Physico-Chemical Study of Some Cross Conjugated Systems, Part II

M. Y. Shandala M. M. Al-Shamamry H. A. A. Al-Wahab
Department of Chemistry / College of Science
University of Mosul
\section*{R. G. Salih}
Department of Chemistry / College of Education
University of Mosul

Received
 24/05/2010

Accepted

04 / 07 / 2010

يتضمن البحث دراسة لتكاثف سلاسل متعددة من مركبات الإينون ذات الإقتران المتقاطع الحاوية على اصرتين و ثلاث و أربع أواصر C = C تقنية التحفيز بانتقال الطور (PTC) للحصول على مركبات جديدة تم تشخيصها الطيفية. ولغرض وضع ميكانيكيه محتمله لهذه التفاعلات تمت دراسة الحسابات النظرية لكل من

هذه النكانفات باستعمال طريقتي الميكانيك الجزيئي وميكانيك الكم و كذلك لنوضيح الطبيعة الإستثنائية لمركبات الإقتران المنقاطع فضلا عن وضوح تأثنبر المعوضات على النوزيع الألكتروني للسلسلة الداخلية وعلى نوجيه الإضافة النيوكلوفيلية والشكل الفراغي ثالثي الأبعاد

للمواد الأولية والنواتج.

Abstract

A series of cross-conjugated enones [1-10] are condensed with menthone under (PTC) technique. The structures of the new products [11-20] were identified by spectral analysis. The probable reaction mechanism for each condensation is investigated by theoretical approach using both quantum mechanic (AM1) and molecular (MM2) computational methods. The unique behavior of these cross conjugated enones toward nucleophilic addition orientation, substituent effect on the electronic distribution, and the polarity of the molecules have been examined.

Introduction

Molecules with cross conjugated bond systems are of great interest for both theoretical and applied chemistry ${ }^{1-2}$. Extended cross-conjugated enones (α, β, γ, and δ) system is an important system due to its presence in biologically active compounds ${ }^{1-4}$. Some of cross conjugated dienones are in pre-clinical trials as an anticancer agents, Also extended enones are well known as common flavor constituent in tea, tobacco \& foods ${ }^{4}$. In addition, this system has been used as useful substances or intermediates in the synthesis of vitamins ${ }^{5}$ and natural products ${ }^{6}$.

Several theoretical investigations have carried out on a series of cross conjugated compounds ${ }^{1,7-9}$. Semi-empirical calculations on cyclopentadienone and cyclohexadienone have been reported ${ }^{7}$. The calculation of geometries by empirical force field showed that the rings are planer for both compounds. Electrochemical data and AM1 calculations on a series of cross-conjugated p-phenylene vinylidene with one to four double bonds revealed that electronic interaction between the repeating $\mathrm{C}=\mathrm{C}$ bond unit is not very strong ${ }^{8}$. Theoretical calculations by the ZINDO method on cross conjugated 2,6-di-(phenylethynyl)pyridine \& 2,6-d-(phenylbutadienyl)pyridine showed that the central group in cross-conjugated compound is conjugated with one or the other double bond, but not with both simultanously ${ }^{9}$.

In conjunction to our interest in the synthesis and condensation reactions of $\alpha-\beta$ - unsaturated carbonyl compounds with various $\mathrm{C}-\mathrm{H}$ acids under phase transfer catalysis (PTC) ${ }^{10-12}$, the condensation of a series of cross-conjugated enones, dienones [1-3], trienones [4-7], and tetraenones [8-10] with menthone have been investigated. Theoretical calculations using (AM1) ${ }^{13}$ and (MM2) ${ }^{14}$ computational method on both reactants \& products are performed.

Experimental

1. Instrumental

Melting points were measured using electro thermal (IA9000) digital-series M.P. apparatus. IR spectra were recorded on Tensor-27 Bruker (FT.IR) and U.V spectra were measured by Schimadzu UV-160 spectrophotometer.

2. The Computation

Chemoffice (version 5.0) software package was used for theoretical calculations. Geometrical optimization of dihedral angle, heat of formation (H.F), net atomic charge \& bond distance were calculated using Semi-empirical methods (AM1 with package MOPAC). Whilst, MM2 were used for molecular mechanics calculations of steric energy (S.E) and atomic steric energy (A.S.E).

Preparations

1. Preparation of the starting materials

The cross-conjugated enones [1-10] were prepared by standard methods ${ }^{15-17}$ where the desired benzaldehyde was condensed with the proper ketone in aqueous ethanolic sodium hydroxide. These enones were identified by their physical \& spectral data ${ }^{11-12}$ (IR, UV,NMR). These data are reported $\&$ published ${ }^{12}$ in our study of the same series of enones in part(I).

