< J. Edu. & Sci., Vol. (25), No. (3) 2012 🦻

# A Modified Globally Convergent Self-Scaling BFGS Algorithm for Unconstrained Optimization

Prof. Dr. Abbas Y. AL-Bayati Dr. Basim

Dr. Basim A. Hassan

Department of Mathematics College of Computers Sciences and Mathematics University of Mosul

&

Sawsan S. Ismael Department of Mathematics / College of Education University of Mosul

> Received 17 / 10 / 2010

Accepted 06 / 04 / 2011

الملخص

في هذا البحث تم التقصي في خوارزمية مطورة ل BFGS ذاتي القياس و ذات القارب الشامل في حل مسائل الأمثلية المحدبة وباستعمال خطوط بحث تامة و جميع التقريبات لمعكوس مصفوفة هسي موجبة التعريف . النتائج العددية أثبتت كفاءة الخوارزمية المقترحة مقارنة بخوارزمية- BFGS القياسية.

# Abstract

In this paper, a modified globally convergent self-scaling BFGS algorithm for solving convex unconstrained optimization problems was investigated in which it employs exact line search strategy and the inverse Hessian matrix approximations were positive definite. Experimental results indicate that the new proposed algorithm was more efficient than the standard BFGS- algorithm.

# **1. Introduction.**

Consider the unconstrained optimization problem

where f is a continuously differentiable function of n variables. Quasi-Newton (QN) methods for solving (1) often needed to update the

54

iterative matrix  $B_k$ . Traditionally,  $\{B_k\}$  satisfies the following QN equation:

where  $v_k = x_{k+1} - x_k$ ,  $y_k = g_{k+1} - g_k$ .[5] The search direction is computed by:

$$d_k = -B_k^{-1}g_k \qquad .....(3)$$

where  $g_k$  is the gradient of f evaluated at the current iterate  $x_k$ . One then computes the next iterate by

where the step size  $\alpha_k$  satisfies the Wolfe – Powell (WP) conditions

where  $\delta_1 \prec 1/2$  and  $\delta_1 \prec \delta_2 \prec 1$  [2].

The famous update  $B_k$  is the BFGS formula for which  $B_{k+1}$  is updated as :

$$B_{k+1} = B_k - \frac{B_k v_k v_k^T B_k}{v_k^T B_k v_k} + \frac{y_k y_k^T}{v_k^T y_k}$$
 .....(7)

In [6] Zhang and Xu proposed a new QN-condition defined by:  $B_{k+1}v_k = y_k^*$  .....(8)

By using (8), The modified BFGS–update may be given by:

where

Dai [3] proved that updates (9)-(10) may fail for convergence, especially for the non-convex functions. To overcome this drawback, let us consider the self-scaling BFGS update due to Al-Bayati [1].

## 1.1 Al-Bayati Self-Scaling BFGS-Method [1].

The standard BFGS update can be separated into two components,  $B^{(1)}$  and  $B^{(2)}$  so that:

55

where 
$$B^{(1)} = B_k - \frac{B_k v_k v_k^T B_k}{v_k^T B_k v_k}$$
,  $B^{(2)} = \frac{y_k y_k^T}{v_k^T y_k}$ 

AL-Bayati's [1] modifications for the BFGS formula can then be written as:

which will satisfy

This relaxation of the QN-condition is of particular interest in deriving different VM-algorithms for non-quadratic objective functions.

#### 1.2 A Modified Self-Scaling BFGS-Algorithm.

In this section we will deal with an algorithm which generates the sequence of  $B_{k+1}$  matrices which converge to the Hessian matrix *G* and satisfies the following modified QN-condition:

$$B_{k+1}v_k = \rho^* y_k^* \qquad .....(14)$$

According to the above strategy,  $B^{(1)}$  and  $B^{(2)}$  of Al-Bayati's update can be represented as:

where  $B^{(1)} = B_k - \frac{B_k v_k v_k^T B_k}{v_k^T B_k v_k}$ ,  $B^{(2)} = \frac{y_k^* y_k^{*T}}{v_k^T y_k^*}$ 

By using (12), the modified AL-Bayati's BFGS- update may be written as:

where  $\rho_k^* = \frac{v_k^T B_k v_k}{y_k^* v_k}$ ,  $y_k^*$  is a vector defined in (10).

