< J. Edu. & Sci., Vol. (24), No. (3) 2011 🦻

Physico-Chemical Study of Some Cross Conjugated Systems, Part II

M. Y. Shandala M. M. Al-Shamamry H. A. A. Al-Wahab Department of Chemistry / College of Science University of Mosul

> **R. G. Salih** Department of Chemistry / College of Education University of Mosul

> > Received 24 / 05 / 2010

Accepted 04 / 07 / 2010

الملخص

يتضمن البحث دراسة لتكاثف سلاسل متعددة من مركبات الإينون ذات الإقتران المتقاطع الحاوية على اصرتين و ثلاث و أربع أواصر C = C مع المينثون تحت ظروف تقنية التحفيز بانتقال الطور (PTC) للحصول على مركبات جديدة تم تشخيصها بالطرق الطيفية. ولغرض وضع ميكانيكيه محتمله لهذه التفاعلات تمت دراسة الحسابات النظرية لكل من هذه التكاثفات باستعمال طريقتي الميكانيك الجزيئي وميكانيك الكم و كذلك لتوضيح الطبيعة الإستثنائية لمركبات الإقتران المتقاطع فضلا عن وضوح تأثير المعوضات على التوزيع الألكتروني للسلسلة الداخلية وعلى توجيه الإضافة النيوكلوفيلية والشكل الفراغي ثلاثي الأبعاد للمواد الأولية والنواتج.

Abstract

A series of cross-conjugated enones [1-10] are condensed with menthone under (PTC) technique. The structures of the new products [11-20] were identified by spectral analysis. The probable reaction mechanism for each condensation is investigated by theoretical approach using both quantum mechanic (AM1) and molecular (MM2) computational methods. The unique behavior of these cross conjugated enones toward nucleophilic addition orientation, substituent effect on the electronic distribution, and the polarity of the molecules have been examined.

Introduction

Molecules with cross conjugated bond systems are of great interest for both theoretical and applied chemistry ¹⁻². Extended cross-conjugated enones (α,β,γ , and δ) system is an important system due to its presence in biologically active compounds¹⁻⁴. Some of cross conjugated dienones are in pre-clinical trials as an anticancer agents, Also extended enones are well known as common flavor constituent in tea, tobacco & foods⁴. In addition,this system has been used as useful substances or intermediates in the synthesis of vitamins⁵ and natural products⁶.

theoretical investigations have carried Several out on a series of cross conjugated compounds^{1,7-9}. Semi-empirical calculations on cyclopentadienone and cyclohexadienone have been reported⁷. The calculation of geometries by empirical force field showed that the rings are planer for both compounds. Electrochemical data and AM1 calculations on a series of cross-conjugated p-phenylene vinylidene with one to four double bonds revealed that electronic interaction between the repeating C=C bond unit is not very strong⁸. Theoretical calculations by the ZINDO method on cross conjugated 2,6-di-(phenylethynyl)pyridine & 2,6-d-(phenylbutadienyl)pyridine showed that the central group in cross-conjugated compound is conjugated with one or the other double bond, but not with both simultanously⁹.

In conjunction to our interest in the synthesis and condensation reactions of α - β - unsaturated carbonyl compounds with various C-H acids under phase transfer catalysis (PTC)¹⁰⁻¹², the condensation of a series of cross-conjugated enones, dienones [1-3], trienones [4-7], and tetraenones [8-10] with menthone have been investigated. Theoretical calculations using (AM1)¹³ and (MM2)¹⁴ computational method on both reactants & products are performed.

Experimental

1. Instrumental

Melting points were measured using electro thermal (IA9000) digital-series M.P. apparatus. IR spectra were recorded on Tensor-27 Bruker (FT.IR) and U.V spectra were measured by Schimadzu UV-160 spectrophotometer.

2. The Computation

Chemoffice (version 5.0) software package was used for theoretical calculations. Geometrical optimization of dihedral angle, heat of formation (H.F), net atomic charge & bond distance were calculated using Semi-empirical methods (AM1 with package MOPAC). Whilst, MM2 were used for molecular mechanics calculations of steric energy (S.E) and atomic steric energy (A.S.E).