2. General procedure for the condensation of the enones [1-10] with menthone under (PTC) ${ }^{18}$.

A mixture of (3 ml) $50 \% \mathrm{NaOH}$, (25 ml) benzene, (0.3 gm) benzyl tributylammouium chloride (TEBA) and ($(0.0025$ mole) of menthone is stirred magnetically for (5 min). The enone [1-10] (0.0025 mole) was added dropwise, stirring is continued for certain intervals at $30-40{ }^{\circ} \mathrm{C}$ until no further change in color is observed. The benzene layer was separated, washed with water, dried over MgSO_{4} and evaporated. The residue obtained is recrystallized from (95%) ethanol.
Table (1) illustrates weight of reactants, time of reactions, names of the products, [11-20], M.P and \% yields.

Table (1): Weight of reactants, time of reactions, names of the products, melting points and percentage yields [11-29]

$\begin{gathered} \text { Compd } \\ \text { No. } \end{gathered}$	Wt. of Reactants (gm) Uns. Ketone Menthone	X	Time of reaction (min)	Name	m.p \& color	$\begin{aligned} & \text { Yield } \\ & \% \end{aligned}$
11	$\begin{aligned} & 0.585 \\ & 0.385 \end{aligned}$	H	90	2-(3-oxo-1,5-diphenylpent 4-enyl)-6-isopropyl-3methylcyclohexanone	$153-155$ yelloworange	43
12	$\begin{aligned} & 0.670 \\ & 0.385 \end{aligned}$	Cl	120	$\begin{gathered} \text { 2-(5-(p-chlorophenyl)-3- } \\ \text { oxo-1-phenylpent-4-enyl)- } \\ \text { 6-isopropyl-3- } \\ \text { methylcyclohexanone } \end{gathered}$	140-142 yellow	50
13	$\begin{aligned} & 0.620 \\ & 0.385 \end{aligned}$	CH_{3}	90	$\begin{gathered} \text { 2-(5-(p-tolyl)-3-oxo-1- } \\ \text { phenylpent-4-enyl)-6- } \\ \text { isopropyl-3- } \\ \text { methylcyclohexanone } \\ \hline \end{gathered}$	164-166 yellow	48

14	$\begin{gathered} 0.56 \\ 0.385 \end{gathered}$	$\begin{gathered} \mathrm{Ar}= \\ \text { 2-Furyl } \end{gathered}$	120	$\begin{aligned} & \text { 2-(1-(furan-2-yl)-3-oxo-5- } \\ & \text { phenylpent-4-enyl)-6- } \\ & \text { isopropyl-3- } \\ & \text { methylcyclohexanone } \end{aligned}$	$205-208$ yellow	39
15	$\begin{aligned} & 0.650 \\ & 0.385 \end{aligned}$	H	90	2-(3-oxo-1,7- diphenylhepta-4,6-dienyl)- 6-isopropyl-3- methylcyclohexanone	$168-170$ yellow	51
16	$\begin{aligned} & 0.730 \\ & 0.385 \end{aligned}$	Cl	90	2-(1-(p-chlorophenyl)-3-oxo-7-phenylhepta-4,6-dienyl)-6-isopropyl-3methylcyclohexanone	$\begin{gathered} 172-174 \\ \text { yellow } \end{gathered}$	57
17	$\begin{aligned} & 0.685 \\ & 0.385 \end{aligned}$	CH_{3}	120	```2-(1-(p-tolyl)-3-oxo-7- phenylhepta-4,6-dienyl)-6- isopropyl-3- methylcyclohexanone```	$168-170$ yellow	60
*18	$\begin{aligned} & 0.715 \\ & 0.385 \end{aligned}$	------	90	$\begin{array}{\|c} \hline \text { 2-(5-oxo-1,9-diphenylnona- } \\ \text { 1,6,8-trien-3-yl)-6- } \\ \text { isopropyl-3- } \\ \text { methylcyclohexanone } \\ \hline \end{array}$	$160-162$ yellow	55
**19	$\begin{aligned} & 0.785 \\ & 0.385 \end{aligned}$	-----	90	2-(2,8-dimethyl-5-oxo-1,9-diphenylnona-1,6,8-trien-3- yl)-6-isopropyl-3- methylcyclohexanone	$\begin{gathered} 177-179 \\ \text { yellow } \end{gathered}$	50
***20	$\begin{aligned} & 0.750 \\ & 0.385 \end{aligned}$	--	90	2-(2-methyl-5-oxo-1,9-diphenylnona-1,6,8-trien-3- yl)-6-isopropyl-3methylcyclohexanone	$168-171$ yellow	48

