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  الملخص
) بئر كمي (و) نانو واير   (تمت دراسة التوصيل الحراري الشبيكي نظريا في سليكون         

 استخدم النموذج المعدل    ،كلفن) ٣٠٠-٢(في مدى درجات الحرارة     ) نانومتر١٠(بقطر وسمك   
تم حساب   .لحساب التوصيل الحراري الشبيكي في البلورة الصلدة      ) كالاوي(لطريقة  ) المحور(

 واسـتطارة   ،)امكلاب( استطارة الفونون  -:لمهمة لزمن استرخاء الفونون مثل     ا الأنواعجميع  
  .كلفن) ٣٠٠(واستطارة الحدود عند ، فرق الكتلة

  السمعية للفونون وسرعة المجموعـة نتيجـة الحجـز         الأنماطبينت النتائج ان تحوير     
مـن   .نـات  زيادة ملحوظة لمعدلات اسـترخاء الفونو      إلى أدىللفونونات  ) الفضائي(المكاني  

 ١٠(ذا قطر   ) نانو واير (  لوحظ تناقص مهم للتوصيلية الحرارية الشبيكية في       ،حساباتنا العددية 
تمت مقارنة التوصيلية الحرارية الـشبيكية مـع         .بنفس الحجم ) بئر كمي ( في   وأيضاً) نانومتر
  .ج النظرية المنشورة وتبين تطابقها مع النتائج العملية كما هي الحال مع النتائالأبحاثنتائج 

 

Abstract 
Lattice thermal conductivity for silicon nanowires and quantum 

well are theoretically investigated in the temperature range from 2K to 
300K. The modified Gallaway method for bulk crystal is used for 
calculating lattice thermal conductivity. All important phonon relaxation 
mechanism such as Umklapp scattering, Mass-difference scattering and 
boundary scattering are calculated at 300K. The result show that the 
modification of the acoustic phonon modes and phonon group velocities 
due to spatial confinement of phonons lead to significant increase in the 
all phonon relaxation rate. From our numerical results, we predicate a 
significant decrease of the lattice thermal conductivity in cylindrical 



Size effect on the phonon heat conduction in semiconductor nanostructures. 

٦٥ 

nanowires with diameter (D=10-nm), and quantum well with thickness of 
the same size, results compared to that of the reported experimental as 
well as theoretical values. 
  

Introduction 
          The physical properties of nanostructure have been investigated 
extensively both theoretically and experimentally due to their scientific 
and industrial importance. Single crystal silicon thin films and layers with 
thickness in the range of 1nm-100µm are widely used in modern 
applications such as SOI (silicon-on-insulter) device, integrated circuit 
transistor, and nanowires applications in the area of IR detectors and IR 
night vision, and thermal sensor. (Makdadi et al., 2005; Feng et al., 2003). 

As the size of low-dimensional materials decreases to the 
nanometers size range, the thermal, electronic, magnetic, optical, and 
thermodynamical properties of the material are significantly altered from 
those of either the bulk or a single molecule. (Feng et al., 2003) 

Additionally a large degree of solid-state material behavior 
depends on phonon dynamics, and these dynamics are substantially 
altered as nanostructure dimensions approach the phonon mean free-path 
length. The continuous scaling down of feature sizes in Micro-electronic 
and Micro-mechanical devices to nanometer sizes leads to increased 
power dissipation per unit area. This makes it important to understand 
heat conduction in various kinds of nanostructure, such as: quantum well 
(two dimension (2D), nanowires and nanotube(1D) and quantum dot(0D), 
and in particular to understand the effects of the confinement of phonons 
as the nanostructures size approaches the phonon mean-free-path length. 
Indeed, in bulk materials internal scattering dominates heat transfer 
processes. (Alassafee., 2005; Yang et al., 2006; Makdadi et al., 2005) 

For crystalline nanowires, though, as its size decreases the 
frequency of phonon-boundary collisions increases. In addition the ratio 
of the surface area to volume increases, the result is that the thermal 
conductivity of nanostructures differs significantly from that of bulk 
materials this has been shown experimentally by many author's. (Zou et 
al., 2000; Liang et al., 2006).    