Preparations

1. Preparation of the starting materials

The cross-conjugated enones [1-10] were prepared by standard methods¹⁵⁻¹⁷ where the desired benzaldehyde was condensed with the proper ketone in aqueous ethanolic sodium hydroxide. These enones were identified by their physical & spectral data¹¹⁻¹² (IR, UV,NMR). These data are reported & published¹² in our study of the same series of enones in part(I).

2. General procedure for the condensation of the enones [1-10] with menthone under $(PTC)^{18}$.

A mixture of (3ml) 50% NaOH, (25ml) benzene, (0.3gm) benzyl tributylammouium chloride (TEBA) and ((0.0025 mole) of menthone is stirred magnetically for (5min). The enone [1-10] (0.0025 mole) was added dropwise, stirring is continued for certain intervals at 30-40 $^{\circ}$ C until no further change in color is observed. The benzene layer was separated, washed with water, dried over MgSO₄ and evaporated. The residue obtained is recrystallized from (95%) ethanol.

Table (1) illustrates weight of reactants, time of reactions, names of the products, [11-20], M.P and % yields.

Table (1): Weight of	reactants, time of reactions	, names of the products	, melting
<u>.</u>	points and percentage yiel	lds [11-29]	_

Compd No.	Wt. of Reactants (gm) Uns. Ketone Menthone	X	Time of reaction (min)	m.p & color	Yield %								
		x-{	→−СН=СН-	C = C + C + C + C + C + C + C + C + C +									
11	11 0.585 0.385		90	2-(3-oxo-1,5-diphenylpent- 4-enyl)-6-isopropyl-3- methylcyclohexanone	153-155 yellow- orange	43							
12	0.670 0.385	Cl	120	2-(5-(p-chlorophenyl)-3- oxo-1-phenylpent-4-enyl)- 6-isopropyl-3- methylcyclohexanone	140-142 yellow	50							
13	13 0.620 0.385		90	2-(5-(p-tolyl)-3-oxo-1- phenylpent-4-enyl)-6- isopropyl-3- methylcyclohexanone	164-166 yellow	48							
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												

Physico-Chemical Study of Some Cross Conjugated Systems, Part II.

14	0.56 0.385	Ar = 2-Furyl	120	2-(1-(furan-2-yl)-3-oxo-5- phenylpent-4-enyl)-6- isopropyl-3- methylcyclohexanone	205-208 yellow	39								
	$X - CH - CH_2 - C - CH = CH - CH =$													
		H ₃ C-〈		CH ₃) ₂										
15	0.650 0.385	Н	90	2-(3-oxo-1,7- diphenylhepta-4,6-dienyl)- 6-isopropyl-3- methylcyclohexanone	168-170 yellow	51								
16	0.730 0.385	Cl	90	2-(1-(p-chlorophenyl)-3- oxo-7-phenylhepta-4,6- dienyl)-6-isopropyl-3- methylcyclohexanone	172-174 yellow	57								
17	0.685 0.385	CH ₃	120	2-(1-(p-tolyl)-3-oxo-7- phenylhepta-4,6-dienyl)-6- isopropyl-3- methylcyclohexanone	168-170 yellow	60								
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
*18	0.715 0.385		90	2-(5-oxo-1,9-diphenylnona- 1,6,8-trien-3-yl)-6- isopropyl-3- methylcyclohexanone	160-162 yellow	55								
**19	0.785 0.385		90	2-(2,8-dimethyl-5-oxo-1,9- diphenylnona-1,6,8-trien-3- yl)-6-isopropyl-3- methylcyclohexanone	177-179 yellow	50								
***20	0.750 0.385		90	2-(2-methyl-5-oxo-1,9- diphenylnona-1,6,8-trien-3- yl)-6-isopropyl-3- methylcyclohexanone	168-171 yellow	48								

