclei have mass numbers $(98,100)$ within the framework of the Interacting Boson Model. The figures (1-6) suggests a satisfactory agreement between the presented IBM-1 and IBM-2 results, and experimental data for the studied energy levels .some of the energy values that are still not known so far are stated. Also, the validity of the presented parameters in IBM formulations was investigated and it was seen that they are the best approximation which has been carried out so far. It is also concluded that the presented results in this work confirms the adequacy of the approximation in this model. Also , the mixing ratios was evaluated well.

Journal of Kerbala University, Vol. 10 No. 1 Scientific . 2012

5- References :

[1] Yilmaz A.H. \& Kuruoglu M. ;Commun. Theor. Phys. ; (Beijing , China) Vol.46, No. 4 (2006) .
[2] Subber A.R.H. ; Turk J. Phys. No. 35 (2011) .
[3] Inci I. \& Turkan N. ; Turk J. Phys. No. 30 (2006) .
[4] Maras I. \& Baylan M. ; Math. And Comput.Appli.; Vol. 15 No. 1 (2010) .
[5] Turkan N. \& Maras I. ; Indian Acadm. Of Science ; Vol. 68 ,No. 5 (2007) .
[6] Norman Cook ;"Models of The Atomic Nucleus" ; Philadelphia (2005) .
[7] Al Qadiry O.A. ; "Nuclear Structure calculations of some even a (even-even) and odd A Nuclei using IBM-1 and IBFM-1" ; Ph.D Thesis , Baghdad university (2007) .
[8] Pfeifer W. ,"An introduction to interacting boson model of atomic nucleus" , Swaziland (2008) .
[9] Singh B. ; Nuclear Data Sheets ; Vol. 109 No. 2 (2008) .
[10] Martin M. J. ; Nuclear Data Sheets ; Vol. 35 No. 4 (1998) .
[11] Jin-Fu Z. \& Al-Khudair F. ; Commun. Theor. Phys. ; (Beijing, China) Vol. 37 , No. 3 (2002) .

The energy levels which calculated in the present study is in the following figures :
Fig.(1): Comparing between expermental,IBM-1 and IBM-2 energy levels of ${ }^{98} \mathrm{Ru}$

${ }^{98} \mathrm{Ru}$		37			
		2.5	$6_{1}{ }^{+}=$		$23^{+}=$
		2	-		
$-\operatorname{Exp} \quad \leq$			$4_{1}{ }^{+}=$		
- IBM-1	$\stackrel{\text { T }}{ }$	1.5		22^{+}三	
- IBM-2	山			$\mathrm{O}_{2}{ }^{+}$	
		1		-	
			$2{ }_{1}{ }^{+}=$	-	
		0.5			
		0 -	$\mathrm{O}_{1}{ }^{+}$		

Fig.(2): Comparing between expermental,IBM-1 and IBM-2 energy levels of ${ }^{98} \mathrm{Sr}$

Fig.(3):Comparing between expermental,IBM-1 and IBM-2 energy levels of ${ }^{98} \mathrm{Mo}$

Fig.(4): Comparing between expermental,IBM-1 and IBM-2 energy levels of ${ }^{100} \mathrm{Pd}$

Fig.(5):Comparing between expermental,IBM-1 and IBM-2 energy levels of ${ }^{100} \mathrm{Zr}$

Fig.(6): Comparing between expermental,IBM-1 and IBM-2 energy levels of ${ }^{100} \mathrm{Ru}$

