(See 2010 (2) (23) - ev					
	% 2010	(2)	(23)	-	~

/

ZnO (CVD)

2009 / 05 / 05

2008 / 09 / 17

ABSTRACT:

Highly transparent ZnO thin films were grown by chemical vapor deposition (CVD) on glass substrates at various substrate temperatures and sample positions inside the deposition chamber. The optical properties of the films were investigated. Optimized ZnO films have an average transmission in the visible range is about 90% at substrate temperature 500 °C and the optical energy gap is 3.2 eV. It was also found that the best position of the films inside the chamber is about 16 cm from the inlet side of the gases.

131

90%

500 °C .3.2 eV

16

:

	ZnO			
				:
(Transparent Co	onducting Oxides			
				"TCO")
		()	
		·		
			[1-2]	
	ZnO			
	Spray Pyrolysi	S		
Sputtering	(Chemica	l Vapour Dep	osition "CVD	")
	.[1-3]	Pulsed I	Laser	
	(n-ty)	pe)		
[5] (3.2	eV)		[4] (He	exagonal)
		[6]		
[10]	[9]	[8]	[7]	
		[12]	[11]	
			.[1]	3]
			.[-]
				[1/ 15]
	$\mathbf{Z}_{\mathbf{n}}(\mathbf{C} \mid \mathbf{I} \mid \mathbf{O})$	$\mathbf{Z}_{\mathbf{n}}(\mathbf{C}\mathbf{H})$	$\mathbf{Z}_{\mathbf{n}}(\mathbf{C} \mathbf{H})$.[14-13]
	$Z\Pi(C_5\Pi_7O_2)_2$	$Zn(CH_3)_2$	$Zn(C_2H_2)_2$	$ZnCl_2$
		-	CVD	
		. Z	nO	

: ZnO Zn[CH₃COO]₂ 2H₂O (340-370 °C) 2 L/Min Flow Meter ZnO . .(25.4×76.2)mm T.C.E 20 min [450-500-550] °C CVD)

> 60 cm 5.5 cm

> > (Digital multimeter)

.(1)

(K-type: Chromel +, Alumel -)

	ZnO			
(10 ⁻⁴ gm)				
	:[16]	(t)	
$t = \frac{m}{A \rho}$				(1)
	(ρ)			(t)
	(A)			(m)
	(1 µm)			
ZnO				
(200-1000				
(UV/Visible Range Spect	rophotomete	er Model CE	E1021)	nm)
:[17]				
$T = (1 - R)^2 \exp(-\alpha t)$				(2)
	(t)			(T)
	(α)			(R)
:		(E _{opt})		
$\alpha(h\upsilon) = A(h\upsilon - E_{opt})^{\frac{1}{2}}$				(3)
	А		υ	h
			E _{opt}	
ZnO			•	

.

ZnO

134

.

(2)

.500 °C 450 °C

500 °C 90% 450 °C 55%

550 °C

.70%

ZnO

(TCO)

(CVD)

(2)

ZnO

:(5)

137

	ZnO		
3.25 eV E _{opt}	3.1 eV	E _{opt} (5)	
·		[19-20]	ZnO
		(6)	
16			.500 °C

			&	
	ZnO		:	
550 °C 3.1 eV	90%	.75%	500 °C	
		16		3.25 eV

1) Chopra K. L., Major S. & Pandya D. K., "Thin Solid Films", 102, 1, (1983).

:

- 2) Gordon R. G., "Criteria For Choosing Transparent Conductors", Mrs Bulletin, (2000).
- **3**) Hu J. & Gordon R. G., J. Appl. Phys. Vol. 71, P. 880, (1991).
- 4) Robert C. Weast, "Handbook Of Chemistry & Physics", 59th Ed. Crc Press (1978-1979).
- 5) Bhargava R. N., "Properties Of Wide Band Gap Ii–Vi Semiconductors", Emis Data Reviews Series No. 17, Inspec, London, Uk, (1997).
- 6) Kumar Q. Li, V., Zhang Y. Li, H., Marks T. J. & Chang R. P. H., J. Am. Chem. Soc. 17 (5), 1001–1006, (2005).
- 7) Karuppuchamy S., Nonomura K., Yoshida T., Sugiura T., & Minoura H., "Solid State Ionics", 151 (1–4), 19, (2002).
- 8) Znaidi L., Soler Illia G. J. A. A., Benyahia S., Sanchez C. & Kanaev A.V., "Thin Solid Films", 428 (1–2), 257, (2003).
- 9) Purica M., Budianu E. & Rusu E., "Thin Solid Films", 383 (1–2), 284, (2001).
- 10) Viswanath R. N., Ramasamy S. R., Ramamoorthy R., Jayavel P. & Ngarajan T., "Nanostructured Materials", Vol. 6, P. 993, (1995).

139

...

11)	Wan Q., Li Q. H., Chen Y. J., Wang T. H., He X. L., Gao X. G. & Li J. P., Appl. Phys. Lett. 84, 16, (2004).
12)	Yang Jl., An S. J., Park W. I., Yi G. C. & Choi W. Y., Adv. Mater, 16, 1661, (2004).
13)	Goux A., Pauporte' T., Chivot J. & Lincot D., "Electrochim", Acta 50, 2239, (2005).
14)	Boal J. V., Solid State Electronics, 25, 968, (1981).
15)	Kalbskopf R., Thin Solid Films, 77, 65, (1981).
16)	Ludmila Eckertova, "Physics Of Thin Films", Plenum Press, New York & London, (1977).
17)	Digiulio M., Micocci G., Rella R., Siciliano P. & Tepore A., "Thin Solid Films", 148, 273, (1987).
18)	Jayaraj M. K., Aldrin Antony & Manoj Ramachandran., Bull. Mater. Sci, Vol 25, No. 3, PP 227-230, (2002).
19)	Subramanyam T. K, Skinivasulu Naidu B. & Uthanna S, Cryst. Res. Technol., Vol 35, No. 10, PP 1193-1202, (2000).
20)	Wienke J. & Booij A. S., Thin Solid Films, PP 1-5, (2007).