* Ra, Rb = H

** Ra, $Rb = CH_3$

*** $Ra = CH_3$, Rb = H

Results and discussion

The condensations of the cross conjugated enones [1-10] with menthone under (PTC) conditions were carried out and the products [11-20] were obtained. The products were identified by the analysis of their IR and UV spectral data. The spectral data of the condensation products are illustrated in table (2). As a representative model of the condensation products, compound [20] is selected. The IR spectrum shows a broad absorption band at (1705-1680cm⁻¹) which is attributed to the stretching vibration of the cyclic & acyclic C=O group overlapped with each other. The absorption at (1600-1585cm⁻¹) belong to (C=C) of the olefinic and aromatic double bond. The isopropy group shows a

strong doublet at $(1397-1370 \text{ cm}^{-1})$ due to the inplane and out of plane deformation of the two methyl of menthone fragment.

The UV spectrum of the product [20] exhibits a maximum absorption at λ_{max} (348)nm) / with a blue shift when compared with λ_{max} of the reactant [10] (λ_{max} 387nm). The decrease in λ_{max} is due to the decrease in conjugation of the product [20] (table 2).

Comp.		UV CHCl ₃			
No.	Band	Interpretation	λ_{max} (nm)		
	1712 (s)	$v_{C=O}$ of cyclohexane			
	1667 (s)	$v_{C=O}$ of unsat. ketone			
11	1610 (s)	$v_{C=C}$ olefinic and skeletal vib. of			
	1606 (s) 1575 (s)	CC aromatic	322		
	1364-1382 (s)	Gem dimethyl			
	2991 (m)	v_{C-H} of alkane			
	3039 (m)	V _{=C-H}			
	1679 (s)	$v_{C=O}$ of cyclohexane			
	1653 (s)	$v_{C=O}$ of unsat. ketone			
	1602 (s)	$v_{C=C}$ olefinic and skeletal vib. of			
12	1577 (s) 1541 (s)	CC aromatic	314		
	1363, 1356 (s)	Gem dimethyl			
	2870 (w)	v _{C-H} of alkane			
	3058 (m)	ν _{=C-H}			
	1722 (s)	$v_{C=O}$ of cyclohexane			
	1663 (s)	$v_{C=O}$ of unsat. ketone			
	1603 (s)	$v_{C=C}$ olefinic and skeletal vib. of			
13	1588 (s) 1568 (s)	CC aromatic	318		
	1377, 1371 (s)	Gem dimethyl			
	3011 (m)	v_{C-H} of alkane			
	1743 (s)	$v_{C=0}$ of cyclohexane			
	1689 (s)	$v_{C=0}$ of unsat. ketone	1		
	1240 (s)	$v_{=C-O}$ asymmetric str.	1		
	1612 (s)	$v_{C=C}$ olefinic and skeletal vib. of			
	1593 (s)	CC aromatic			
14	1304(8) 1391 1362(s)	Gem dimethyl	306		
	2075 (w)	No of alkana			
	$\frac{2973}{(w)}$		-		
	3123 (m)	V=C-H Vcu of furan			
		v_{C-0} out of plane (bending of			
	810 (s)	furan)			

Table (2): The IR and UV spectral data of products [11-20]

Physico-Chemical Study of Some Cross Conjugated Systems, Part II.