* $\mathrm{Ra}, \mathrm{Rb}=\mathrm{H}$
** $\mathrm{Ra}, \mathrm{Rb}=\mathrm{CH}_{3}$
*** $\mathrm{Ra}=\mathrm{CH}_{3}, \mathrm{Rb}=\mathrm{H}$

Results and discussion

The condensations of the cross conjugated enones [1-10] with menthone under (PTC) conditions were carried out and the products [11-20] were obtained. The products were identified by the analysis of their IR and UV spectral data. The spectral data of the condensation products are illustrated in table (2). As a representative model of the condensation products, compound [20] is selected. The IR spectrum shows a broad absorption band at $\left(1705-1680 \mathrm{~cm}^{-1}\right)$ which is attributed to the stretching vibration of the cyclic \& acyclic $\mathrm{C}=\mathrm{O}$ group overlapped with each other. The absorption at $\left(1600-1585 \mathrm{~cm}^{-1}\right)$ belong to $(\mathrm{C}=\mathrm{C})$ of the olefinic and aromatic double bond. The isopropy group shows a
strong doublet at (1397-1370 cm^{-1}) due to the inplane and out of plane deformation of the two methyl of menthone fragment.

The UV spectrum of the product [20] exhibits a maximum absorption at $\left.\lambda_{\max }(348) \mathrm{nm}\right) /$ with a blue shift when compared with $\lambda_{\max }$ of the reactant [10] $\left(\lambda_{\max } 387 \mathrm{~nm}\right)$. The decrease in $\lambda_{\max }$ is due to the decrease in conjugation of the product [20] (table 2).

Table (2): The IR and UV spectral data of products [11-20]

Comp. No.	IR (KBr) cm^{-1}		$\begin{aligned} & \hline \hline \mathrm{UV} \mathrm{CHCl}_{3} \\ & \lambda_{\text {max }}(\mathbf{n m}) \\ & \hline \end{aligned}$
	Band	Interpretation	
11	1712 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	322
	1667 (s)	$v_{\mathrm{C}=0}$ of unsat. ketone	
		$\mathrm{v}_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	$\begin{aligned} & 1606(\mathrm{~s}) \\ & 1575(\mathrm{~s}) \end{aligned}$	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1364-1382 (s)	Gem dimethyl	
	2991 (m)	$v_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3039 (m)	$v_{=C-\mathrm{H}}$	
12	1679 (s)	$v_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	314
	1653 (s)	$\mathrm{v}_{\mathrm{C}=0}$ of unsat. ketone	
	1602 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	$\begin{aligned} & 1577(\mathrm{~s}) \\ & 1541(\mathrm{~s}) \end{aligned}$	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1363, 1356 (s)	Gem dimethyl	
	2870 (w)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3058 (m)	$v_{\text {= } \mathrm{C}-\mathrm{H}}$	
13	1722 (s)	$v_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	318
	1663 (s)	$\mathrm{v}_{\mathrm{C}=0}$ of unsat. ketone	
	1603 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	$\begin{aligned} & 1588 \text { (s) } \\ & 1568 \text { (s) } \end{aligned}$	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1377, 1371 (s)	Gem dimethyl	
	3011 (m)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
14	1743 (s)	$v_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	306
	1689 (s)	$\mathrm{v}_{\mathrm{C}=0}$ of unsat. ketone	
	1240 (s)	$v_{=C-O}$ asymmetric str.	
	1612 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	1593 (s)	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1564 (s)		
	1391, 1362 (s)	Gem dimethyl	
	2975 (w)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3004 (m)	$v=\mathrm{C}-\mathrm{H}$	
	3123 (m)	v_{CH} of furan	
	810 (s)	$v_{\mathrm{C}=\mathrm{o}}$ out of plane (bending of furan)	