In this work the dependence of thermal conductivity on the 
diameter of free standing nanowires and on the thickness of free standing 
quantum well is investigated theoretically taking into account spatial 
confinement of phonon induced by the boundaries which leads to altering 
phonon spectra. 
       Our recent work has focused on silicon because:- 
1) the material properties are well known. 
2) The relatively high sound velocity makes it easier to observe size 

effect at large diameter and higher temperatures, 3- Experimental 
measurements are currently available for silicon nanowires and 
quantum well. 
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THEORY 
1-  phonon Boltzmann equation:- 

A phonon of energy ћωS(q) and velocity VS(q) in the direction of q 
contributes ћωS(q)VS(q) to the heat current where q represent phonon 
wave vector. The net phonon heat current with a small temperature 
gradient ∇T is given by:-        
JQ =-ΣÑq.sћωS(q)VS(q)   ……………………………………………...  (1) 

Where subscript s  refers to a particular phonon polarization type, 
VS(q) is the phonon group velocity, and Ñq.s =No

q.s –Nq.s  is the deviation 
of the phonon distribution, Nq.s, from its equilibrium value, No

q.s. The 
equilibrium phonon distribution, No

q.is given by the Bose-Einstein 
distribution:-                

1
1

)/)((, −
=°

TKqsq bse
N ωh                  ………………….………..…..………..  (2) 

By definition 
JQ =-K∇T                               …………….….….……..…….…….….  (3)  

Thus the problem of determining the lattice thermal conductivity is 
essentially that of obtaining Ñq.s. In order to do this we need to solve the 
Boltzmann equation for Ñq.s, (Zou et al., 2000; Callawy., 1958). In steady 
state, the phonon Boltzmann equation can be written as:-      
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In equation(4), (∂ Nq.s/ t∂ )drif  represent the change of the phonon 
distribution in the presence of a temperature gradient, and it is given by:- 
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The value of Nq.s may also change due to scattering by other 
phonons, impurities, charge carriers, interfaces, boundaries, etc. The 
change in Nq.s due to these process is denoted in eq(4) by (∂ Nq.s/ t∂ )scatt.. In 
the relaxation-time approximation this can be written as:-  
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Where τCs(q) is the combined phonon relaxation time. Substituting 
eq(6) and eq(5) in eq(4), we can rewrite the phonon Boltzmann equation 
as:-  

0
)(

~
,,,, =+

∂

∂
−

∂

∂
−

∂

∂
−

q
N

z
N

V
y

N
V

x
N

V
Cs

sqsq
z

sq
y

sq
x τ

     ..………..…..…….………  (7) 

Where Vx, Vy, and Vz are the three components of phonon group 
velocity along the x,y, and z axis, respectively. Theoretical analysis, and 
consider free standing cylindrical nanowires and quantum well have the 
same size D, with an axis along the z direction, and assume a temperature 
gradient along this axis, eq(7) then becomes:-  
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Assuming that the phonon distribution does not deviate strongly from its 
equilibrium value due to the temperature gradient, ( ∂ Nq.s/ ∂ T) replace by 
( ∂ Nºq.s/ ∂ T) in the right-hand side of the eq.(8). This is a standard step 
used for solving such an equation (Zou et al., (2000; Callawy., 1958). 
Correspondingly, the linearized phonon Boltzmann equation takes the 
form:-        
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2- Calculation of the Lattice Thermal conductivity:-  
For simplicity, the subscript (q) and (s) will be omitted. In the bulk 

the solution for equation (9) can be written as:-    
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          ………………………………….….………….  (10) 

 In the coordinate system that we have defined, Ñ can further written as:- 
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Substituting eq(3) and eq(11) in eq(1) and comparing the result 
with eq.(3), a regular bulk formulais can be obtained for the lattice 
thermal conductivity:-  
                                                                                                                      
                                                                                      ……….   (12) 
                                
                    

