< J. Edu. & Sci., Vol. (24), No. (3) 2011 🦻

Spectrophotometric Determination of Tranexamic Acid by Azo-Dye Formation-Application to Pharmaceutical Preparations

Mohamed Y. Dhamra

Department of Chemistry / College Of Education University of Mosul

> Received 05 / 04 / 2010

Accepted 21 / 07 / 2010

الخلاصة

وصفت طريقة طيفية وحساسة لتقدير حامض ترانيكزاميك بهيئته النقية وفي مستحضراته الصيدلانية. اعتمدت الطريقة على اقتران كل من الكاشفين المؤزوتين بارا- نايترو أنيلين وحامض السلفانيليك مع حامض ترانيكزاميك لتكوين صبغة ازو برتقالية محمرة لها أقصى امتصاص عند ٢٥٠ نانوميتر وكانت حدود قانون بير بين (0.1-7.5) مايكروغرام/مللتر والامتصاصية المولارية ٢.٤ × ٢٠ لتر .مول⁻¹ سم⁻¹ مع البارا-نايتروانيلين في حين كانت صبغة الازو صفراء لها أقصى امتصاص عند ٢٠٠ نانوميتر وحدود قانون بير بين (٥.1-1.5) مايكروغرام/مللتر والامتصاصية المولارية والامتصاص عند ٢٠٠ نانوميتر وحدود قانون بير بين (٥.٠ – ١٠) مايكروغرام /مللتر والامتصاص عند ٢٠٠ نانوميتر وحدود قانون بير بين (٥.٠ – ١٠) مايكروغرام /مللتر والامتصاص عند ٢٠٠ نانوميتر وحدود قانون بير المحاض السلفانيليك . أظهرت النتائج معدم حدوث تداخل في الطريقة المطورة من قبل بعض المضافات الصيدلانية وطبقت الطريقة بنجاح في تقدير حامض ترانيكزاميك في المستحضرات الصيدلانية بشكل أقراص وحقن ووجد ان الطريقة متفقة مع المحتوى الأصيل المستحضرات الصيدلانية وكذلك مع طريقة الإضافة القياسية.

Abstract

A simple and sensitive spectrophotometric method was developed for the determination of tranexamic acid in bulk and pharmaceutical preparations. The method is based on the coupling of each of diazotised p-nitroaniline and diazotised sulphanilic acid with tranexamic acid to form a reddish-orange azo-dye which absorbs maximally at 520 nm with diazotised p-nitroaniline. Beer's law was obeyed within (0.1-7.5) ppm with a molar absorptivity 4.2×10^4 1.mole⁻¹.cm⁻¹ and yellow azo-dye which absorbs maximally at 420 nm with diazotised sulphanilic acid. Beer's law was obeyed within (0.5-10) ppm with a molar absorptivity 3.3×10^3 l.mole⁻¹.cm⁻¹. All variables were studied to optimise the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of method was tested by analyzing tranexamic acid in its pharmaceutical preparations and good recoveries were obtained.

Introduction

acid [(trans)-4-(aminomethyl)cyclohexane-1-Tranexamic carboxylic acid], a synthetic lysine analog, is a competitive inhibitor of plasmin and plasminogen (1). Prophylactic administration of tranexamic acid decreases blood loss and blood transfusion requirements in cardiac surgery patients(2,3). The drug reduces postoperative blood losses and transfusion requirements in a number of types of surgery, with potential cost and tolerability advantages over aprotinin, and appears to reduce rates of mortality and urgent surgery in patients with upper gastrointestinal hemorrhage (4). Several methods have been reported for the determination of tranexamic acid including capillary electrophoresis (5), HPLC (6-12), liquid chromatography (13-15), atomic absorption spectrometry (16), gas chromatography (17), fluorometry (18) and spectrophotometry (19-27). Among the various methods available for the determination of the drug, spectrophotometry continues to be very popular, because of its simplicity, specificity and low cost. To the best knowledge, there are no spectrophotometric methods for tranexamic determination via diazotisation reaction described in the literature to date. Therefore, this study presents new spectrophotometric methods for the determination of tranexamic acid in pure and pharmaceutical preparation. The methods based on the coupling of tranexamic acid in basic medium with two diazotised reagents, p-nitroaniline and sulphanilic acid to form colored azo-dye measured spectrophotometrically.