15	1706 (s)	$\mathrm{V}_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	308
	1679 (s)	$\mathrm{v}_{\mathrm{C}=0}$ of unsat. ketone	
	1628 (s)	$\nu_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	$\begin{aligned} & 1603(\mathrm{~s}) \\ & 1582(\mathrm{~s}) \end{aligned}$	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1352, 1343 (s)	Gem dimethyl	
	2998, 2903 (m)	$v_{\text {C-H }}$ of alkane	
	3014 (m)	$V_{=C-H}$	
16	1712 (s)	$v_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	319
	1683 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{O}}$ of unsat. ketone	
	1608 (s)	$v_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	$\begin{aligned} & 1591(\mathrm{~s}) \\ & 1562(\mathrm{~s}) \end{aligned}$	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1381, 1321 (s)	Gem dimethyl	
	2983, 2899 (m)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3001 (m)	$v=$ C-H	
17	1726 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	312
	1678 (s)	$v_{\mathrm{C}=0}$ of unsat. ketone	
	1613 (s)	$\mathrm{v}_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	$\begin{aligned} & 1586 \text { (s) } \\ & 1574 \text { (s) } \end{aligned}$	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1385, 1329 (s)	Gem dimethyl	
	2762, 2891 (m)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3026 (m)	$v=\mathrm{C}-\mathrm{H}$	
18	1711 (s)	$v_{\mathrm{C}=\mathrm{O}}$ of cyclohexane	354
	1659 (s)	$\mathrm{v}_{\mathrm{C}=0}$ of unsat. ketone	
	1603 (s)	$\nu_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of	
	1584 (s)	$\mathrm{C}-\mathrm{C}$ aromatic	
	1363, 1324 (s)	Gem dimethyl	
	2972, 2830 (w)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3018 (w)	$V_{=C-H}$	
19	1663-1699 (br)	$\mathrm{v}_{\mathrm{C}=\mathrm{O}}$ of two carbonyl overlapped	349
	1604 (s)		
	1571 (s)	$\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1543 (s)		
	1356, 1341 (s)	Gem dimethyl	
	2912, 2823 (m)	$v_{\text {C-H }}$ of alkane	
	3008 (m)	$v=$ C-H	
20	1680-1705 (br)	$v_{\mathrm{C}=\mathrm{O}}$ of two carbonyl overlapped	348
	1600-1585 (s)	$v_{\mathrm{C}=\mathrm{C}}$ olefinic and skeletal vib. of $\mathrm{C} \cdots \mathrm{C}$ aromatic	
	1370-1397 (s)	Gem dimethyl	
	2973, 2880 (w)	$\mathrm{v}_{\mathrm{C}-\mathrm{H}}$ of alkane	
	3056, 3025 (m)	$v=$ C-H	

The proposed mechanism for these reactions is illustrated in Scheme (1). The condensation of 2-methyl-1,9-diphenylnona-1,3,6,8-tetraen-5-one [10] with menthone is selected as a representative model for the possible pathways of the nucleophilic addition process.

Theoretical investigation using CS ChemOffice V. 5 programme on the cross conjugated enones $[1-10]$ and their corresponding addition products [11-20] with menthone have been carried out. The theoretical data, heat of formation (H.F), steric energy minimized by AMI method
(S.E $\mathrm{E}_{\text {minz Am1 }}$) and steric energy minimized by MM2 (S.E $\mathrm{E}_{\operatorname{minz}} \mathrm{Mm} 2$) for the reactants ${ }^{11,12}$ \& products are shown in table (3) and table (4) respectively.

In a strong basic medium two anions from menthone can be obtained, anion Men1 and anion Men2 (scheme 1). The heat of formation of anion (Men. 1) is ($-82.905 \mathrm{Kcal} /$ mole), while that for anion (Men. 2) is (-88.936 Kcal/mole). The anion (Men. 1) is less stable than anion (Men. 2), but due to the steric hindrance, attack of the anion (Men. 1) is more probable than the attack of the anion (Men. 2). Moreover, theoretically, the products obtained from reaction of anion (Men. 1) with the cross conjugated ketone are more stable than the products obtained from the reaction of the cross conjugated ketones with anion (Men. 2). This can be observed when the H.F values are compared for all the possible reactions of the two anions (Scheme 1) (Table 4).

Inspection of scheme 1 and table (4) shows that the theoretical parameters H.F, S.E $\min ^{2}$ AM1 and S.E min2 MM2 for the products do not give a clear distinction between the stability of addition products of rout A or rout (B) i.e their values are very close. However the physical parameters which were calculated for the reactants ${ }^{11,12}$ (table 3) clarified which route is preferable. The atomic steric energy (A.S.E) values and the extended Huckel charge (E.H.C) for C_{4} and C_{4} of the central chain of the dienone [1-3] indicate that C_{4} is more liable to nucleophilic attack than C_{4}. On the other hand C_{4} of the dienone, trienone \& tetraenone- [4$10]$ is the preferred site for the nucleophilic attack than $\mathrm{C}_{4}, \mathrm{C}_{6}$ or C_{6}.

These data indicate that the effect of ring substituent whether e-withdrawing (p-Cl [2],[6]) or e-denoting ($\mathrm{p}-\mathrm{CH}_{3}[3],[7]$) on the addition of Men1 is weak. This unexpected behavior can be attributed to the nonplanarity of the phenyl ring (A) with the enone chain which is supported by the values of the dihedral angle for all the reactants (Table 3) and 3D structure ${ }^{11,12}$. The data obtained from the minimized geometry for compounds [11-20] indicate that these final products are not planer. As a representative model the 3 D structure of compound [20] is selected $\operatorname{Fig}(1)$. The dihedral angle $\mathrm{ph}_{\mathrm{A}}=+66.6$ and $\mathrm{ph}_{\mathrm{B}}=+12.8$ which indicates its non-planarity. The dihedral angle between menthone molecule and the central system is -48.4 which means that the menthone ring is not the same plane with the starting material.

