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الخلاصة 
نيوتن غير المقيدة حيث  -قمنا بتقديم صنف جديد من طرق  كواسي, في هذا البحث

وجعمنا العناصر التغير قطرية مساوية لمصفر , قمنا بتحديث عناصر القطر لمصفوفة هيسين
وبذالك قد حافظنا عمى عدد الصفار الموجودة في مصفوفة هيسين القطرية ولذالك فان , دائما

.        مي بالتحديث القطريهذا التحديث س
 

ABSTRACT 
In this research we introduced a new update of the Hessian matrix 

or we updating only the diagonal elements of Hessian matrix, and make 

the non-diagonal elements always equal to zero and in this case we can 

preserve the sparse property so called the Diagonal Update.  

 

1. Introduction 
Assume a priori that we know that some sparsity is present in the 

second derivative matrix of the objective function. In this case we would 

like to exploit this sparsity pattern so that the successive approximations 

of Hessian matrix, exhibit the same sparsity as the matrix they are 

approximating. This has two practical consequences: 

1. the storage needed for the current approximation of Hessian matrix 

is drastically reduced, allowing much larger problems to be treated; 

2. the rate of convergence of the method is improved because the 

approximations of  Hessian matrix are better. 

 

2. The diagonal Update   
The problem is how to update the Hessian matrix with minimal 

cost flops, so by the quasi-Newton condition we have:  
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kkk ysB 1                                                                                               (2.1) 

  kkkk ysCB   

Where kC , the current correcting matrix, so we have 

  kkkkk ysCsB   

And hence kkkkk sBysC   

If  we set  kkkk sByr  ,  then we have the following system 

  kkk rsC   

By using matrix form, the last system can be write as follows  
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If we set ,0ijc  for all ji   in (2.2), then we have the following 

system 
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  In this case we have the following system of equations: 

nnnn rsc

rsc

rsc
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 The solution of (2.4) is as follows: 
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 And in the general form the solution of (2.4), is as follows: 

i

i

ii
s

r
c  ,     for   ni ,...,2,1                                                                       (2.6) 

 

3. Convergence Analysis 

We discuss the Descent Property of the proposed algorithm. Let 
k
B  be 

symmetric. and positive definite matrix  

Since  
               

                                                                        …………. (3.1) 

 

Then      

kkk
gBP

1

                                                                          …………..(3.2) 

 

Multiply both widest of  (3.2) by  
T

k

g  
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k

gBgPg
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Since 
k
B  is symmetric . and positive 

Then      0
1




kk

T

k

gBg  

Hence     
k
P   is descent direction for  k. 

1. The update is symmetric. 

2. The update satisfies the quasi-Newton condition. 

3. The Hessian matrix sparse. 

4. In (2.1), if exist is  equal to zero for some i, then the update is failed. 

5. The convergent of the method is numerically by solving some 

standard problems.  

 

4. The Diagonal update algorithm 
1. choose an initial estimate 0x , eps, set k = 0. 

2. choose an initial estimate IBk  .  

3. Compute )( kxf , and then evaluate the convergence of kx . Either 

terminate, or proceed to the next step. 

4. solve the linear equation )( kkk xfpB  .  

5. Do line search in the direction of kp  to get k , such that 

   kkkk xfpxf   . 

6. set kkkk pxx 1 . 

7. compute  ,kxf  set    kkk xfxfy  1 , and kkk ps  . 

8. set kkkk sByr  . 

kkk
gPB 
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9. compute 
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10. compute kkk CBB 1  

11. If       epsxfxf k

T

k   11
 then stop, else, set k = k + 1, and go to 3. 

 
5. NUMERICAL RESULTS 

In this test, solution of the following test problems has been 

attempted. The reason for their selection is that the problems appear to 

have been used in standard problems in most the literature. These 

functions represent a result of application in the branch of technology and 

industry. 

In order to reduce the risk that unrepresentative results might be 

obtained on a particular problem by the choice of a particularly fortunate 

or unfortunate starting point, each problem was solved for a variety of 

starting point. The results are presented in Table 1. Convergence was 

assumed when a point was located where ||f||2 < 10
-8

 in all cases. The 

entries in each column for the various methods denote the total flops 

required achieving convergence. All the starting points were chosen to 

comply with the requirement that the BFGS method, as implemented in 

our program, should converge from this point. Finally, an asterisk 

following the initial point indicates that method converged to a local 

minimum from that initial point. 
 

Table 1: (Test Of the functions) 

No n Starting points Flops BFGS Flops DU 

1 10 (-1.2,1) 556441 364811 

1 20 (-3.635,5.6213) 851094 598133 

2 10 (-1.2,1) 1915344 1002218 

2 10 (6.39,-0.221) 1824001 997742 

3 30 (-1.2,1) 9035145 2843481 

3 50 (9,12) 11856634 3687645 

4 50 (30,30) 9834557 3132380 

4 70 (1,1) 13109965 5367122 

5 50 (-10,-0.5) 6897301 2151312 

5 70 (100,100) 8244350 3797406 

6 50 (0,1) 5500671 3291804 

6 70 (0.01,5) 6312116 3718962 

7 50 (3,-0.5) 5224813 2742658 

7 70 (10,10,10) 6160365 3114127 

 

 From the above table clear that the total flops of diagonal update 

less than the total flops of the BFGS update. 
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6. CONCLUSIONS 
 Newton’s method requires the evolution of the Hessian matrix f2  
at each iteration, which can be very expensive. At each step Newton’s 
method requires the solution of a linear system    kkk xfpxf 2 , to 

obtain kp . When the initial estimate 0x  is poor,  0

2 xf may be non 

positive definite. In this case the Hessian matrix is singular or nearly 
singular, accurate solution of the linear system may be very difficult or 
impossible. The development of Quasi-Newton methods lies in the 
attempt to eliminate the defects of Newton methods as follows: 
1. Q-N methods do not evaluate the Hessian matrix; instead, they build 

approximations to the Hessian matrix by use of an update or 
correcting process.  

2. Many of the update formulas produce positive definite matrices; 
provided that the initial matrix is positive definite and those other 
simple conditions (for example 0ysT ) hold. This property is 
important because it ensures that the next search direction satisfies 
the Q-N condition. 

3. If one of the B-version formulas is utilized, it is necessary (by analog 
of the Newton’s method) to solve the following linear system of 
equations )( kkk xfpB  to find the direction kp . 

 In the general case, solving the above system requires  3nO  
operations and this defect can be eliminated by updating the cholesky 
factors of the matrix kB . If the cholesky factors kB  are available, the 

above system can be solved in  2nO  operations. 
 Direct updating of the LU factors of Hessian matrix is undertaken 
by computing the direction  kp  from the equation )( kkk xfpB  , without 

computing the inverse of Hessian matrix at very iteration. The diagonal 
update, updating the Hessian matrix, preserves the symmetric property 
and satisfies the Q-N condition. 
 The diagonal update proposed as a new update based on the 
sparsty, and this update can solve an optimization problem with minimum 
cost flops.  
 
Appendix 
1) Rosenbrock’s function  
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4) Penalty function I  
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5) Variably-Dimensioned function  
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6) The Chained Wood’s function  
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where  j = {1, 3, 5, …, n-3}  

7) Watson function  
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