Experimental

Apparatus

All spectral and absorbance measurements were carried out on a shimadzu UV-Visible digital double beam spectrophotometer with 1-cm matched quartz cells.

Reagents

All chemicals used were of analytical grade and used without further purification.

Standard solution of tranexamic acid (100 μ g/ml) was prepared by dissolving 0.01g of pure drug in distilled water and then diluted to the mark in a 100ml volumetric flask.

Sodium hydroxide solution (1N) was prepared by dissolving 4g of sodium hydroxide (Fluka) in distilled water and then diluted to the mark in a100ml volumetric flask.

Diazotised sulphanilic acid solution (30mM) was prepared by dissolving 0.519g of sulphanilic acid (Fluka) in 75ml distilled water then 1.35 ml of concentrated HCl (Fluka) was added and the solution is heated. The mixture is transferred to a 100ml volumetric flask and cooled to \approx 5° C.A 0.207 g of sodium nitrite (Fluka) is added and volume completed to 100 ml with addition of cooled distilled water. This solution is stored in the darkness over ice and used after 15 minutes. This solution when kept in the refrigerator is stable for at least 3 days (28).

Diazotised p-nitroaniline solution (20mM) was prepared by dissolving 0.276g of p-nitroaniline (Fluka) in 75ml distilled water then 1.35 ml of concentrated HCl was added and the solution is heated. The mixture is transferred to 100ml volumetric flask and cooled to \approx 5c. A 0.138 g of sodium nitrite is added and the mixture is stirred for 5 minutes and the volume completed to 100 ml with addition of cooled distilled water. This solution is stored in the darkness over ice and used after 15 minutes. This solution when kept in the refrigerator is stable for at least 3 days (29).

Aminocaprol tablets solution ten tablets of aminocaprol were weighed and finally powdered using a mortar. A weighed amount of the powder equivalent to 500 mg of the pure drug was dissolved in 10 ml of ethanol and made up to 100 ml with distilled water into a volumetric flask. The resulting solution was shaked well and filtrated. A sample of $100\mu g/ml$ of aminocaprol was taken and the measurement was carried out as described under recommended procedure.

Exacyl injection the contents of five ampoules (each one contains 500mg per 5 ml) were mixed and a 5 ml was accurately transferred into a 100 ml volumetric flask and diluted to the mark with distilled water. An accurate volume was appropriately diluted to get 100 μ g ml⁻¹ of tranexamic acid solution and treated as described under the recommended procedure.

Recommended Procedure for Calibration Curve with Diazotised Sulphanilic Acid

Aliquots of working tranexamic acid standard solution containing (12.5-250)µg were transferred into a series of 25 ml volumetric flasks. To each flask, 2 ml of (30mM) diazotised sulphanilic acid and 2 ml of (1N) sodium hydroxide were added and the mixture was diluted to the mark with distilled water and mixed well. The absorbance values were measured at 420 nm after 5 minutes from final addition against a reagent blank which was treated similarly Fig.1 shows the calibration curve which indicates that Beer's law is obeyed over the concentration range (0.5-10)µg/ml.

