« J. Edu. & Sci., Vol. (25), No. (1) 2012 9

# Synthesis of 1,3,4-Oxadiazole Derivatives from Ethyl-2-Piperidone-3-Carboxylate

M. A. Sheat

### **O. I. Mohammed**

Department of Chemistry / College of Science University of Mosul

Received 14 / 06 / 2010 Accepted 02 / 03 / 2011

الملخص

في هذا البحث تم تحضير عدد من مشتقات ٤،٣،١- اوكسادايازول الجديدة وذلك باستخدام إستر اثيل-٢-باعيريدون-٣-كاربوكسيلات. إن تفاعل إستر الاثيل مع الهيدرازين المائي يعطي الهايدرازايد المقابل (I)، والذي عند مفاعلته مع عدد من الالديهايدات الاروماتية أدى إلى إعطاء عدد من مركبات الهيدرازون (II). وبعد ذلك حضرت مشتقات ٤،٣،١ اوكسادايازول بعملية الأكسدة الحلقية لمركبات الهيدرازون (II) باستخدام ثنائي أوكسيد الرصاص في حامض الخليك التلجي.

تم إثبات الصيغ التركيبية للمركبات المحضرة باستخدام الطرائق الفيزياوية والطيفية.

#### ABSTRACT

In the present work, some new 1,3,4- Oxadiazole derivatives have been synthesized from Ethyl-2-Piperidone-3-Carboxylate. The reaction of the ethyl ester with hydrazine hydrate afforded the corresponding hydrazide (I). Treatment of the latter compound with different aromatic aldehydes yielded a new hydrazones (II). Preparation of 1,3,4-Oxadiazoles (III) have been achieved by oxidative cyclization of hydrazones (II) by the use of lead dioxide in glacial acetic acid.

The structural formula of the synthesized compounds were established by physical and spectral methods.

#### **INTRODUCTION**

Derivatives of 1,3,4-Oxadiazoles constitute an important family of heterocyclic compounds. Their synthesis could be achieved through oxidative cyclization of hydrazone compounds by the use of lead dioxide in glacial acetec acid [1]. 1,3,4-oxadiazoles were found to have interesting biological activities such as antiinflammatory [2], antipyretic [3], antibacterial [4], antimicrobial [5], anticancer [6], Anti HIV-1 aids [7], antimtagenicity [8], antidepressant [9], anticonvulsant and muscle relaxant [10], neurotoxicity [11], ulcerogenic and lipid peroxidation [12][13], and analgesic [14].

On the other hand hydrazone compounds like Schiff bases could be synthesized easily by condensation reactions between aldehydes or ketones with primary amines [15]. Many of these compounds have a wide variety of applications in particular as biologecally active compounds, thus they have been employed in medical field as antitubercular [16], bactericidal and fungicidal [17], Hydrazones were also found to have significant importance in organic synthesis since they served as an intermediate compounds in the synthesis of heterocyclic compounds like 1,3,4-oxadiazoles [18].

This paper is concerned with the application of ethyl-2-piperidone-3-carboxylate as a precursor in the synthesis of hydrazones and their cyclization product 1,3,4-oxadiazoles which may possess a pharmaceutical activity.

#### **EXPERIMENTAL**

Melting points were determined using electrothermal 9300 melting point apparatus and are uncorrected. IR spectra were recorded by a Bruker, FT-IR spectrophotometer tensor 27, as KBr disc. UV spectra were recorded on shimadzu UV-Visible spectrophotometer UV-1650 PC using Methanol as a solvent.

