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Abstract 
In this paper, we study  certain  types of continuous functions in topological spaces, where 

we defined it by using θ-g- neighbourhood .and  some properties of these concepts are proved. 

 المستخلص
ااااااااااااااااااااااااااااااااااااااااااااارا ضلضاضجييييييياا لييييي اراييييي  ر افييييي اليييييدرارا  يييييااااع يييييالاالمييييي اارييييييضرءااراييييي  ر ارا  ييييي    ااافييييي اارا  يييييل ر 

جضرع( ق اييلاللث ييل االميي اارا  ييله اااا ييد ااا–جيي اا–  *(ا ذاييبالل يي   رجارا ييضرعاويي)ارااييضءا)ثي ييلارا  يي  ا–جيي اا–)ثي ييلا

  را  ر ا.

 
1-Introduction and preliminaries 
 

 
Before  we  present the θ-g- continuous*   mapping  we  give  a    historical notations about it 

,The subject of  θ-closed sets was first studied in 1966 by Velicko [8] ,In 1970, Levine [5] 

introduced the notion of generalized closed sets in topological  spaces as a  generalization     of 

closed sets. Since then, many  concepts  related  to  generalized  closed  sets  were   defined    and 

investigated . The  generalizations  of  generalized  closed  and generalized Continuity  were  

intensively  studied in recent years by Balachandran, Devi ,Maki and Sundaram [4] ,The aim of this 

paper is to introduce the notions of θ-generalized-continuous*   ( briefly ,θ-g-cont.
* 

)   function ,    θ-

generalized- 

homeomorphisms 
*
 and study some of their simple properties. 

  

 Definition(1-1) [3]: let (x,t) be a topological space and let Y be a subset   

of   X.  The   t-relative   topology   for   Y  is the  collection  ty   given     by   

ty={G∩Y:G } . 

 

Definition(1-2)[3] : if   f :X→Y  and   A⊂X  ,  then the  mapping    g: A→Y  

Defined  by  g(x)=f(x)  x   is called  restriction  of  f to A  and  is  denoted  

by  f│A   or   fA  it  is  evident  that   f│A=f ∩(A X Y). 

 

 Definition (1-3)[1]: Apoint  x є X is said to be θ-adherent point of A⊂X, if  

 cl(U) ∩ A ≠ Ø  for  every  open U of x є X(such that cl(u)     represent   the    

closure  of  U .The  set  of  all  θ-adherent point of A is Denoted by clθ(A) or  

θ-cl(A). 

Definition(1-4) [1] : A  set  A is said to be θ-closed if A =clθ(A) or A= θ-cl A. 

 The  complement   of   a θ-closed set is called θ-open set. 

 

Definition(1-5) :The set N is θ-nhd of x if there exist an θ-open G Э x є G⊂N . 

 

Example(1-6): let X={a,b,c} and τ ={υ, {a}, {b,c},X} ,  consider   the    subset  

 A={a} of X clearly {a} is the  only   θ-adherent   point   of  A   Hence  A is θ- 

closed.The complete of A is {b,c} is θ-open.   
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Example(1- 7): Let X={a,b,c,d,e} and let  τ ={υ,{ b},{d,e},{b,d,e},{a,c,d,e},X}  

Be a topology on X ,consider  the subset   A={b,c,d}    then  a, b ,c ,d and e  

are  θ-adherent    points    of   A   ,Then  the  set  of all   θ-adherent of A is           

 clθ(A) Then A  clθ(A) , hence A is not θ-closed set . 

 

Remark(1-8) :  every  θ-closed  sets  are    closed    but  the   converse  is   

 not true as the following example. 

 

Example (1-9): Let  X ={d,e,f}   and   let  τ ={∅,{d},{d,e},{d,f},X} consider the          

subset B ={f},since the  complement    of τ    are X, ∅,{e,f},{f} and {e}  then  B  

is closed but not θ-closed  since  the   set of  all   θ-adherent    points   are  

{d,e,f}=cl θ(B)≠B  .  

 

Definition (1-10) [2]:  A   subset   A   of  a space (X,T) is called θ-g-closed   

 if  clθ(A) ⊂ U  whenever  A⊂U   and  U  is open  in X . the Complement of  

θ-g-closed   is   θ-g-open. 