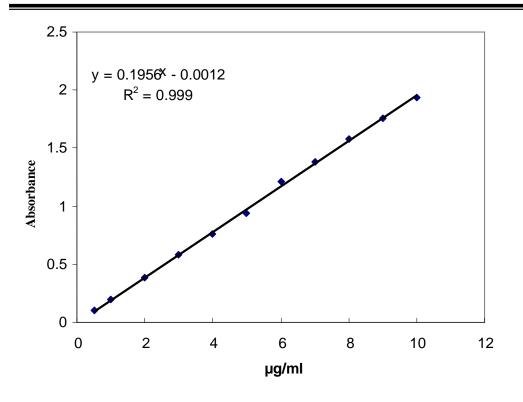


Fig. 1. Calibration graph for the determination of tranexamic acid with diazotised sulphanilic acid

Recommended Procedure for Calibration Curve with Diazotised p-nitroaniline

Aliquots of working tranexamic acid standard solution containing (2.5-187.5) μ g were transferred into a series of 25ml volumetric flasks. To each flasks, 3 ml of (20mM) diazotised p-nitroaniline and 2.5 ml of (1N) sodium hydroxide were added and the mixture was diluted to the mark with distilled water and mixed well. The absorbance values were measured at 520 nm after 10 minutes from final addition against a reagent blank which was treated similarly. Fig.2 shows the calibration curve which indicates that Beer's law is obeyed over the concentration range (0.1-7.5) μ g/ml.

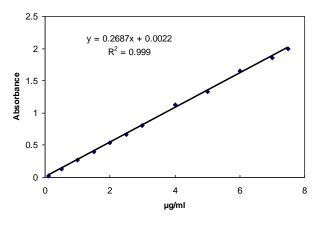


Fig. 2. Calibration graph for the determination of tranexamic acid with diazotised p-nitroaniline

24

Optimization of Variables

For the subsequent experiments, 25 μ g of tranexamic acid was taken in 25 ml final volumes and absorbance measurements were performed at 420,5[°]0 nm.

Effect of diazotised reagent concentration

The effect of varying concentration of diazotised sulphanilic acid and diazotised p-nitroaniline was investigated. It was found that diazotised sulphanilic acid (30mM) and diazotised p-nitroaniline (20mM) showed highest values of absorbance for the azo-dye formed (Table 1). Therefore, these concentrations were recommended for all subsequent measurements.

	Tuble 1: Effect of uluzoused reagent concentration						
Absorbance/mM of diazotised p-nitroaniline							
5 mM	10 mM	15 mM	20 mM	25 mM			
А	A	А	А	А			
0.151	0.165	0.169	0.181	• 100			
	Absorbance/m	M of diazotized s	ulphanilic acid				
10 mM	10 mM 20 mM 30 mM 40 mM 50 mM						
A	A	A	A	A			
0.092	0.121	0.155	0.150	0.150			

Table 1. Effect of diazotised reagent concentration

Effect of base.

The preliminary experimental investigations have shown that diazotised sulphanilic acid and diazotised p-nitroaniline gave colored dye of high intensity with tranexamic acid in alkaline medium, therefore the coupling reaction has been carried out with different bases and the results show that sodium carbonate and sodium bicarbonate gave colored blank reagent with sulphanilic acid and unstable azo-dye with p-nitroaniline, whereas (2.5,2) ml of (1N) sodium hydroxide solution gave highest value of absorbance with diazotised p-nitroaniline and diazotised sulphanilic acid, respectively for the azo-dye formed [Tables (2,3)]. Therefore, 2 and 2.5 ml of (1N) sodium hydroxide for each diazotised sulphanilic acid and diazotised p-nitroaniline were recommended for all subsequent measurements.

			-			-	
Base used (1N)	Variable	Ab	ed	pH Range			
Dase used (IIV)	v al lable	1	۰.۰	۲.•	۰.۲	٣.•	pri Kange
NaOH	А	0.155	0.161	0.173	0.161	0.155	11.56-12.12
NaOII	$\Delta\lambda_{nm}$	170	177	121	170	185	11.50-12.12
КОН	А	0.141 •	0.140	• 102	.177	.1.0	11.79-
KOII	$\Delta\lambda_{nm}$	178	17.	110	1	٨٢	12.24
Na ₂ CO3	А	,	The blan	ks were	colored		
Na ₂ CO3	$\Delta\lambda_{nm}$						
NaHCO3	А	,	The blan	ks were	colored		
TranCO3	$\Delta\lambda_{nm}$						