Physico-Chemical Study of Some Cross Conjugated Systems, Part II.

Scheme (1): The suggeste mechan ism for the reaction of menthone with tetraenone [10]

M. Y. Shandala \& M. M. Al-Shamamry \& H. A. A. Al-Wahab \& R. G. Salih

Table(3): THE PHYSICAL PARAMETERS (E.H.C) ; (A.E.D.) ; (H.F.) ; (S.E) Mini aM1 ; [S.E.] Mini MM2 ; bond length; Dihedral Angle; (A.S.E.)\} FOR COMPOUNDS [1-10] X

$\begin{array}{\|l} \text { Comd } \\ \text {. No. } \\ \hline \end{array}$	X	$\mathbf{n}_{\text {a }}$	$\mathbf{n}_{\text {b }}$	$\mathbf{R a}_{\text {a }}$	$\mathbf{R}_{\text {b }}$	CHARGE (Wang-Ford), Extended Hückel charge		BOND LENGTH (A)		$\begin{gathered} \text { H.F } \\ \text { (S.E.) } \\ \text { [S.E.] } \\ \text { kcal/mole } \end{gathered}$	DIHEDRAL ANGLE (DEGREES)		CHARGE (Wang-Ford), Extended Hückel	A.S.E. kcal/mole				
						Atom electron density(A.E.D)				ring \mathbf{A}	ring B	1						
1	H	0	0	-	-	C3	C4	$\begin{aligned} & \mathrm{C} 3=\mathrm{C} 4 \\ & 1.34345 \end{aligned}$	$\begin{gathered} \mathrm{C}^{{f4fb8b5d9-faa4-4aa3-8736-3e11a3aafaea} \\ 1.34333 \end{gathered}$		$\begin{gathered} 45.227 \\ (-1.451) \\ {[-2.899]} \end{gathered}$			$\begin{aligned} & (-0.313) \\ & (+0.284) \end{aligned}$	$\begin{gathered} \mathrm{C} 4=-2.3274 \\ \mathrm{C} 4=-2.0468 \end{gathered}$			
						$\begin{gathered} (-0.237) \\ -0.095 \end{gathered}$	$\begin{gathered} (-0.037) \\ +0.052 \end{gathered}$											
						4.2372	4.0373											
						C3	C4	$\begin{gathered} \mathrm{C}=\mathrm{O} \\ 1.24260 \end{gathered}$										
						$\begin{gathered} (-0.236) \\ -0.095 \\ \hline \end{gathered}$	$\begin{aligned} & \hline(-0.037) \\ & +0.052 \\ & \hline \end{aligned}$			$\begin{gathered} -0.520 \\ +0.400 \end{gathered}$								
						4.2370	4.0376											
2	Cl	0	0	-	-	C3	C4			$\begin{gathered} 38.264 \\ (-0.912) \\ {[-2.526]} \end{gathered}$				$\begin{gathered} \mathrm{C} 4=-2.9224 \\ \mathrm{C} 4=-2.5613 \end{gathered}$				
						$\begin{gathered} (-0.230) \\ -0.132 \end{gathered}$	$\begin{aligned} & (-0.042) \\ & +0.057 \\ & \hline \end{aligned}$	$3=\mathrm{C} 4$	C3` \(=\) C4`				$\begin{gathered} (-0.311) \\ (+0.283) \end{gathered}$					
						42306	4.0429	1.34319	1.34371									
						C3` & C4 & \multicolumn{2}{\|c	}{\multirow{3}{*}{\[\begin{gathered} \mathrm{C}=\mathrm{O} \\ 1.24247 \end{gathered} \]}} & & & & & \\ \hline & & & & & & \[\begin{gathered} (-0.239) \\ -0.090 \\ \hline \end{gathered} \] & \[\begin{gathered} (-0.034) \\ +0.059 \\ \hline \end{gathered} \] & & & & & & \[\begin{gathered} 0.594 \\ +0.389 \end{gathered} \] & \\ \hline & & & & & & 4.2395 & 4.0340 & & & & & & & \\ \hline \multirow{6}{*}{3} & \multirow{6}{*}{\(\mathrm{CH}_{3}\)} & \multirow{6}{*}{0} & \multirow{6}{*}{0} & \multirow{6}{*}{-} & \multirow{6}{*}{-} & C3 & C4 & \multirow{3}{*}{\[\begin{aligned} & \mathrm{C} 3=\mathrm{C} 4 \\ & 1.34359 \end{aligned} \]} & \multirow{3}{*}{\[\begin{gathered} \mathrm{C} 3^{`}=\mathrm{C} 4											
						$\begin{gathered} (-0.239) \\ -0.101 \end{gathered}$	$\begin{aligned} & \hline(-0.034) \\ & +0.063 \end{aligned}$						$\begin{aligned} & (-0.314) \\ & (+0.284) \end{aligned}$					
						4.2395	4.0348											
						C3`& C4 & \multicolumn{2}{\|c	}{\multirow{3}{*}{\[\begin{gathered} \mathrm{C}=\mathrm{O} \\ 1.24271 \end{gathered} \]}} & & & & & \\ \hline & & & & & & \[\begin{gathered} (-0.236) \\ -0.091 \end{gathered} \] & \[\begin{gathered} (-0.038) \\ +0.065 \end{gathered} \] & & & & & & \[\begin{array}{r} -0.576 \\ +0.397 \end{array} \] & \\ \hline & & & & & & 4.2367 & 4.0469 & & & & & & & \\ \hline \multirow{7}{*}{4} & \multicolumn{5}{	l	}{\multirow{7}{*}{}} & C3 & C4 & \multirow{3}{*}{\[\begin{aligned} & \mathrm{C} 3=\mathrm{C} 4 \\ & 1.34368 \end{aligned} \]} & \multirow{3}{*}{\[\begin{gathered} \mathrm{C} 3`=\mathrm{C} 4									
1.34401 \end{gathered} \]}	$\begin{aligned} & 27.084 \\ & (15.55) \\ & {[8.808]} \end{aligned}$		$+14.5$		$\begin{gathered} \mathrm{C} 4=0.885 \\ \mathrm{C} 4=-1.3651 \end{gathered}$													
						$\begin{gathered} (-0.229) \\ -0.099 \end{gathered}$	$\begin{gathered} (-0.016) \\ +0.071 \end{gathered}$						$\begin{aligned} & (-0.312) \\ & (+0.283) \end{aligned}$					
						4.2291	4.0166											
						C3'	C4	$\begin{gathered} \mathrm{C}=\mathrm{O} \\ 1.24266 \end{gathered}$					$\begin{gathered} -0.520 \\ +0.407 \end{gathered}$					
						(-0.238)	(-0.035)											
						-0.095	+0.056											
						4.2384	4.0350											