	1706 (s)	$v_{C=O}$ of cyclohexane						
15	1679 (s)	$v_{C=0}$ of unsat. ketone						
	1628 (s)	$v_{C=C}$ olefinic and skeletal vib. of						
	1603 (s)	CC aromatic	308					
	1582 (s)		200					
	1352, 1343 (s)	Gem dimethyl						
	2998, 2903 (m)	V _{C-H} of alkane						
	3014 (III)	V _{=C-H}						
	$\frac{1}{12}$ (s)	$V_{C=0}$ of cyclohexane						
	1685 (S) 1608 (a)	$V_{C=O}$ of unsat. ketone						
	1008(S) 1591(S)	$v_{C=C}$ olefinic and skeletal vib. of						
16	1562 (s)	CC aromatic	319					
	1381, 1321 (s)	Gem dimethyl						
	2983, 2899 (m)	v_{C-H} of alkane						
	3001 (m)	V _{=C-H}						
	1726 (s)	$v_{C=O}$ of cyclohexane						
	1678 (s)	$v_{C=0}$ of unsat. ketone						
	1613 (s)	1613 (s) $v_{C=C}$ olefinic and skeletal vib. of						
17	1586 (s)	1586 (s) 1574 (c) C····C aromatic						
- /	$\frac{1574}{(s)}$							
	1385, 1329 (s)	Gem dimetnyl						
	2702, 2091 (III) 3026 (m)	V _{C-H} Of alkalie						
	1711 (s)	v=C-H						
	1/11 (S) 1650 (a)							
	1639 (8)	$v_{C=0}$ of unsat. Ketone						
18	1603(s) 1584(s)	$v_{C=C}$ of efficiency and skeletal vib. of	354					
10	1304(8)	CC aromatic	334					
	$\frac{1303, 1324 (8)}{2072, 2820 (m)}$							
	2772, 2030 (W) 3018 (W)							
	$1663_{-}1600 (hr)$	v=C-H						
	1604 (s)							
	1571 (s)	$v_{C=C}$ olefinic and skeletal vib. of						
19	1543 (s)	C - C aromatic	349					
	1356, 1341 (s)	Gem dimethyl						
	2912, 2823 (m)	v _{C-H} of alkane						
	3008 (m)	V _{=C-H}						
	1680-1705 (br)	$v_{C=O}$ of two carbonyl overlapped						
	1600 1585 (a)	$v_{C=C}$ olefinic and skeletal vib. of						
20	1000-1303 (8)	CC aromatic	240					
20	1370-1397 (s)	348						
	2973, 2880 (w)							
	3056, 3025 (m)	V _{=C-H}						

The proposed mechanism for these reactions is illustrated in Scheme (1). The condensation of 2-methyl-1,9-diphenylnona-1,3,6,8-tetraen-5-one [10] with menthone is selected as a representative model for the possible pathways of the nucleophilic addition process.

Theoretical investigation using CS ChemOffice V. 5 programme on the cross conjugated enones [1-10] and their corresponding addition products [11-20] with menthone have been carried out. The theoretical data, heat of formation (H.F), steric energy minimized by AMI method

 $(S.E_{minz Am1})$ and steric energy minimized by MM2 $(S.E_{minz MM2})$ for the reactants^{11,12} & products are shown in table (3) and table (4) respectively.

In a strong basic medium two anions from menthone can be obtained, anion Men1 and anion Men2 (scheme 1). The heat of formation of anion (Men. 1) is (-82.905 Kcal/mole), while that for anion (Men. 2) is (-88.936 Kcal/mole). The anion (Men. 1) is less stable than anion (Men. 2), but due to the steric hindrance, attack of the anion (Men. 1) is more probable than the attack of the anion (Men. 2). Moreover, theoretically, the products obtained from reaction of anion (Men. 1) with the cross conjugated ketone are more stable than the products obtained from the reaction of the cross conjugated ketones with anion (Men. 2). This can be observed when the H.F values are compared for all the possible reactions of the two anions (Scheme 1) (Table 4).

Inspection of scheme 1 and table (4) shows that the theoretical parameters H.F, S.E_{min2} AM1 and S.E_{min2} MM2 for the products do not give a clear distinction between the stability of addition products of rout A or rout (B) i.e their values are very close. However the physical parameters which were calculated for the reactants^{11,12} (table 3) clarified which route is preferable. The atomic steric energy (A.S.E) values and the extended Huckel charge (E.H.C) for C₄ and C₄ of the central chain of the dienone [1-3] indicate that C₄ is more liable to nucleophilic attack than C₄. On the other hand C₄ of the dienone, trienone & tetraenone [4-10] is the preferred site for the nucleophilic attack than C₄, C₆ or C₆.