 

Example(1-11): As example(1-6)Let X ={d,e,f} and letT={∅,{d},{d,e},{d,f},X}.  

Consider  the  subset   B ={f}  ,B is closed   but   not θ-g-closed   since  if  

consider U ={d,f}. Note that X = Clθ(B) ⊄U ∈ τ .                      

 

Remark(1-12) : every θ-closed sets are  θ-g-closed   but  the  converse is   

 not true as the following example. 

Example (1-13): Let X ={d,e,f} and let τ ={∅,{d,e},X}. Consider  the  subset                        

D ={d,f}. Since the only open subset of D is X, D  is  clearly   θ-generalized  

closed. But it is easy to see that D is  not θ-closed. 

 

Proposition(1-14)[2] : A finite union  of  θ-g-closed  sets  is   always  a θ-g- 

 closed set. 

 

 

 

Theorem (1-15)[2] : If  A is θ-g-open  in  (X,τ)  and B  is  θ-g-open  in  (Y,σ),  

 then A×B is θ-g-open in the product space (X×Y,τ×σ). 

                 

Remark (1-16): Every θ-g-open sets  are  open but the converse is not  true   

as the following example. 

 

Example (1-17): take the complement to the subset B in Example(1-11) it is   

easily to see that B is open but not θ-g-open. 

 

Definition (1-18): Let x be a point of a topological space X.   A  subset  N  of    

X is said to be θ-g- neighbourhood of x in X if there   exists a θ-g-open  Set   

U⊂X  Э   x є U ⊆  N .   

Theorem(1-19):  A subset of topological  space is   θ-g-open    iff    it  is  a   

 θ-g- neighbourhood of each of its point . 

 proof :let a subset G  of a topological space be θ-g-open  then for    every 

 x є G, x є G ⊆ G and  therefore G  is θ-g- neighbourhood   of   each  of   its 

 point   conversely ,let G be θ-g- neighbourhood of each of  its  point ,  then  

to each x є G there exist an θ-g-open set Gx such that   x є Gx ⊆ G it follows  
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that G=U{ Gx:x є G}(by  take the complement Proposition(1-14) hence G  is  

θ-g- open being a union of  θ-g-open sets ■ 

 

Definition(1-20) : Let (X, τ)   be   a  topological   space   &    A⊆X     ,the 

  closure   of   A Is  ∩ { f:f is θ-g-closed set , f  כ  } . 

 

2- θ-g-continuous* mapping 

 

Definition (2-1): let (X, τ1) and (Y, τ2 ) be topological  spaces. A mapping   

f: X→Y is said to be θ-g-continuous
*
 at x0 є X iff to every θ-g-nhd M of f(x)  

there  exists  a  θ-g-nhd  N  of  x  such that   f[N] ⊂M  . so  f  is said to be                    

( τ1- τ2 )θ-g-cont.*(or simply θ-g-cont.
 
*) iff it is θ-g-cont.

 
* to every  points  

of  X  it follows from this definition that f is θ-g- continuous*  at x0 є X iff to  

every τ2- θ-g-open H containing f(xo) there exist τ1- θ-g-open G containing  

xo  such that  f(G) ⊂H  . 

 

 

Definition (2-2) : let (X,t1) and (Y,t2) be  topological   spaces   and  f  be a                                           

 mapping  of  X  into  Y  then  

 

 

1) f is said   to   be   an θ-g- open   mapping    iff    f(G)    is   t2-θ-g-open   whenever  G   is t1-θ-g- 

open  

  2) f is said to be  a θ-g- homeomorphism*  iff  

            i) f is bijective 

            ii) f is t1-t2 θ-g-continuous*  

           iii) f
-1

 is t2-t1 θ-g-continuous * 

            

 

Theorem(2-3): Let X and Y be topological spaces.  A mapping  f: X→Y is                      

θ-g-continuous* if and only if the inverse image under f of  Every θ-g-open  

set in Y is θ-g-open in X.  

Proof : Assume  that f is θ-g- Continuity* and let H be any θ-g-open set in Y.  