Physico-Chemical Study of Some Cross Conjugated Systems, Part II.

Prod. No.	X	$\mathbf{n a}_{\text {a }}$	$\mathbf{n b}_{\text {b }}$	Ra_{a}	$\mathbf{R}_{\text {b }}$	H.F (kcal/mole)S.E $_{\text {Mini AM1 }}(\mathrm{kcal} / \mathrm{mole})$$\left[\right.$ S.E $_{\text {Mini MM2 }}(\mathrm{kcal} / \mathrm{mole})$									
						anion Men1					anion Men2				
						$\mathbf{M 1 A}_{1,6}$ Men1	$\mathbf{M 1} \mathbf{A}_{1,4}$ Men1	$\begin{gathered} \text { Claisen1 } \\ \text { Men1 } \\ \hline \end{gathered}$	$\mathbf{M 1 B}_{1,4}$ Men1	$\mathbf{M 1 B}_{1,6}$ Men1	$\mathbf{M 1 A}_{1,6}$ Men2	$\mathbf{M 1 A}_{1,4}$ Men2	Claisen1 Men2	$\begin{gathered} \hline \text { M1B }_{1,4} \\ \text { Men2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { M1B }_{1,6} \\ \text { Men2 } \\ \hline \end{gathered}$
11	H	0	0	---	---	------	$\begin{gathered} -42.554 \\ 26.523 \\ {[18.970]} \end{gathered}$	$\begin{gathered} \hline-33.185 \\ 20.786 \\ {[10.518]} \end{gathered}$	$\begin{gathered} -42.701 \\ 24.965 \\ {[18.362]} \\ \hline \end{gathered}$	------	------	$\begin{gathered} -36.047 \\ 35.249 \\ {[27.854]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-20.461 \\ 31.035 \\ {[21.634]} \\ \hline \end{gathered}$	$\begin{gathered} -36.311 \\ 35.291 \\ {[28.544]} \end{gathered}$	------
12	Cl	0	0	---	---	------	-48.850 29.970 [19.293]		$\begin{gathered} -50.189 \\ 28.060 \\ {[18.650]} \\ \hline \end{gathered}$	------	------	$\begin{gathered} -43.604 \\ 35.575 \\ {[29.338]} \\ \hline \end{gathered}$	$\begin{gathered} -31.643 \\ 31.977 \\ {[22.570]} \\ \hline \end{gathered}$	$\begin{gathered} -44.256 \\ 38.764 \\ {[26.193]} \\ \hline \end{gathered}$	------
13	CH_{3}	0	0	---	---	------	$\begin{gathered} -49.428 \\ 33.598 \\ {[20.666]} \\ \hline \end{gathered}$	-40.885 20.883 [11.587]	$\begin{gathered} -51.077 \\ 29.590 \\ {[20.235]} \\ \hline \end{gathered}$	------	------	$\begin{gathered} -43.963 \\ 35.017 \\ {[30.257]} \\ \hline \end{gathered}$	$\begin{gathered} -32.173 \\ 31.464 \\ {[23.764]} \end{gathered}$	$\begin{gathered} \hline-44.208 \\ 38.279 \\ {[29.357]} \\ \hline \end{gathered}$	------
14	$x\langle\underline{\underline{A}}\rangle=\boxed{O}\rangle$	0	0	---	---	------	$\begin{gathered} -62.041 \\ 44.748 \\ {[28.950]} \end{gathered}$	$\begin{gathered} \hline-49.657 \\ 39.904 \\ {[12.357]} \end{gathered}$	$\begin{gathered} -59.889 \\ 42.059 \\ {[31.858]} \\ \hline \end{gathered}$	------	------	$\begin{gathered} -57.416 \\ 51.097 \\ {[39.574]} \end{gathered}$	$\begin{gathered} -45.235 \\ 39.904 \\ {[33.210]} \end{gathered}$	$\begin{gathered} \hline-56.663 \\ 49.972 \\ {[42.887]} \\ \hline \end{gathered}$	------
15	H	0	1	---	H	------	$\begin{gathered} \hline-34.319 \\ 27.118 \\ {[16.111]} \\ \hline \end{gathered}$	-20.256 18.448 [8.048]	$\begin{gathered} \hline-33.117 \\ 25.087 \\ {[18.804]} \\ \hline \end{gathered}$	$\begin{gathered} -27.945 \\ 34.455 \\ {[25.637]} \\ \hline \end{gathered}$	------	$\begin{gathered} \hline-29.744 \\ 25.354 \\ {[22.704]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-19.573 \\ 16.354 \\ {[19.300]} \\ \hline \end{gathered}$	$\begin{gathered} -28.311 \\ 28.271 \\ {[22.074]} \end{gathered}$	$\begin{gathered} \hline-18.854 \\ 38.241 \\ {[27.558]} \\ \hline \end{gathered}$