This equation is Klemens-Galloway's expression for the lattice 
thermal conductivity in bulk material, where x= ћ ω/KBT, KB is the 
Boltzmann constant, ћ is the Dirac constant, τc is the combined relaxation 
time, and vg is the phonon group velocity, θ D is the Deby temperature 
(Callaway., 1958). For nanowires and of quantum well Deby 
temperatureθ D  may be determined by the equation:-  

b
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=       ……………………………………………………………  (13) 

Where vD and vb are group velocities of nanowires (or quantum 
well) and bulk respectively, and θb represent Deby temperature of silicon 
bulk (Liang et al ., 2006). Callaway considered this phenomenological 
model in which he treats the speed of sound as a constant (no difference 
between group velocity and phase velocity) similar to that, in the Deby 
theory of the specific heat. His calculation contained acoustic branches, 
while the contribution of the optical modes neglected. This equation 
(eq(12)) has been used with an appropriate Modification of the phonon 
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group velocity and combined relaxation time in a quantum well and 
nanowires, because phonons have different velocities and different 
energy  .Eq.(12),is valid under assumption that the resistance scattering 
mechanisms, which do not conserve crystal momentum, are dominant. 
These are the processes that contribute to the lattice thermal resistance 
(Khitun et al ., 1999; Zou et al 2001). 
  
3- Phonon dispersion and group velocities:- 

The acoustic phonon dispersion in free standing nanowires (or 
quantum well) calculated by considering only the in-plane transport in the 
well and the main contributions in the plane heat transfer comes from the 
longitudinal acoustic phonon modes. (Zou et al 2001) 

The dispersion relation for confined phonons in a nanowires of 
diameter D is given by  :-   
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The dispersion relation for quantum well of thickness D can be written 
as:-  
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Where qt, qd are longitudinal and transverse  phonon wave vectors, Jο and 
J1 are the ordinary Bessel functions, and qt and qd are two parameters 
related by :- 
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Here, vd =√(λ+2µ)/ρ and vt =√µ/ρ are the longitudinal and 
transverse sound velocity in the bulk material respectively, and λ, µ, are 
lame constant and  ρ is the density (Khitun et al., 1999; Zou et al 2001). 
The phonon dispersion relation can be written as:-   

2/12
,

2
, )( tndtdn qqv +=ω        ………………………………………………  (17) 

Where ωn is the phonon frequency for the nth branch. Confined phonon 
dispersion is obtained by numerically solving both equation(14) (or 
equation(15)) and equation(16) at each q, there are many solutions for qd 
and qt. phonon group velocity is calculated for each branch by numerical 
differentiation. Phonon group velocity for each branch is:-  

dq
dv n

n
ω

=         ……..……………….……….…………………………  (18) 

Since different branches have different group velocities, the 
phonon group velocity averaged overall contributing branch calculated by 
using the population averaged phonon group velocity: 
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Where, vg,n is the group velocity of the nth mode, the population group 
velocity is then used to calculate the lattice thermal conductivity. (Khitun 
et al ., 1999; Zou et al 2001) 
 
4-phonon relaxation times:- 

The combined phonon relaxation time is obtained from the 
Mathiessens rule:-: 

MBuC ττττ
1111

++=       …………..……………………..………………  (20) 

         Here, τu is the three-phonon umklapp scattering due to anharmonic 
nature of the crystal potential energy, τM is the mass- difference scattering 
of phonon and τB are relaxation times due to boundary scattering (Khitun 
et al., 1999; Balandin et al., 1998). Phonon spatial confinement leads to 
modification of the phonon dispersion and phonon group velocity, and 
hence to a change of phonon scattering rate. 
The relaxation time for Umklapp scattering is given by Klemens as:- 
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Where γ is the Gruneisen anharmonicity parameter, µ is the shear 
modulus V0 is the volume per atom, and ωD is the Deby frequency. 