These data indicate that the effect of ring substituent whether e-withdrawing (p-Cl [2],[6]) or e-denoting (p-CH₃ [3],[7]) on the addition of Men1 is weak. This unexpected behavior can be attributed to the nonplanarity of the phenyl ring (A) with the enone chain which is supported by the values of the dihedral angle for all the reactants (Table 3) and 3D structure^{11,12}. The data obtained from the minimized geometry for compounds [11-20] indicate that these final products are not planer. As a representative model the 3D structure of compound [20] is selected Fig(1). The dihedral angle $ph_A = + 66.6$ and $ph_B = + 12.8$ which indicates its non-planarity. The dihedral angle between menthone molecule and the central system is -48.4 which means that the menthone ring is not the same plane with the starting material.

Physico-Chemical Study of Some Cross Conjugated Systems, Part II.

M. Y. Shandala & M. M. Al-Shamamry & H. A. A. Al-Wahab & R. G. Salih

 $Table(3): THE PHYSICAL PARAMETERS (E.H.C); (A.E.D.); (H.F.); (S.E)_{Mini AM1}; [S.E.]_{Mini MM2}; bond length; Dihedral Angle; (A.S.E.) FOR COMPOUNDS [1-10] Indication (Indicating the second secon$

	$X - \underbrace{\langle \overline{A} \rangle}_{\delta} + \underbrace{\langle \overline{C}B = \overline{C} \rangle}_{\eta_{a}} + \underbrace{\langle \overline{C}B = \overline{C}B - \overline{C}$																					
						CF (Wa	IARGE ng-Ford).			HF	DIHEDRA	L ANGLE	CHARGE (Wang-Ford),									
Comd . No.	X	n _a	n _b	Ra	R _b	Extended	BOND L	ENGTH .)	(S.E.) [S.E.]	(DEGREES)		Extended Hückel charge	A.S.E. kcal/mole									
						Atom electro	on density(A.E.D)			kcal/mole	ring A	ring B	O=C									
						C3 (-0.237) -0.095	C4 (-0.037) +0.052	C3=C4 1.34345	C3`=C4` 1.34333	45 227		\sim	(-0.313) (+0.284)									
1 H 0 0	0	-	-	(-0.236) -0.095	C4` (-0.037) +0.052	C= 1.24	:O 260	(-1.451) [-2.899]	+ 4.1	- 5.3	- 5.3 -0.520 +0.400	-0.520 +0.400	C4=-2.3274 C4`=-2.0468									
						4.2370 <u>C3</u> (-0.230) 0.122	4.0376 C4 (-0.042)	-						(-0.311)								
2	Cl	0	0	0	0	-	-	-0.132 42306 C3` (0.239)	4.0429 C4` (0.024)	C3=C4 1.34319	C3 [×] =C4 [×] 1.34371	38.264 (-0.912) [-2.526]			(+0.283)	C4=-2.9224 C4`=-2.5613						
						-0.090 4.2395	(-0.034) +0.059 4.0340	- C= 1.24	:O 247		+ 11.4	4.0	0.594 +0.389									
														C3 (-0.239) -0.101	C4 (-0.034) +0.063	C3=C4 1.34359	C3`=C4` 1.34345	37.474			(-0.314) (+0.284)	
3	CH ₃	0	0	-	-	4.2395 <u>C3`</u> (-0.236) -0.091	4.0348 C4` (-0.038) +0.065	C=	:O 271	(-1.350) [-3.035]	+ 12.8	- 3.3	-0.576 +0.397	C4=-3.018 C4`=-2.722								
						4.2367 C3 (-0.229)	4.0469 C4 (-0.016)	C3=C4	C3`=C4`				(-0.312)									
	∬ A∕∕	1 ○ ──C=C-C		C=C—⟨	В	-0.099 4.2291 C3`	+0.071 4.0166 C4`	+0.0/1 1.34368 1.34401 27.084 4.0166 (15.55) (15.55) (15.880)		27.084 (15.55) [8.808]		B	(+0.283)	C4= 0.885 C4`=-1.3651								
	<u> </u>		3 2 3`4`		3 2 3 4		3 2 3 4		(-0.238) -0.095 4.2384	(-0.035) +0.056 4.0350	C= 1.24	:O 266	[8.808]	- 4.2	+ 14.5	-0.520 +0.407	041.5031					