16	Cl	0	1	---	H	------	$\begin{gathered} -39.726 \\ 27.567 \\ {[16.010]} \end{gathered}$	$\begin{array}{r} -27.425 \\ 18.862 \\ {[8.634]} \end{array}$	$\begin{gathered} -40.134 \\ 26.075 \\ {[17.121]} \end{gathered}$	$\begin{gathered} -35.058 \\ 33.369 \\ {[26.172]} \end{gathered}$	------	$\begin{gathered} -34.256 \\ 24.665 \\ {[25.447]} \end{gathered}$	$\begin{gathered} -17.465 \\ 19.354 \\ {[24.175]} \end{gathered}$	$\begin{gathered} -33.550 \\ 23.584 \\ {[25.376]} \\ \hline \end{gathered}$	$\begin{gathered} -16.450 \\ 26.885 \\ {[28.667]} \end{gathered}$
17	CH_{3}	0	1	---	H	------	-37.953 25.169 $[16.245]$	$\begin{gathered} -26.964 \\ 19.331 \\ {[8.995]} \\ \hline \end{gathered}$	$\begin{gathered} -37.001 \\ 25.421 \\ {[17.631]} \\ \hline \end{gathered}$	$\begin{gathered} -30.671 \\ 34.259 \\ {[25.391]} \\ \hline \end{gathered}$	------		-18.322 18.450 $[22.746]$	-34.482 30.369 $[26.508]$	-20.984 28.357 $[30.080]$
18	H	1	1	H	H	$\begin{gathered} -14.983 \\ 34.034 \\ {[26.874]} \\ \hline \end{gathered}$	-18.867 25.630 $[15.952]$	$\begin{gathered} -5.229 \\ 16.933 \\ {[5.280]} \\ \hline \end{gathered}$	$\begin{gathered} -18.047 \\ 25.564 \\ {[16352]} \\ \hline \end{gathered}$	$\begin{gathered} -15.568 \\ 34.540 \\ {[25.668]} \\ \hline \end{gathered}$	$\begin{gathered} -11.681 \\ 36.864 \\ {[27.926]} \\ \hline \end{gathered}$	$\begin{gathered} -12.433 \\ 28.902 \\ {[17.334]} \\ \hline \end{gathered}$			$\begin{gathered} -11.842 \\ 36.347 \\ {[26.456]} \\ \hline \end{gathered}$
19	H	1	1	CH_{3}	CH_{3}	$\begin{gathered} -14.770 \\ 49.067 \\ {[20.198]} \end{gathered}$	$\begin{gathered} \hline-25.723 \\ 37.489 \\ {[24.553]} \end{gathered}$	$\begin{gathered} \hline-16.251 \\ 28.192 \\ {[15.542]} \\ \hline \end{gathered}$	$\begin{gathered} -25.854 \\ 37.996 \\ {[25.173]} \\ \hline \end{gathered}$	$\begin{gathered} -14.207 \\ 49.854 \\ {[20.176]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-9.357 \\ 52.367 \\ {[28.247]} \end{gathered}$	$\begin{gathered} -21.951 \\ 41.158 \\ {[22.611]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-10.248 \\ 36.981 \\ {[26.547]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-21.042 \\ 41.651 \\ {[22.324]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-9.657 \\ 52.441 \\ {[25.247]} \end{gathered}$
20	H	1	1	CH_{3}	H	$\begin{gathered} -10.250 \\ 42.764 \\ {[21.058]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-24.553 \\ 29.933 \\ {[20.716]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-11.697 \\ 22.023 \\ {[10.208]} \\ \hline \end{gathered}$	$\begin{gathered} -22.014 \\ 29.648 \\ {[21.367]} \\ \hline \end{gathered}$	$\begin{gathered} -20.422 \\ 35.011 \\ {[30.276]} \end{gathered}$	$\begin{gathered} -6.333 \\ 43.289 \\ {[27.054]} \end{gathered}$	$\begin{gathered} -20.022 \\ 32.020 \\ {[19.654]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-8.034 \\ 29.920 \\ {[21.871]} \\ \hline \end{gathered}$	$\begin{gathered} -20.226 \\ 28.648 \\ {[20.091]} \\ \hline \end{gathered}$	$\begin{gathered} \hline-14.325 \\ 42.092 \\ {[33.226]} \\ \hline \end{gathered}$