Table 2. Effect of base with diazotised sulphanilic acid

Table 3. Effect of base with diazotised p-nitroaniline							
Base used (1N)	Variable	Variable Absorbance / ml of base used					
Dase used (IIV)	v ai lable	1.0	1.0	۲. •	۰.۲	۳.•	pH Range
NaOH	А	• 141	.190	. 11.	• 717	• . ٢ • •	11.77-12.15
NaOH	$\Delta\lambda_{nm}$	129	177	177	12.	170	11.//-12.13
КОН	А	• 14•	• ^)	• 144	• 177	• 17•	11.79-12.29
KOII	$\Delta\lambda_{nm}$	125	170	121	١٢٨	12.	11./9-12.29
Na ₂ CO3	А		Unst				
Na ₂ CO3	$\Delta\lambda_{nm}$						
NaHCO3	А		Unst	table azo	dye		
TrailCO3	$\Delta\lambda_{nm}$						

... ..

Effect of diazotised reagent amount

The effect of various amounts of diazotised sulphanilic acid and diazotised p-nitroaniline were investigated. It was found that 2 ml of 30mM of diazotised sulphanilic acid and 3 ml of 20mM of diazotised pnitroaniline showed the highest value of absorbance for the azo-dye formed (Table 4). Therefore, these amounts were recommended for all subsequent measurements.

Table 4. Effect of ulazouscu reagent amount							
Ml of diazotised sulphanilic acid (30mM)	Absorbance	Ml of diazotised p- nitroaniline(20mM)	Absorbance				
)	• 177)	. 110				
۲	• 1 \ 9	۲	•.777				
٣	•.) ٧ •	٣	• 777 1				
٤	•.170	٤	• 777				
0	•_175	0	• 771				

Table 4 Effect of diazotised reagent amount

Effect of time on color development

The effect of time on the development and stability period of the colored dye was investigated under the optimum conditions. From the experimental data, it has been noticed that the azo-dye with diazotised sulphanilic acid reached maximum absorbance after final addition and remains stable at least for 70 minutes, whereas the azo-dye with diazotised p-nitroaniline reached maximum absorbance after 5 minutes, but remains stable for another 80 minutes (Table 5).

Tranexamic acid with diazotised sulphanilic acid											
Minute/ standing time	0	5	10	20	30	40	50	60	70	80	90
Absorbance	0.179	•	0.200	0.201	0.200	0.199	0.201	0.199	0.198	0.190	0.19
	Tranexamic acid with diazotised p-nitroaniline										
Minute/ standing time											
Absorbance	0.231	0.269	•.۲70	•. ٢٧٠	• 779	• . ٢٧٠	• ٢٦٩	• ٢٦٩	•. ٢٧٠	•.161	•.*60

Table 5. Effect of time on color development

Effect of surfactant

The results indicated that addition of different types with different amount, of surfactants gave no useful effect. Therefore, it has been recommended to eliminate their use in the subsequent experiments.

Order of addition reagents

To obtain optimum results, the order of addition of reagents should be followed as given under the general procedure, otherwise a loss in color intensity was observed.

Final absorption spectra

When tranexamic acid is treated according to the recommended procedure, the absorption spectra for the dyes from diazotised sulphanilic acid and diazotised p-nitroaniline with tranexamic acid show maximum absorptions at 420 nm and 520 nm, respectively [Fig.(3,4)]. The reagent blanks practically show negligible absorbances at these wavelengths.

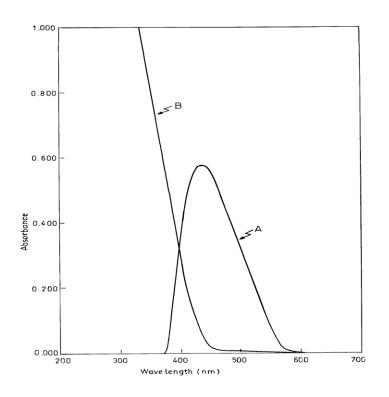


Fig 3. Absorption spectra of 3 μ g ml⁻¹ of tranexamic acid measured against reagent blank (A) and the reagent blank measured against distilled water (B) with diazotised sulphanilic acid

Spectrophotometric Determination of Tranexamic Acid by Azo-Dye ...