				•		C3	Č4	C5°	Ć6	C3=C4								
						(-0.230)	(-0.037)			1.34330	- cs =c 6`				(-0.314)			
						-0.090	+0.068			$C3^{\circ} = C4^{\circ}$	1.34557	58.264			(+0.281)	C4=-0.2332		
5	Н	0	1	-	Н	4.2308	4.0379		00	1.54479		(-3.912)		I B		C4`=-0.6972		
						(0.236)	(0.048)	(0.155)	(0.082)	C-	0	[-5.753]	- 7.4	+7.0	0.577	C6`=-1.8474		
						-0.089	(-0.048) +0.065	-0.038	(-0.082) +0.018	1 24	279				+0.390			
						4.2361	4.0485	4.1552	4 0827	1.24.	21)				10.570			
						C3	C4	C5	C6	C3=C4								
						(-0.230)	(-0.043)			1.34330	C5`=C6`				(-0.311)			
						-0.129	+0.062			C3`=C4`	1.34565	51.269 (-3.363)	51.269 (-3.363)			(+0.283)	C4 0.201	
6	CI	0	1	_	н	4.2303	4.0433			1.34498					Ţ [B]		C4=-0.3014 $C4^{-}-0.9334$	
U	CI	0	1	-	11	C3`	C4`	C5`	C6`			[-5.316]		4.5		C4 = -0.933 C6 = -2.081		
						(-0.238)	(-0.045)	(-0.157)	(-0.080)	C=	0		+ 15.4	- 4.5	-0.597	00 - 2.001		
						-0.087	+0.058	-0.037	+0.012	1.242	262				+0.380			
						4.2385	4.0453	4.1572	4.0802									
						C3	C4	C5	C6	C3=C4								
						(-0.239)	(-0.035)			1.34365	C5`=C6`				(-0.316) (+0.283)	C4=-0.3310 C4`=-0.9752		
						-0.099	+0.002			$C3^{\circ} = C4^{\circ}$	1.34556	50.466	+ 14.6					
7	CH ₃	0	1	-	Н	4.2393	4.0554		00	1.34474		(-3.789)		I B				
						(0.235)	(0.049)	(0.154)	(0.083)	G	0	[-5.830]		-3.9	0.500	C6`=-2.154		
						-0.080	(-0.049) +0.058	-0.036	(-0.083) +0.015	C = 1.24	:0 284		11.0	• •	-0.592			
						4 2354	4 0494	4 1546	4 0833	1.24	204				+0.389			
								4.1540 C5	0055 C6	C2 C4	05.00							
						(-0.235)	(-0.049)	(-0.154)	(-0.083)	1 34475	1 34557				(-0.313)			
						-0.086	+0.062	-0.036	+0.015	C3`=C4`	C5`=C6`				(+0.282) C4=	C4 = -0.608		
		1	1			4.2357	4.0492	4.1547	4.0832	1.34473	1.34555	71.252	-9.2			I I B	Ĩ[B]	C6=-9.057
^	п	1	1	п	п	C3`	C4`	C5`	C6`			(-0.852) [-8.490]			+ 12.6 -0.5		C4`=-0.814 C6`=-1.008	
						(-0.235)	(-0.049)	(-0.154)	(-0.083)	C=	0	[0.490]		+ 12.6		-0.580		
						-0.086	+0.062	-0.036	+0.014	1.242	292				+0.388	l		
						4.2357	4.0492	4.1547	4.0832		1							
						(-0.237)	(-0.047)	(-0.087)	(-0.097)	C3=C4	C5=C6				(-0.314)	C4=1.238 C6=-3.924		
						-0.104	+0.056	+0.050	-0.021	1.34340	1.35021							
						4.0275	4.0472	4 0070	4.0074	$C3^{-}=C4^{-}$	C5`=C6`	62 157			(+0.280)			
9	Н	1	1	СН	CH ₃	4.2375	4.0473	4.0870	4.0974	1.34341	1.35014	(6.337)		U B_				
				3	5	C3`	C4`	C5`	C6`			[2.166]	+40.0	161		C4 = 0.767		
						(-0.237)	(-0.047)	(-0.086)	(-0.097)	C=	0		1 10.0	+ 40.4	-0.587	C0 =-3.900		
						-0.104	+0.056	+0.049	-0.021	1.242	272				+0.389			
						4.2375	4.0473	4.0868	4.0971									
						C3	C4	C5	C6	C3=C4	C5=C6							
						(-0.237)	(-0.047)	(-0.086)	(-0.097)	1.34339	1.35018 (-0.31	(-0.314)						
						-0.103	+0.062	+0.031	-0.020	C3`=C4`	C5`=C6`	66.698			(+0.283) C4=1.42	C4 = 1.425		
10	ц	1	1	CH	ц	4.2374	4.0472	4.0869	4.0973	1.34475	1.34556	556 (0.127) [-3.153] [-42.1] [-5.153]	C6=-4.3130					
10	11	1	1	3	11	C3`	C4`	C5`	C6`					C4`=-0.471				
						(-0.235)	(-0.049)	(-0.154)	(-0.083)	C=	0		+ 43.1	+ 5.6	-0.585	C6 =-1.147		
						-0.089	+0.057	-0.038	+0.016	1.242	4287				+0.389			
						4.2358	4.0492	4.1548	4.0831									