### **1.3 Outline of the Modified BFGS-Algorithm.**

The outline of the modified BFGS algorithm is as follows:

Step 0 : Choose an initial point  $x_1 \in R^n$  and an initial positive definite

matrix 
$$B_1 = I_{n^*n}$$
,  $\varepsilon = 1 * 10^{-4}$ , set  $k = 1$ .

Step 1 : If  $||g_k|| \leq \varepsilon$ , stop.

Step 2 : Solve  $d_k = -H_k g_k$  to obtain a search direction  $d_k$ .

Step 3 : Find  $\alpha_k$  by (WP) step-size rules (5) and (6).

Step 4 : Generate a new iteration point by  $x_{k+1} = x_k + \alpha_k d_k$  and calculate

the new updating formula (16) with (10).

Step 5 : Set k = k + 1 and go to Step 1.

# 2. The Global Convergence Property for the Modified BFGS-Algorithm.

The important property of the line search method is the global convergence property defined by the relation :

To prove this property, it is equivalent to prove that the modified BFGS-updating formula (16) generates identical conjugate gradient search directions provided that the function is quadratic and exact line searches are used. Let us consider the following property :

# Property (2.1).

Let f be given by  $f(x) = \frac{1}{2}x^{T}Gx + b^{T}x$ .....(17b)

where *G* is symmetric positive definite. Choose an initial approximation  $H_1 = H$  where *H* is any symmetric positive definite matrix. Obtain  $H_{k+1}$  from *H* where  $d_k = -Hg_k$  is the search direction and assuming exact lime searches then:

$$H_{k+1}g^* = Hg^*$$
 .....(18)

**Proof :** see [1].

It is well know that the inverse equivalent BFGS-update formula of the modified updating formula (16) can be written also as :

$$H_{k+1} = H_k - \frac{H_k y_k^* v_k^T + v_k y_k^{*T} H_k}{y_k^{*T} H_k y_k^*} + \frac{v_k v_k^T}{v_k^T y_k^*} \left[ \rho^*_{\ k} + \frac{y_k^{*T} H_k y_k^*}{v_k^T y_k^*} \right] \qquad \dots (19)$$

where  $\rho_k^* = \frac{y_k^{*T} H_k y_k^*}{v_k^T y_k^*}$ ,  $y_k^*$  is a vector defined in (10)

which is the dual of the modified updating formula (16) in sense that  $H_k \Rightarrow B_k$ ,  $v_k \Rightarrow y_k$  and  $\rho_k \Rightarrow \rho_k^{-1}$ .

The following Lemma (2.1) which was given in [6] page 273, yields:

#### Lemma (2.1).

Suppose that if  $(\alpha_k, x_k, y_k, d_k)$  generated by the BFGS update and that *G* is continuous at  $x^*$ . Then we have

$$\lim_{k \to \infty} \left\| \frac{6[f_k - f_{k+1}] + 3(g_{k+1} + g_k)^T v_k}{v_k^T y_k} \right\| = 0$$

#### New Theorem (2.1).

Assume that f(x) be a quadratic function defined in (17b) and that the line searches are exact: let *H* be any symmetric positive definite matrix for the modified self scaling BFGS-updating formula defined by:

$$H_{k+1} = H_k - \frac{H_k y_k^* v_k^T + v_k y_k^{*T} H_k}{y_k^{*T} H_k y_k^*} + \frac{v_k v_k^T}{v_k^T y_k^*} \left[ \rho_k^* + \frac{y_k^{*T} H_k y_k^*}{v_k^T y_k^*} \right] \qquad \dots (20a)$$

where 
$$\rho_{k}^{*} = \frac{y_{k} H_{k} y_{k}}{v_{k}^{T} y_{k}^{*}}$$
 (20*b*)

Then the search direction

$$d_{MBFGS} = -H_{k+1}g^*$$
 .....(21)

is identical to the Hestenes and Stiefel conjugate gradient direction  $d_{HSCG}$  defined by:

$$d_{HSCG} = -g^* + \frac{y^{*T}g^*}{y^{*T}d}d \quad \text{for } k \ge 1$$
 .....(22)