Mass- difference scattering (is also-called isotope scattering) is the 
scattering of phonons due to the presence of atoms with a mass different 
from the average atomic mass in a semiconductor. The relaxation rate for 
the mass-difference scattering is calculated using the following 
expression:-  
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Here V0 is the volume per atom, ω is the phonon frequency, and  Γm is 
the measure of the strength of the mass-difference scattering defined as:- 
Γm= Σfi[(∆Mi/M`)2]          ………………………….……...…….…...  (23) 

Where, fi is the fractional content of mass Mi, which is different 
from the mass M of the main atom, and ∆Mi=M- Mi, and M` is given by: 
M`=ΣfiMi, is the average atomic mass. Since in nature silicon always 
contains a mixture of three main isotopes (92% of Si28, 4.9% of Si29, and 
3.1% of Si30) the isotope scattering significantly contributes to the 
thermal resistance of the material ((Khitun et al., 1999; Balandin et al., 
1998).  



Abdurrahman Khaleel Suleiman  &  Abdul-Ghefar Kamil Faiq 

٧٠ 

Boundary scattering rate can be calculated by using modified boundary 
scattering:- 

)1(1 p
D
vg

B

−=
τ

       …………………………..………...………………  (24) 

Here, p is the parameter which is related to the interface roughens. 
The value of  p represent the probability that the phonon is undergoing a 
specular scattering event at the interface (Zou et al., 2001), where p=1, 
(purely specular scattering) boundary scattering does not contribute to the 
thermal resistance. In the case of purely diffuse scattering, the above 
expressions reduce to:- 

D
vg

B

=
τ
1         ………………………………………………………….  (25) 

This is the well known formula in the Casimer limit (Casimer., 1938). 
 

Results and Discussion 
Size effect (boundary scattering) and spatial confinement of 

phonon causes change in the dispersion relation, such changes can 
modify the group velocity, this is due to the increase of the scattering rate 
and all these effects suppressed thermal conductivity. From the following, 
all these results are due to the reduce of the size of material:- 

 
1-  dispersion relation for quantum well and Nanowires:- 

First, using numerical method (Muller-Secant method), 
(MathCAD) software can be used for solving both eq (14) and eq(15), the 
material parameter used in the numerical solution was:-  
 vd=8.478 ×105 cm/sec and vt=5.846×105 cm/sec. Figure(1) and figure(2) 
shows the acoustic phonon dispersion for a free-standing silicon 
cylindrical nanowires of diameter D=10-nm and quantum well of the 
same size. It is easy to see that there are more dispersion and velocity 
branches for each polarization type as compared to the bulk,  

The first branches in both structures are of the true acoustic type, 
i.e that only the first branch has a linear dispersion relation, in this case 
q=0 gives w=0. For the higher mode numbers there exists a cut-off 
frequency (i.e w≠0  when  q=0) for both the nanowires and quantum well.  
       The cut-off frequency for second branch in the nanowires is larger 
than that in a quantum well (as shown in figure (1) and figure (2)) and 
this is due to tighter phonon spatial confined in nanowires than that in a 
quantum well. (Alassafee.,2005; Zou et al 2001) 
 
2-  Group velocity:- 

The phonon dispersion relation change will lead to the reduction of 
phonon group velocity, the slopes of the phonon dispersion branches 
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represent the group velocity (vg
(n)=∂wn/∂q). It is easy to see that there are 

more dispersion and velocity branches for each mode as compared to the 
bulk, and group velocities of all branches decrease. The higher the modes 
number the smaller the group velocity. 

By using numerical differentiation, the exact value of the group 
velocity for each phonon branch is determined. Figure (3) and figure (4) 
shows the phonon group velocity as a function of the phonon energy of 
well and wire, the over all value of the population averaged phonon group 
velocity of quantum well is (5.56×103 m/sec), and for nanowires is  
(5.45×103 m/sec). In bulk silicon, the longitudinal sound velocity is 
(8.4×103 m/sec). 

The important consequence from this is that the effective phonon 
group velocity will depend on the size of the material structures. A large 
reduction occurs in the nanowires than that in the well due to tighter 
phonon confinement. (Zou et al., 2001; Chen et al., 2005). For small 
values of the phonon energy the group velocity for the first branch almost 
coincide with the bulk velocity. 