Physico-Chemical Study of Some Cross Conjugated Systems, Part II.

										H.F (kc	al/mole)				
										S.E Mini AM1	(kcal/mole)				
Prod No	v	n	n	D	D.	[S.E] Mini MM2 (kcal/mole)									
1100.110.	ma	пь	N a	ĸ			anion Men1				anion Men2				
						$M1A_{1,6}$	$M1A_{1,4}$	Claisen1	M1B _{1,4} `	M1B _{1,6} `	M1A _{1,6}	M1A _{1,4}	Claisen1	M1B _{1,4} `	M1B _{1,6} `
						Men1	Men1	Men1	Men1	Men1	Men2	Men2	Men2	Men2	Men2
							-42.554	-33.185	-42.701			-36.047	-20.461	-36.311	
11	Н	0	0				26.523	20.786	24.965			35.249	31.035	35.291	
							[18.970]	[10.518]	[18.362]			[27.854]	[21.634]	[28.544]	
							-48.850	-40.382	-50.189			-43.604	-31.643	-44.256	
12	Cl	0	0				29.970	21.226	28.060			35.575	31.977	38.764	
							[19.293]	[11.024]	[18.650]			[29.338]	[22.570]	[26.193]	
							-49.428	-40.885	-51.077			-43.963	-32.173	-44.208	
13	CH ₃	0	0				33.598	20.883	29.590			35.017	31.464	38.279	
							[20.666]	[11.587]	[20.235]			[30.257]	[23.764]	[29.357]	
	VA						-62.041	-49.657	-59.889			-57.416	-45.235	-56.663	
14	A = (0	0				44.748	39.904	42.059			51.097	39.904	49.972	
	0						[28.950]	[12.357]	[31.858]			[39.574]	[33.210]	[42.887]	
							-34.319	-20.256	-33.117	-27.945		-29.744	-19.573	-28.311	-18.854
15	Н	0	1		Н		27.118	18.448	25.087	34.455		25.354	16.354	28.271	38.241
							[16.111]	[8.048]	[18.804]	[25.637]		[22.704]	[19.300]	[22.074]	[27.558]
							-39.726	-27.425	-40.134	-35.058		-34.256	-17.465	-33.550	-16.450
16	Cl	0	1		Н		27.567	18.862	26.075	33.369		24.665	19.354	23.584	26.885
							[16.010]	[8.634]	[17.121]	[26.172]		[25.447]	[24.175]	[25.376]	[28.667]
					н		-37.953	-26.964	-37.001	-30.671		-34.999	-18.322	-34.482	-20.984
17	CH ₃	0	1				25.169	19.331	25.421	34.259		31.548	18.450	30.369	28.357
							[16.245]	[8.995]	[17.631]	[25.391]		[25.991]	[22.746]	[26.508]	[30.080]
						-14.983	-18.867	-5.229	-18.047	-15.568	-11.681	-12.433	-2.357	-12.258	-11.842
18	Н	1	1	Н	Н	34.034	25.630	16.933	25.564	34.540	36.864	28.902	18.681	28.741	36.347
						[26.8/4]	[15.952]	[5.280]	[16352]	[25.668]	[27.926]	[17.334]	[16.776]	[17.117]	[26.456]
						-14.770	-25.723	-16.251	-25.854	-14.207	-9.357	-21.951	-10.248	-21.042	-9.657
19	Н	1	1	CH ₃	CH_3	49.067	37.489	28.192	37.996	49.854	52.367	41.158	36.981	41.651	52.441
			ļ			[20.198]	[24.553]	[15.542]	[25.173]	[20.176]	[28.247]	[22.611]	[26.547]	[22. 324]	[25.247]
						-10.250	-24.553	-11.697	-22.014	-20.422	-6.333	-20.022	-8.034	-20.226	-14.325
20	Н	1	1	CH_3	Н	42.764	29.933	22.023	29.648	35.011	43.289	32.020	29.920	28.648	42.092
						[21.058]	[20.716]	[10.208]	[21.367]	[30.276]	[27.054]	[19.654]	[21.871]	[20.091]	[33.226]