 We want to show that f
-1

[H] is θ-g-open in X. If f
-1

[H] = υ,   There is nothing to prove. So let f
-1

[H] 

≠ υ and let x є f
-1

[H]  So that  f(x)є H. By θ-g-ontinuity
*
   

of  f, there exists a θ-g-open set Gx in X such that x є Gx and f [Gx] ⊂H, that is, x є Gx ⊂ f
-1

[H].This 

shows that f
-1

[H] is a θ-g-nhd of each of its points and so by Theorem(1-19)  it is θ-g-open in X . 

Conversely, let f
-1

[H]  be θ-g-open in X for every θ-g-open set H in Y  .We shall show that f is θ-g-

cont.
*
 at x є X. let H be any θ-g-open Set in Y such that f(x)є H  so that  x є f

-1
[H]  . By  hypothesis   

f
-1

[H]   Is θ-g-open in X . If  

f
-1

[H]=G , then   G   is    an  θ-g-open  set  in  X   Containing x    such   that  

f[G]= f[ f
-1

[H]] ⊂H, Hence f is a θ-g-continuous* function  ■ 

 

Corollary (2-4):  : let X and Y be topological spaces, A mapping  is  

 θ-g-continuous*  if and only if the inverse image under f of  every θ-g-closed  

set in Y is θ-g-closed in X.  

Proof : Assume that f is θ-g-continuous* and let F be any θ-g-closed set in  

Y. To show that f
-1

[F] is θ-g-closed in X. since f is θ-g-continuous* and  Y-F  

is θ-g-open in Y, it  follows  from  theorem(2-3)  that   f
-1

[Y-F] = X-f
-1

[F]     is         

 θ-g-open in X, that is , f
-1

[F] is θ-g-closed in X. 
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Conversely, let f
-1

[F] be θ-g-closed in X for every θ-g-closed set F in Y.  

We want to show that f is a θ-g-continuous* function. Let G    be    any 

 θ-g-open set in Y. then Y-G is θ-g-closed in Y and so  by  hypothesis, 

 f
-1

[Y-G]=X-f
-1

[G] is θ-g-closed in X, that is , f
-1

[G] is θ-g-open in X,  

Hence f is θ-g-continuous* by theorem (2-3) ■ 

 

 Theorem(2-5): A mapping f from a space X into another space Y is θ-g-   

 Continuous* if and only if  ⊂      for every  

A⊂X.  Or       f is θ-g-continuous* iff for every x є X arbitrarily   θ-g-close  

to A , f(x) is arbitrarily θ-g-close to f[A] . 

Proof : let f be θ-g-continuous*. Since  is θ-g-closed in Y,  

 is θ-g-closed in X [Corollary (2-4)] and     therefore 

   =    --------(1) 

     ⇒     ⇒  

[     by (1) 

⇒    
 

 Conversely, let   for every A⊂X.  

Let F be any θ-g-closed  set in Y so that  .  Now  is  

a subset of X so that  by hypothesis  

.    

 Therefore cl[   . But    

Always.  Hence cl[ ]  and so  is θ-g-closed  

in X. Hence f is θ-g-continuous* by Corollary (2-4) ■ 

 

Theorem(2-6): A mapping f of a space X into another space Y is θ-g- 

 Continuous* if and only if  cl[ ]    for  

  every B⊂Y. 

Proof : let f be θ-g-continuous*, since  is θ-g-closed in Y,    

 is θ-g-closed in X [Theorem(2-5)] and Therefore 

   --------(1) 

 Now              ⇒   

⇒     

by (1). Conversely, let the condition hold and let F be any θ-g-closed set in  

Y so that .  By 

hypothesis. .  But 

cl[ ]  always.  

 Hence  cl[ ]  and so  is θ-g-closed in X. 