 
3-  Phonon relaxation rate:- 

Confinement of acoustic phonons and corresponding change in 
their group velocities lead to an increase in the phonon relaxation rate. 
Combined phonon relaxation rates calculated by using equation (19). 
Following material parameter has been used in the calculation:- 
γ=0.56, and density ρ=2.329×103 (kg/m3), the shear modules 
µ=7.96×1010(kg/sec2.m), volume of 
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Figure (1): Acoustic phonon dispersion for long-.        Figure (2): Acoustic phonon modes in silicon  
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silicon atom Vο =2.002×10-29 m3, isotopic factor Γ=2.5×10-4
. (Alassafee., 

2005; McConnell et al., 2005). 
Cut- off frequency calculated by using the following equation:-  
  

hπ
θκω DB

c
2

=     ……………………….………………………  (26)                          

Where θD is the Deby temperature (Liang et al., 2006), for silicon 
nanowires it is equal to (403K), and equal to (410K) for quantum well, 
corresponding to the cut-off frequencies wc=3.356×1013(1/sec) of 
nanowires and wc=3.41×1013(1/sec) of quantum well.  
 
3-A- Umklapp and Mass-difference scattering:- 

Umklapp scattering is related to the resistive phonon-phonon 
scattering and it is due to the anharmonic nature of the crystal potential 
energy (three phonon Umklapp scattering) (Chen et al., 2005). Figure (5-
a) shows that umklapp scattering in the nanowires and it is greater than 
quantum well over most of the large portion of the frequency range and it 
is due to stronger spatial confinement of phonon in the nanowires 

Mass-difference shown in figure (5-b), these scattering arise from 
the presence of atoms with different mass, this scattering is also affected 
by spatial confinement of phonon through the group velocity (Balandin et 
al 1998). From the figure (5-b) Mass-difference scattering in the 
nanowires is larger than quantum well. 

 
3-B:-  Boundary scattering 

For the quantum well and wire having a diameter of D≤ 30-nm, the 
boundary scattering will dominates over all-scattering process Figure (6-
a-b) shows the relaxation rates due to different scattering mechanisms as 
a function of phonon frequency  for nanowires and quantum well. 
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Size effect on the phonon heat conduction in semiconductor nanostructures. 

٧٣ 

In this figure also show that the boundary scattering dominate overall 
scattering rate in both nanowires and well, and this is due to the long 
wave length of phonon comparable with the dimension of the sample. 

In bulk materials, this boundary scattering regime can be 
approached only at low temperatures, that’s when the phonon mean free 
path becomes comparable to the sample size. In the bulk, Umklapp 
scattering is dominates over the mass-difference as shown in figure(7), 
the same is true for quantum well and nanowires (figure (6-a-b)). (Zou. J, 
Balandin. A., (2000) Alassafee., 2005) 

From both figure(6) and figure(7) we observed the increase of 
scattering in wire and well comparable with bulk, Umklapp scattering in 
nanowires is (2.3) times larger than bulk and in well (1.7) times larger 
than bulk   and mass-difference scattering in wire and well are one order 
larger than that of bulk, these are because of the modification of the 
phonon dispersion due to spatial confinement of the phonon modes. (Zou 
et al., 2000; Alassafee., 2005).  

 
4- Calculation of lattice thermal conductivity:- 

After group velocity and relaxation rate are found, the lattice 
thermal conductivity in the temperature range of 2-300K are calculated 
by using equation (12).  

Figure(8-a-b) shows the effect of the Umklapp, Mass-Difference 
and boundary scattering on the lattice thermal conductivity in the 
nanowires and quantum well. For Umklapp scattering, the lattice thermal 
conductivity in silicon nanowires at 300K is reduced to about 60% of its 
bulk value, i.e. Umklapp scattering cause to drop the lattice thermal 
conductivity to about 1.67 times of the bulk (Figure -9). In the quantum 
well umklapp scattering reduced to 62% of its bulk value and thermal 
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Figure(5). (a): shows the scattering rate for Umklapp scattering, and  
(b): Mass- difference scattering rate both as a function of frequency  

at 300K for nanowires and quantum well. 
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Figure (6): phonon scattering rates in silicon (a): nanowires and (b): quantum well due to 

Umklapp(U), Mass-difference (M) and Boundary scattering (b) as a function  
of frequency at 300K. 