-11

Figure (1): The 3D-stuctures of compound [20]

References

- 1) W. Hutter and H. K. Bodenseh, J. Mol. Struct., 291, 151-158, (1993).
- 2) S. Patai, "The Chemistry of Alkene". ^{3rd} ed., Wiley & Sons, London, pp. 955-957, (1967).
- **3)** M. Iqbal and M. Evans, Tetrahedron Letters, 44, 5741-5745, (2003).
- 4) Lu. Xiyan and Ma. Dawei, Pure and Appl. Chem., Vol. 62, No. 4, pp. 723-730, (1990), Printed in Great Britain (IUPAC).
- 5) R. L. Nongkhlow, R. Nongrum and B. Myrboh, J. Chem. Soc. Perkin Trans. 1, 1300-1303, (2001).
- 6) F. Diederich, The Royal Society of Chemistry, Chem. Commun., 219-227, (2001).
- 7) W. Hutter and M. Dakkouri, J. Mol. Struct., 321, 255-263, (1994).
- 8) M. Klokkenburg, M. Lutz, J. H. Van der Maas and C. Van Walree, Interscience Chemistry, 4; 9(15): 3544-3554, (2003).
- **9)** G. Ginocchietti, U. Mazzucato and A. Spalletti, International Journal of Photoenergy, 6, 241-253, (2004).
- 10) R. G. Salih, A. A. Thanon, M. Y. Shandala, Iraqi J. of Chem., 20,108-117,(1995).
- 11) M. M. S. Al-Shammary, "Physico-Chemical Study of Some Cross Conjugated Systems", Ph.D. Thesis, University of Mosul (2006).
- 12) M. Y. Shandala, M. M. S. Al-Shammary & R. G. Salih, J. Edu. & Sci., 21, 265-275, (2008) on the first conference on chemistry (October-2008).
- **13**) J. Bargon, "Computational Methods in Chemistry". Plenum Press, 134, 141, (1980).
- 14) C. J. Cramer, "Essentials of Computational Chemistry". 2nd ed., John Wiley & Sons, p. 43, (2004).
- **15)** A. I. Vogel, "Text Book of Practical Chemistry". 3rd ed., Longmans, London, p. 796, (1981).
- **16**) C. S. Mavvel, L. E. Coleman, J. R. and G. P. Scott, J. Org. Chem., 20, 1785-1792, (1955).
- 17) S. V. Tsukerman, V. M. Nikitchenke, A. I. Bugai and V. F. Lavrushin, Khim. Str., Svoistva Reaktivnost Org. Soedin, 53, 9, (1969); Chem. Abs., 73, p. 301, 45276 t (Russ), (1970).
- 18) E. B. Keein and Z. Aizenshat, J. Org. Chem., 58, 6103-6108, (1993).