  It follows from Corollary (2-4)  that f is θ-g-continuous* ■ 

 

Theorem(2-7): let X,Y and Z, be  topological spaces and the  mappings          

  and    be   θ-g-continuous* .  Then  the   composition  

map  is θ-g-continuous*. 
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Proof : let G be any θ-g-open set in Z . since g is θ-g-continuous* ,  

 is θ-g-open in Y by theorem(2-3). Again since f is θ-g-continuous*,   

 is θ-g-open  in X [theorem(2-3)].   But  

. Thus the inverse image under  of very 

 θ-g-open set in Z is θ-g- open in X and therefore  is θ-g-continuous* by  

theorem(2-3) ■ 

 

Theorem (2- 8): Let X and Y be topological spaces and A  a non   empty  

 subset  of   X  if  f :X→Y is θ-g-  continuous*     then   the         restriction    

fA:A→Y    fA   of  f   to  A is   θ-g- continuous*    where A  has        relative   

topology . 

 Proof : by  definition (1-2)  let G be any be   any  open    subset of Y then  

by   definition of  fA   it  is  evident  that   fA
-1

(G) = A∩ f
-1

(G). Since  f is θ-g-  

continuous*, f
-1

(G)  is θ-g- open   is θ-g- open    in X theorem (2-3)   hence    

by definition (1-1)    A ∩ f
-1

(G)  is  open  in A  . It follows  by theorem   (2-3)   

that   fA  is θ-g- continuous* function ■ 

 

Theorem (2-9): The projection   h : (X × Y,τ × σ) → (X,τ) is a        θ-g-cont.*
 

 map. 

 Proof: By definition(1-10) and Theorem (1-15), for a θ- generalized  closed  

set d of (X,τ),  h
−1

(x\d) =  (X\d)×Y is       θ-g-open in     (X×Y,τ×σ). Therefore,  

h
−1

(d) = F×Y  =X×Y\(h
−1

(X\d))  is θ-generalized closed ■ 

 

Theorem(2 -10): let (X,t1) and (Y,t2) be    topological  spaces and let f   

be  A bijective  mapping  of  X to Y. then the following statements  are  

equivalent:    

  1) f is  a θ-g- homeomorphism* 

  2) f is θ-g-continuous* and θ-g- open  

  3) f is θ-g-continuous* and closed 

 Proof : 1↔2 : asumme( 1) let g be the inverse mapping of  f  so that  f=g    

and g
-1

= f  since  f is one to one  onto ,g  is one to one  onto .   let  G  be 

 t1-θ-g- open set .since  g is θ-g-continuous*  g
-1

(H) is t1-θ-g-  Open  but  

 g
-1

=f  so that g
-1

 (G) = f(G)   is t1-θ-g- open  It follows   that f   is an θ-g-  

open mapping . also f is θ-g-continuous*   by  hypothesis  .Hence (1)→(2) 

Conversely, assume (2) that is  let f be a bijective ,θ-g-continuous* and  

θ-g- open . To prove  that g=f
-1

 is θ-g-continuous* . Let G be  

 any   t1-θ-g- open  set , then  f(G)  is  t2-θ-g- open  by  hypothsis ,  that is,  

g(G) is t2-θ-g- open and so  g=f
-1

 is θ-g-continuous*  hence (2)→(1) 

(1)→(3) assume (1) let h be any closed set then    X-H  is θ-g- open  since  

g=f
-1

 is θ-g-continuous*  it follows that  g
-1

(X-H) is t2-θ-g-  open but    

g
-1

(X-H) =Y- g
-1

(H) hence  Y- g
-1

(H) is  t2-θ-g- open that  is     g
-1

(H)=f(H)      

is t2-closed thus it is shown that  H is t1-closed   implies   f(H) is t2-closed  

hence  f is closed mapping  thus  (1)→(3)  now   assume ( 3) to prove that   

g=f
-1 

is  θ-g-continuous* let G be any t1-θ-g- open  then X-G is t-closed   

since f is closed mapping f(X-G) = g
-1

(X-G)=Y- g
-1

(G)  is  y-closed   ,  that is  

, g
-1

(G) is   t2–θ-g- open  thus inverse image g of every t1-θ-g- open set is θ- 

g-open hence g=f
-1

 is θ-g-continuous* and so (1)→(3) ■ 

 

Remark(2-11): for more details about the relations between θ-continuous  

and  ,g-continuous you can see [2],[4],[5],[6] and [7] . 
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