#### Synthesis of 2-Piperidone-3-Carboxylic Acid Hydrazide (I): [19]

A mixture of ethyl-2-piperidone-3-carboxylate (0.025 mole, 4.28 gm) and hydrazine hydrate (80%) (0.1mole, 5 gm) in absolute ethanol (15 ml) was refluxed for (3 hrs). The solvent was evaporated to half of its volume. After cooling, the precipitate was filtered and recrystallized from ethanol to give the desired compound (I) as a white crystals of 82% yield and m.p. (151-153) °C. The spectral data for both infrared and ultraviolet spectroscopy showed the following characteristic absorption bands:

 $\upsilon$  C=O1646 as a broad band that belong to two amidic carbonyl groups

- $\upsilon$  N-H 3307 as a broad band that belong to amidic group
- $\upsilon$  N–H 3415 as a broad band that belong to hydrazonic group

 $\lambda$  max (methanol) 216 nm.

# Synthesis of Aldehyde-2-Piperidone-3-Carboxylic Acid Hydrazones (II): [20]

A solution of hydrazide (I) (0.01 mole, 1.57 gm) in absolute ethanol was added gradually to a solution of aldehyde (0.01 mole) in absolute ethanol (15ml). The mixture was refluxed for (2hrs) with stirring, then the solvent was evaporated to half of its volume and the mixture was cooled. The formed precipitate was filtered and recrystillized from ethanol to obtain the desired products (II). The physical and spectral data are listed in table (1).

#### Synthesis of 2-Aryl-5-(2-Piperidone-3-yl)-1,3,4-Oxadiazoles (III):[1]

A mixture of one of hydrazones (II) (0.01 mole) in glacial acetic acid (40 ml) was stirred till to be clear solution, lead dioxide (0.01 mole, 2.39 gm) was added and the mixture was stirried using magnetic bar at (25-30)  $^{\circ}$ C for (1hr). The mixture was diluted with crushed ice (200 gm) and water (100 ml) and left for (24 hrs). The product was filtered and recrystallized from ethanol to obtain 1,3,4-oxadiazoles (III). The physical and spectral data are illustrated in table (2).



| Compd.<br>No. | Yield<br>% | M.P. °C  | Colour        | IR (KBr), $v$ ( cm <sup>-1</sup> ) |                |      |              |                                                 | UV(MeOH)           |
|---------------|------------|----------|---------------|------------------------------------|----------------|------|--------------|-------------------------------------------------|--------------------|
|               |            |          |               | C=O<br>amidic                      | C=O<br>hydraz. | C=N  | N−H<br>O−H   | other                                           | $\lambda$ max.(nm) |
| II1           | 97         | 277-279  | White         | 1681                               | 1653           | 1610 | 3175<br>3228 |                                                 | 304                |
| II2           | 92         | 220-222  | Brown         | 1671                               | 1647           | 1633 | 3161<br>3325 |                                                 | 306                |
| II3           | 94         | 223-225  | Brown         | 1675                               |                | 1616 | 3181<br>3245 | <b>с-о-с</b><br>1138                            | 320                |
| II4           | 72         | 211-212  | White         | 1666                               |                | 1618 | 3191         | <b>с-о-с</b><br>1134                            | 314                |
| 115           | 89         | 259-261  | Yellow        | 1672                               |                | 1585 | 3215         | <b>NO<sub>2</sub></b><br>sym. 1401<br>asym.1515 | 320                |
| II6           | 94         | 210-212  | Pale<br>brown | 1670                               |                | 1595 | 3192         | NO <sub>2</sub><br>sym. 1407<br>asym.1522       | 286                |
| II7           | 89         | 243-245  | Yellow        | 1668                               |                | 1605 | 3188         | NO <sub>2</sub><br>sym. 1401<br>asym.1527       | 282                |
| II8           | 85         | 220-222  | White         | 1668                               |                | 1599 | 3185         | <b>Cl</b><br>745                                | 314                |
| II9           | 85         | 199-200  | White         | 1675                               | 1651           | 1612 | 3181         | _                                               | 300                |
| II10          | 80         | 189-190  | White         | 1682                               | 1655           | 1606 | 3212         | <b>с-о-с</b><br>1171                            | 294                |
| II11          | 73         | 206-208  | White         | 1691                               | 1654           | 1614 | 3204         | <b>с-о-с</b><br>1055                            | 314                |
| II12          | 49         | 278 dec. | White         | 1671                               |                | 1602 | 3189         |                                                 | 344                |