 
 

 

Figure(7): Phonon scattering rates due to umklapp and mass-difference scattering in silicon bulk 
material as a function of frequency at 300K.( Zou. J, Balandin. A,(2000)) 

 
 

conductivity drop 1.61 times of the bulk value at 300K (Figure -9)    
Mass-Difference scattering cause thermal conductivity in nanowires to 
reduced to about 82% of its bulk value, and in quantum well lattice 
thermal conductivity reduced to about 83% of the bulk value. 

The boundary effect in the nanoscale size occurs at room 
temperature and because at this temperature the well and wires thickness 
becomes smaller than the room temperature phonon mean free path 
(Khitun et al 1999). At room temperature lattice thermal conductivity of 
the bulk is equal to 148 (W/m.K) (McConnell et al 2005). From our 
calculation the value of lattice thermal conductivity of nanowires of 
diameter D=10-nm at room temperature is equal to 9(W/m.K), and for 
quantum well Lattice thermal conductivity of thickness 10-nm equal to 
9.3(W/m.K).The over all thermal conductivity of nanowires at 300K is 
about 6.1% of the bulk silicon, and for quantum well about 6.3% of the 
bulk value. 

a b

Sc
at

te
rin

g 
R

at
es

 (1
/s

ec
)×

10
11

 

 w (1/sec) × 1013 



Size effect on the phonon heat conduction in semiconductor nanostructures. 

٧٥ 

Keiven. Etessam, and  M. Ashegi, (2005). measured thermal 
conductivity of silicon thin films for different film thickness (100, 50, 25, 
10-nm) as shown in figure (10). Balandin et al, calculated thermal 
conductivity of quantum well for the same size they proved that thermal 
conductivity reduces to about 13% of the bulk value (Balandin. A, Wang. 
K.L,(1998)). 

The experimental value of lattice thermal conductivity of 
nanowires of diameter 10-nm is equal to 6.1(W/m.K) (Alassafee., 2005). 

Yunifei Chen, Deyu Li and others using Monte Carlo Simulation 
(Figure-11) to calculate lattice thermal conductivity of nanowires of 
diameter D=10 nm at 300K and they show that it is equal to 10(W/m.K) 
(Chen et al., 2005). Table (1) shows the value of thermal conductivity of 
silicon quantum well for different thickness and the percent reduction of 
lattice thermal conductivities comparable with silicon bulk value 
(Alassafee., 2007; McConnell et al ., 2005) 

 
Quantum well thickness Percent reduced 
1µm 10% 
100nm 50% 
50nm 70% 
20nm 82% 
10nm* 94% 

                              *present work 
Tab.(1): silicon quantum well thickness and the percent reduced thermal 

conductivity value at 300K. 

 
Conclusion 

          In this paper, Lattice thermal conductivity of silicon nanowires and 
quantum well of order 10-nm calculated in room temperature by 
considering the effect of confinements of phonons on the dispersion 
relation and the group velocity on the lattice thermal conductivity. 
Analysis showed that  
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Figure(8): Lattice thermal conductivity as a function of temperature for:-  

(a) silicon nanowires of diameter D=10 nm, and  
(b) silicon quantum well of thickness=10 nm. 
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Figure(9): Lattice thermal conductivity as a function of temperature for silicon bulk material. 

 

          
 

 

 

the scattering rates by confined acoustic phonons exceed 
corresponding to the bulk. Size effect lead to the value of thermal 
conductivity differs from that of the bulk, this is due to the fact that the 
boundary scattering dominated over all scattering process in the nano 
range, and results show the good agreement between the experimental 
data and theoretical calculation. 

 
 
 
 
 
 
 
 

Figure(11): Nanowires thermal conductivity 
versus diameter at T=300k(Chen. Y, Li.D, 
Lukes . J. R, Majumdar. A, (2005) 

Figure(10). Measured thermal conductivity as a 
function of temperature of silicon thin films for 
different film thickness(Keiven., Ashegi , 2005). 
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