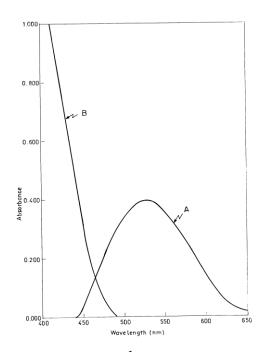


Fig. ^ε. Absorption spectra of 3 μ g ml⁻¹ of tranexamic acid measured against reagent blank (A) and the reagent blank measured against distilled water (B) with diazotised p-nitroaniline

Accuracy and precision

Two different concentrations of tranexamic acid are used with diazotised sulphanilic acid and diazotised p-nitroaniline in the determination of the accuracy and precision of the calibration curve, the results shown in (Table 6) indicate that the calibration curve has good accuracy and precision.

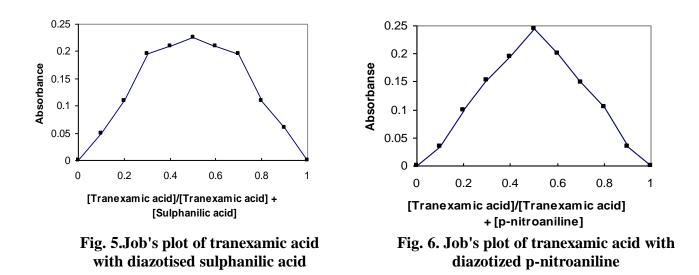
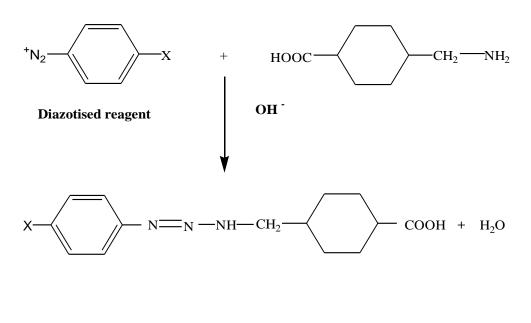

Amount of tranexamic acid taken µg/ml with PNA	*Recovery(%)	RSD(%)
)	۱.۳ <u>۳</u> ۸	1.77
٣	٩٧_٧٢	•_07
Amount of tranexamic acid taken µg/ml with sulphanilic acid	*Recovery(%)	RSD(%)
٤	90 <u>V</u>	۲.۱۰
٦	1.7.12	1.91

 Table 6. Accuracy and precision


*Average of five determinations

Nature of the dye product.

The stoichiometry of the reaction was studied applying Job's method of continuous variations (30). The result obtained [fig.(5,6)] show that a 1:1 drug to the two analytical diazotised reagents were formed.

Therefore, the formation of yellow dye with sulphanilic acid and reddish dye with p-nitroaniline may probably occur as shown in the following reaction scheme((1)):

 $X = HSO_3$ or $-NO_2$

Interference

The effect of some excipients which often accompany pharmaceutical preparations was studied by addition of three different amounts to 2 ppm tranexamic aid. Experimental results showed that there was no interference from foreign compounds up to 100 fold excess. Typical results are given in (Table 7).

Tuble 7. Effect of foreign compounds								
Foreign	Recov	ery(%)	Foreign	Recovery(%)				
compound with	10 Fold	100	compound with	10 Fold	100			
diazotised	excess	Fold	diazotised p-		Fold			
sulphanilic acid		excess	nitroaniline	excess	excess			
Glucose	٩٥٥	90.	Glucose	٩٥.٠	90.1			
Starch	٩٧.٢	٩٦٢	Starch	٩٦٢	٩٦ ١			
Lactose	٩٦٠	٩٦.٢	Lactose	96.5	٩٥ _. ٥			
Acacia	٩٨١	٩٧١	Acacia	٩٥.0	90			
Sodium Chloride	99.7	99.7	Sodium Chloride	99.7	99.0			

 Table 7: Effect of foreign compounds

Analytical applications

The present method was evaluated by analyzing commercial formulation of tranexamic acid and comparing the results obtained with those obtained by standard addition procedure [Fig. (7,8)]. Satisfactory agreement between results was obtained with an acceptable range of error [Tables (8,9)].