Table (1): Physical and spectral data for compounds (II1-12):



 Table (2): Physical and Spectral data for compounds (III1-9,11):

| Comnd | Viald | M.P. °C  | Colour             |                       |               |              |                                                 |                    |
|-------|-------|----------|--------------------|-----------------------|---------------|--------------|-------------------------------------------------|--------------------|
| No.   | %     |          |                    | C=O <sub>amidic</sub> | C=N<br>cyclic | N-H<br>O-H   | other                                           | $\lambda$ max.(nm) |
| III1  | 81    | 305 dec. | Brown              | 1647                  | 1560          | 3449         |                                                 | 290                |
| III2  | 48    | >300     | Brown              | 1649                  | 1562          | 3230<br>3384 |                                                 | 284                |
| III3  | 21    | 291 dec. | Yellowish<br>white | 1673                  | 1587          | 3308         | <b>с-о-с</b><br>1147                            | 284                |
| III4  | 31    | 180-183  | Brown              | 1656                  | 1599          | 3340         | <b>с-о-с</b><br>1141                            | 328                |
| III5  | 70    | 247-249  | Brown              | 1670                  | 1599          | 3321         | NO <sub>2</sub><br>sym. 1421<br>asym.1509       | 318                |
| III6  | 43    | 144-146  | Brown              | 1652                  | 1527          | 3345         | NO <sub>2</sub><br>sym. 1352<br>asym.1527       | 288                |
| III7  | 83    | 213-215  | Deep<br>brown      | 1668                  | 1589          | 3188         | <b>NO<sub>2</sub></b><br>sym. 1401<br>asym.1526 | 264                |
| III8  | 74    | 215-218  | White              | 1650                  | 1596          | 3203         | <b>Cl</b><br>746                                | 286                |
| III9  |       | gumy     |                    |                       |               |              |                                                 |                    |
| III11 |       | gumy     |                    |                       |               |              |                                                 |                    |

## **RESULTS AND DISCUSSION**

Previous studies showed that 1,3,4-oxadiazole derivatives found to be pharmaceutically active compounds. Therefore, ethyl-2-piperidone-3carboxylate (known as pharmaceutical intermediate) [21] was used as starting material in synthesis of new hydrazone compounds (II1-12) and 1,3,4-oxadiazoles (III1-9,11) which may show characteristic pharmaceutical activity. The route for the synthesis of these compounds was illustrated in Scheme (1).



Scheme (1)

The synthesized compounds (II1-12 & III1-8) have been investigated according to their physical and spectral data (IR and UV) [22].

In IR spectra of hydrazone (II1-12), the two carbonyl groups (amidic and hydrazonic) were appeared as a two strong absorption bands at two

23

different regions and sometimes overlapped to be appeared as a strong absorption band at one region  $(1666-1675)cm^{-1}$ . Another new strong absorption band at  $(1585-1633)cm^{-1}$  is due to the appearance of  $\upsilon c=N$ , while the broad bands at  $(3161-3325)cm^{-1}$  are due to  $\upsilon N-H$ (amidic) and  $\upsilon o-H$  (in compounds 1,2 & 3).

The UV spectra of hydrazones (II1-12) showed bathochromic shift (red shift) in  $\lambda$  max (286-344)nm as compared with that of hydrazide compound (I) ( $\lambda$  max 216 nm), this is due to the appearance of the conjugation effect which affect the electronic transition ( $n \rightarrow \pi^*$ ) in hydrazones (II1-12) as shown in table (1).