**Proof**:

$$H_{k+1} = H_k - \frac{H_k y_k^* v_k^T}{v^T y_k^*} - \frac{v_k y_k^{*T} H_k}{v^T y_k^*} + \frac{v_k v_k^T}{v_k^T y_k^*} \left[ \rho^*_k + \frac{y_k^{*T} H_k y_k^*}{v_k^T y_k^*} \right]$$

Now

$$d_{MBFGS} = -H_k g_k^* + \frac{H_k y_k^* v_k^T g_k^*}{v_k^T y_k^*} + \frac{y_k^{*T} H_k g_k^*}{v_k^T y_k^*} v_k - 2 \frac{y_k^{*T} H_k y_k^* v_k^T g_k^*}{(v_k^T y_k^*)^2} v \qquad \dots (23)$$
$$= -H_k g_k^* + \frac{y_k^{*T} H_k g_k^*}{v_k^T y_k^*} v_k$$

using the property  $v_k^T g_k^* = 0$  quoted earlier which holds for exact line searches. The vector  $g_k^*$  can be substituted for  $H_k g_k^*$  by using property (2.1). Therefore :

New by using Lemma (2.1) we have

**58** 

A Modified Globally Convergent Self-Scaling BFGS Algorithm for ...

We also know that  $d_{MBFGS}$  and  $d_{HSCG}$  are identical [4] with exact line searches. Hence equation (25) becomes

This completes the proof of the global convergence property of the modified BFGS-algorithm.

#### **3. Numerical Results.**

This section was devoted to numerical experiments. Our purpose was to check whether the modified self scaling AL-Bayati's BFGSalgorithm provide improvements on the corresponding standard BFGSalgorithm. The programs were written in Fortran 90. The test functions were commonly used for unconstrained test problems with standard starting points [6] and a summary of the results of these test functions was given in **Table (3.1)**. The same line search was employed in each algorithm, this was the cubic interpolation technique which is satisfy conditions (5) and (6) for convex optimization with  $\delta_1 = 0.0001$  and  $\delta_2 = 0.1$ . The initial inverse approximation was  $H_0 = I$ . The stopping criterion was taken to be  $||g_{k+1}|| \prec 1*10^{-4}$ . We tabulate for comparison of these algorithms, the number of function evaluations (NOF) and the number of iterations (NOI).

**Table (3.1)** gives the comparison between the standard BFGSalgorithm and the modified self-scaling BFGS-algorithm for convex optimization, this table indicates that the modified algorithm saves 11% NOI and 14% NOF, overall against the standard BFGS-algorithm, especially for our selected test problems.

|                       |      | Modified algorithm | BFGS algorithm |  |
|-----------------------|------|--------------------|----------------|--|
| <b>Test-functions</b> | Ν    | NOF (NOI)          | NOF (NOI)      |  |
| Non-diagonal          | 10   | 99 (40)            | 108 (40)       |  |
|                       | 40   | 121 (53)           | 118 (50)       |  |
|                       | 100  | 116 (51)           | 135 (56)       |  |
|                       | 400  | 119 (52)           | 144 (59)       |  |
|                       | 1000 | 127 (54)           | 150 (62)       |  |
| Wolfe                 | 10   | 31 (15)            | 32 (15)        |  |
|                       | 40   | 85 (42)            | 87 (43)        |  |
|                       | 100  | 113 (56)           | 125 (62)       |  |

**Table (3.1)** 

|          | 400  | 125  | (62)   | 139  | (69)   |
|----------|------|------|--------|------|--------|
|          | 1000 | 143  | (71)   | 168  | (83)   |
| Cubic    | 10   | 61   | (24)   | 70   | (26)   |
|          | 40   | 85   | (36)   | 83   | (35)   |
|          | 100  | 79   | (33)   | 98   | (41)   |
|          | 400  | 80   | (33)   | 109  | (48)   |
|          | 1000 | 101  | (45)   | 112  | (48)   |
| Powell   | 10   | 82   | (26)   | 82   | (23)   |
|          | 40   | 100  | (38)   | 132  | (46)   |
|          | 100  | 98   | (36)   | 140  | (51)   |
|          | 400  | 113  | (40)   | 157  | (54)   |
|          | 1000 | 103  | (38)   | 120  | (39)   |
| Cantrell | 10   | 41   | (10)   | 52   | (11)   |
|          | 40   | 48   | (11)   | 52   | (11)   |
|          | 100  | 54   | (12)   | 56   | (12)   |
|          | 400  | 57   | (13)   | 71   | (14)   |
|          | 1000 | 71   | (17)   | 71   | (14)   |
| Miele    | 10   | 56   | (19)   | 65   | (21)   |
|          | 40   | 80   | (26)   | 92   | (30)   |
|          | 100  | 76   | (26)   | 93   | (30)   |
|          | 400  | 83   | (28)   | 98   | (31)   |
|          | 1000 | 84   | (28)   | 97   | (32)   |
| Total    |      | 2631 | (1035) | 3056 | (1156) |