Table 8. Assay of tranexamic acid in pharmaceutical preparationswith diazotised sulphanilic acid

Pharmaceutical preparation	Certified value(mg)	Amount Present µg/ml	Recovery ^a (%)	Average Recovery (%)	Drug Content Found (mg)
Aminocaprol ^b tablets	500 mg	٤	97.70	99.1/9	221.20
Exacyl ^c injection	500 mg/ml	٦	۱۰۳ <u>۳</u> ۳	99 _. 79	017.70

^a. average of three determinations.

^b. marked by Al Shahba Pharmaceutical Labs.– Aleppo-Syria

^c. marked by Sanofi-Synthelabo-France

 Table 9. Assay of tranexamic acid in pharmaceutical preparations with diazotised p-nitroaniline

Pharmaceutic al preparation	Certified value(mg)	Amount Present µg/ml	Recovery (%)	Average Recovery (%)	Drug Content Found (mg)
Aminocaprol tablets	500 mg	١	1.0	١.١.٦٦	070
Exacyl injection	500 mg/5ml	٣	٩٨.٣٣		291.70

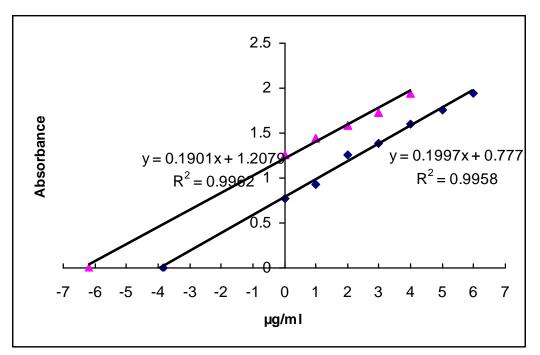


Fig. 7. Assay of tranexamic acid in pharmaceutical preparations with sulphanilic acid by standard addition method

- ▲ Standard addition method of 4 μ g ml⁻¹ using injection with diazotised sulphanilic acid.
- Standard addition method of 6 μ g ml⁻¹ using tablets with diazotised sulphanilic acid.

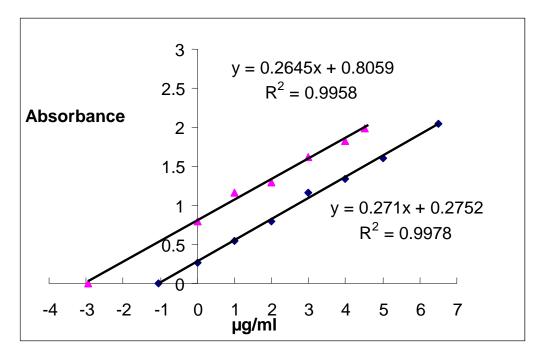


Fig. 8. Assay of tranexamic acid in pharmaceutical preparations with pnitroaniline by standard addition method

- ▲ Standard addition method of 1 µg ml⁻¹ using injection with diazotised pnitroaniline.
- Standard addition method of $3 \mu \text{g ml}^{-1}$ using tablets with diazotised p-nitroaniline.

31

Conclusion

A simple, rapid and sensitive spectrophotometric method for the determination of trace amounts of tranexamic acid has been developed. The method was based on the coupling of tranexamic acid with two diazotised sulphanilic acid and p-nitroaniline in basic medium to form mono azo-dye that is water soluble and stable. The proposed method was applied successfully to some pharmaceutical preparation (tablet, injection).