The IR spectra of 1,3,4-oxadiazoles (III1-8) showed two characteristic bands due to the stretching vibrations of (c=0 amidic & c=N) which appeared at regions (1647-1673)cm<sup>-1</sup> and (1527-1599) cm<sup>-1</sup> respectively. Another broad band at (3188-3449)cm<sup>-1</sup> is due to the stretching vibration of (N-H) bond and (O-H) bond (in compounds 1,2 & 3).

The UV spectra of 1,3,4-oxadiazoles (III1-8) generally showed hypsochromic shift (blue shift) in  $\lambda$  max (264-318)nm as compared with that of hydrazones (II1-12). The decreasing in  $\lambda$  max values was expected due to decreasing of conjugation effect on the electronic transition (n  $\rightarrow \pi^*$ ) which occurred in 1,3,4-oxadiazoles (III1-8) as shown in table (2).

#### REFRENCES

- 1) Dutta M.M., Joswami, B.N. and Kataky J.C.S., 1986, J. Heterocyclic Chem., 23, 793-795.
- 2) Ladva K., Patel P., Upadhyay P. and Parek H., 1996, Indian J. of Chemistry, 35B, 1062-1068.
- **3**) Amir M. and Shahani S., 1998, Indian J, Heterocyclic Chem., 8(2),107-110.
- 4) Maslat A.O., Abussaud M., Tashtoush H. and Al-Talib M., 2002, Pol. J., pharmacol., 54, 55-59.
- 5) Sahin G., Palask E., Ekizoglu M. and Ozalp M., 2002, Farmaco, 57(7), 539-542.
- 6) Mansour A.K., Eid M.M. and Khalil N.S., 2003, Molecules, 8, 744-755.
- 7) El-Eman A.A., Al-Deeb O.A., Alomar M. and Lenmam J., 2004, Bioorg. Med. Chem., 12,5107-5113.
- 8) Maslat A., Khlil A., Fares A., Tashtoush H. and El-Talib M., 2004, Drug and Chemical Toxicology, 27(2), 157-167.

24

- 9) Hennies H.H., Sundermann C., Buschmann H. and Sundermann B., 2005, U.S. Pat., 20050187260.
- **10**) Almasirad A., Vousooghi N., Tabatabai S.A., Kebriaeezadeh A. and Shafiee A., 2007, Acta Chem. Slov., 54, 317-324.
- 11) Siddiqui N., Alam M.S. and Ahsan W., 2008, Acta Pharm., 58, 445-454.
- 12) Amir M., Javed S.A. and Kumar H., 2008, J. Chin. Chem. Soc., 55, 201-208.
- 13) Kumar H., Javed S.A., Khan S.A. and Amir M., 2008, Eur. J.Med. Chem. XX,1-11.
- 14) Husain A.Ahuja P. and Sarafroz, 2009, Indian J. Pharm. Sci,71(1), 62-66.
- **15**) El-Bayoumi M.A., El-Nasser M. and Abdel-Halim F.,1971, J.Am. Chem. Soc., 93, 586-590.
- **16**) Bhaat K.N., Dave A.M., Undavia N.K. and Trived P.B.,1988, J. Indian Chem. Soc., 65(11), 799-800.
- 17) Kovalenko S.I., 1998, Farm. Zh (Kiev), 3, 50-53.
- **18**) Eissa A.M.F., 2002, Chemical Department, Faculty of Science, Benha University, Egypt.

(http://www.mete.metesz.Hu/Kiado/oszk2002/05zk200224/htm/conteny.htm).

- **19**) Husain M.I., Shukla M.K. and Agrawal S.K., 1979, J. Indian Chem. Soc., LV1, 306-307.
- **20**) Sen-Gupta A.A. and Hajela K.,1981, J. Indian Chem. Soc., LVIII, 690-697.
- 21) Organica, 2002, Version 02, Code No. 06270, www.Organica.de.
- 22) Parikh V.M., 1974, Absorption Spectroscopy of Organic Molecules, Addison-Wesley Publishing Company, Inc., P. 325.