Prof. Dr. Abbas Y. AL-Bayati & Dr. Basim A. Hassan & Sawsan S. Ismael

The Percentage Performance of the improvements is given by:

| Tools | BFGS  | Modified algorithm |
|-------|-------|--------------------|
| NOI   | 100 % | 89.53 %            |
| NOF   | 100 % | 86.09 %            |

# Appendix.

1.Cubic function :

$$f(x) = \sum_{i=1}^{n/2} (100(x_{2i} - x_{2i-1}^3)^2 + (1 - x_{2i-1})^2)$$

Starting point:  $(-1.2, 1, -1.2, 1, ....)^T$ 

2. Non – diagonal function :

$$f(x) = \sum_{i=1}^{n/2} (100(x_i - x_i^3)^2 + (1 - x_i)^2))$$

Starting point:  $(-1, \dots, )^T$ 

#### 3. Generalized powell function:

$$f(x) = \sum_{i=1}^{n/4} (x_{4i-3} - 10x_{4i-2})^2 + 5(x_{4i-1} - x_{4i})^2 + (x_{4i-1} - 2x_{4i})^2 + 10(x_{4i-9} - x_{4i})^4 + (x_{4i-2} - 2x_{4i-1} - x_{4i})^2)$$

4. *Miele* function :

$$f(x) = \sum_{i=1}^{n/4} [\exp(x_{4i-3}) - x_{4i-2}]^2 + 100(x_{4i-2} - x_{4i-1})^6 + [\tan(x_{4i-1} - x_{4i})]^4 + x_{4i-3}^8 + (x_{4i} - 1)^2$$

*Starting po* int:  $(1, 2, 2, 2, ....)^{T}$ 

5.Welfe function:

$$f(x) = (-x_1(3 - x_1/2) + 2x_2 - 1)^2 + \sum_{i=1}^{n-1} (x_{i-1} - x_i(3 - x_i/2) + 2x_{i+1} - 1)^2 + (x_{n+1} - x_n(3x_n/2 - 1)^2)^2 + (x_{n+$$

Starting point: 
$$(-1, \dots)^T$$

6. Cantrell *function*:

$$f(x) = \sum_{i=1}^{n/4} \left[ \exp(x_{4i-3}) - x_{4i-2} \right]^4 + 100(x_{4i-2} - x_{4i-1})^6 + \left[ \tan^{-1}(x_{4i-1} - x_{4i}) \right]^4 + x_{4i-3}^8$$

*Starting point*: 
$$(1, 2, 2, 2, ....)^{T}$$

#### **References.**

- 1) Al-Bayati, A., (1991), A new family of self-scaling variable metric algorithms for unconstrained optimization, Journal of Educ. and Sci., Iraq, Vol.12, pp.25-54.
- 2) Al-Bayati, A. and Al-Salih, M., (2008), New self-scaling VMalgorithm for non – convex optimization, to be appear in the 2nd conference Aleppo- Syria.
- **3)** Dai Y., (2003), Convergence properties of the BFGS algorithm, SIAM J. Optimization, Vol. 13, pp. 693-701.
- 4) Nazareth, L., (1979), A relationship between BFGS and conjugate gradient algorithm and its implementation for new algorithms, SIAM Journal Numerical Analysis Vol.61, pp.409-436.
- 5) Zhang, H., Hager, W., (2004), A non-monotone line search technique and its application to unconstrained optimization. SIAM J. Optimization, Vol.14, pp.1043-1056.
- 6) Zhang, J., Xu, C., (2001), Properties and numerical performance of quasi Newton Methods with modified quasi Newton equations Com. and Applied Mathematics, Vol. 137, pp.269-278.