Reference

- 1) Royston D., Int Anesthesiol Clin., 33:155-79 (1995).
- 2) Laupacis A. and Fergusson D., Anesth Analg., 85:1258-1267, (1997).
- **3**) Menichetti A., Tritapepe L., and Ruvolo G., J Cardiovasc Surg., 37:401-407, (1996).
- 4) Dunn C. J. and Goa. K, Drugs, 57: 1005, (1999).
- 5) Manabe T., Yamamoto H., and Okuyama T., Electrophoresis., 10:172-177,(1989).
- 6) Matsubayashi K., Kojima C., Tachizawa H., J. Chromatogr. Biomed Appl., 77:225-234, (1988).
- 7) Sato K., Tobita Y., Iwabuchi K., Tanaka S., Anal. Sci., 13:471-474, (1997).
- 8) Xu Z. Z., Chen Z. Z., Yaowu Fenxi Zazhi., 13: 173-175, (1994).
- 9) Abrahamsson M., J. Pharm. Biomed. Anal., 4:399-406, (1986).
- 10) Lacroix C., Levert P., Laine G., Goulle J. P., J. Chromatogr. Biomed Appl., 34: 183-186 (1984).
- 11) Ghada m., Alaa El-Gindy, Waleed M. M., Chromatographia., 66: 311-317, (2007). Jose F., Mical H., Henk D., Hans, K, Jane L., and Freek A., J. Chromatogra. A.,1157:142-150,(2007).
- 12) Chang, O. Q. P. Yin, and Chow M. S. S., J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 805: 275, (2004).
- 13) Berniati T., Hosiana N., and Sumarlik K., J. Liquid Chromatogr., 28:3243-3254, (2005).
- M. Saad, Najma S. Faiza Q. and Farhan A., Chromatographia., 70: 789-795, (2009). A Shalaby, Chin. Pharm. J. [Taipei], 49: 229-235, (1999).

- **15**) Uehara, T. Hagiwara, Takahashi M., Kamata K., K., Nakayama K. Akiyama, and Naoi Y., Iyakuhin Kenkyu., 18: 142, (1987).
- 16) Iskender A. and S. Atmaca, Pharmazie., 43: 290,(1988).
- 17) Atmaca S., Acta Pharm. Turc., 31:115-118, (1989).
- **18**) Iskender G., Atmaca S., Pharmazie., 43: 290, (1988).
- **19**) Atmaca S., *Acta Pharm. Turc.*, **31**, 115–118, (1989).
- 20) Iskender G., Atmaca S., *Pharmazie*, 43, 290, (1988).
- **21**) Buyuktimkin N., Buyuktimkin S., *Acta Pharm. Turc.*, **27**, 78—81, (1985).
- 22) Mohamed M. E., Abou Enein H. Y., *Int. J. Environ Anal. Chem.*, 19, 19–25, (1984).
- 23) Wahbi A. A. M., Lotfi E. A., Abou Enein H. Y., *Talanta*, 31, 77–78, (1984).
- 24) Rizk M. S., Toubar S. S., Sultan M. A., Assaad S. H., *Microchim. Acta*, 143, 281–285, (2003).
- **25**) Ansari T. M., Raza A., Rehman A. U., *Anal. Sci.*, **21**, 1133–1135, (2005).
- 26) Saad M., Najma S., Farhan A. M. Hashim, and Z. Mirza, J. Molecular Structure, 891,475-480, (2008).
- **27**) Khalifa A. A., Adel M. A., and Hishim E. A., Chem. Pharm. Bull., 55,364-367, (2007).
- **28**) Ramadan, S.A.O., M.Sc. Thesis, Mosul University, 68, (2007).
- **29**) Al-Abasi K. M., J. Raf. Sci., 20, 63, (2009).
- **30)** Delevie R., Principles of quantitative chemical analysis, McGraw-Hill International Edition, Singapore, 498, (1997).
- **31**) Saunders K. H. and Allen R. L. M., Aromatic diazo compounds, 3rd ed., Edward Arnold,UK, 368-369 (1985).