Figure (1): The 3D-stuctures of compound [20]

References

1) W. Hutter and H. K. Bodenseh, J. Mol. Struct., 291, 151-158, (1993).
2) S. Patai, "The Chemistry of Alkene". ${ }^{3 r d}$ ed., Wiley \& Sons, London, pp. 955-957, (1967).
3) M. Iqbal and M. Evans, Tetrahedron Letters, 44, 5741-5745, (2003).
4) Lu. Xiyan and Ma. Dawei, Pure and Appl. Chem., Vol. 62, No. 4, pp. 723-730, (1990), Printed in Great Britain (IUPAC).
5) R. L. Nongkhlow, R. Nongrum and B. Myrboh, J. Chem. Soc. Perkin Trans. 1, 1300-1303, (2001).
6) F. Diederich, The Royal Society of Chemistry, Chem. Commun., 219-227, (2001).
7) W. Hutter and M. Dakkouri, J. Mol. Struct., 321, 255-263, (1994).
8) M. Klokkenburg, M. Lutz, J. H. Van der Maas and C. Van Walree, Interscience Chemistry, 4; 9(15): 3544-3554, (2003).
9) G. Ginocchietti, U. Mazzucato and A. Spalletti, International Journal of Photoenergy, 6, 241-253, (2004).
10) R. G. Salih, A. A. Thanon, M. Y. Shandala, Iraqi J. of Chem., 20,108-117,(1995).
11) M.. M. S. Al-Shammary, "Physico-Chemical Study of Some Cross Conjugated Systems", Ph.D. Thesis, University of Mosul (2006).
12) M. Y. Shandala, M.. M. S. Al-Shammary \& R. G. Salih, J. Edu. \& Sci., 21, 265-275, (2008) on the first conference on chemistry (October-2008).
13) J. Bargon, "Computational Methods in Chemistry". Plenum Press, 134, 141, (1980).
14) C. J. Cramer, "Essentials of Computational Chemistry". $2^{\text {nd }}$ ed., John Wiley \& Sons, p. 43, (2004).
15) A. I. Vogel, "Text Book of Practical Chemistry". $3^{\text {rd }}$ ed., Longmans, London, p. 796, (1981).
16) C. S. Mavvel, L. E. Coleman, J. R. and G. P. Scott, J. Org. Chem., 20, 1785-1792, (1955).
17) S. V. Tsukcrman, V. M. Nikitchenke, A. I. Bugai and V. F. Lavrushin, Khim. Str., Svoistva Reaktivnost Org. Soedin, 53, 9, (1969); Chem. Abs., 73, p. 301, 45276 t (Russ), (1970).
18) E. B. Keein and Z. Aizenshat, J. Org. Chem., 58, 6103-6108, (1993).
