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المخلـص 
ادليـة علـى المجموعـات       في هذا البحث الافعال الزمرية اليسرى واليمنى التب        نادرس

ــات    ــى التطبيق ــرا عل ــري ح ــل الزم ــون الفع ــرط ك ــاء ش ــا لاعط ــة جزيئ المرتب

.اللونية 

 الى افعال الزمر على المجموعات المرتبة جزئيا من وجهة نظر نظريـة             ناكذلك نظر 

الفصائل وذلك للحصول على بعض النتائج لكروبيئد الجداء شبه المباشر علـى المجموعـات              

.المرتبة جزئيا 

Abstract  
In this paper we will study the (G,H)- posets , to give a condition of 

freeness on colouring maps . 
Also we will look at the group – posets from the view point of the 

category theory . That is to give some results on semi-direct product poset 
groupoid. 

§.0 Introduction :

Much of group theory , particularly that part which deals with finite 
groups , originated from the study of groups of  permutations groups 
between 1844 and 1900 . Some of the first workers in this area were 
Lagrange , Galois , and Cauchy [8]. 

Hence it is natural that the concept of the group actions on sets 
began as : A group action of finite group G on finite set X to be a group 
homomorphism � from G to S/X/ , the group of permutations on X . The 
set X is called a G-set [9]. 

Equivalently , a group G acts on X on the left (X called left 
G-set) if , to each g∈G and each x ∈ X there corresponds a unique 
element denoted by gx in X such that , for all x ∈ X and g1,g2 ∈ G :  

 
Similarly , we define a right H- set . 
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In this paper we shall study a left and a right compatible actions on 
posets and we shall look at the group actions on posets from the 
viewpoint of category theory . 

Finally , a semi-direct product poset groupiod P   H  related to a 
right H-poset P is considered . 

§1 (G,H) – posets :

For any group G and any poset P , we say that G acts on P from the 
left if to each g∈G and p∈P there corresponds 
a unique element in P  denoted by gp such that for all p,q ∈ P and       
g1,g2 ∈ G : 

 

   

 
Such poset P with a left action of G on it , is called a left 

G-poset , or simply a G-poset . If we agnor condition (iii), a 
G-poset P becomes G-set . 

Similarly we can define the right group–posets.  
The condition (iii) is different from that which is given in [7] , which 

is :  
 
 
We can conclude that every G-poset P can be considered as a right 

G-poset (and conversely) which is defined by : 
 
 

Definition (1.1) : 
A poset P is called (G,H)-poset if P is a left G-poset , a right 

H-poset and the two actions are compatible , that is each g∈G , h∈H and 
p ∈ P there corresponds a unique element gph in P such that 
gph = g(ph) = (g p) h. 

In [1] there is another condition on the definition of 
(G,H)-set, that is ; the right action of H must be regular . 

Equivalently, following [10], a poset P is call (G,H)-poset if for all 
p∈P , g∈G and h∈H there exist a unique element gph∈P  
such that :  
(i) epe = p 
(ii) P is a left G-poset with the action defined by : gp = gpe for all p∈P and 
g∈G . 
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(iii) P is a right H-poset with the action defined by :  ph = eph for all p∈P 
and h∈H. 
(iv) (gp h) = (gp)h = g(ph) for all p∈P , g∈G and h∈H. 

From any group H we will define another group denoted by Hop such 
that Hop = H and h1xoph2 in  Hop is h2h1 in H for all 
h1,h2 ∈ Hop = H. 

Lemma (1.2) : 
If P is a (G,H)-poset , then it is (G × Hop)- poset and conversely as 

the following action : 
(g,h)p = gph for all p∈P , g∈G and h∈H. 
Proof : 

 It is routine chack , following [10 ; proposition (1.15)]. ■ 
The following theorem gives us an equivalent definition to 

(G,H)-poset which considers the action as a group homomorphism. 

Theorem (1.3) : 
(1) let P be a (G,H)-poset , then for every g∈G and 
h∈H there exist an isomorphism . 
g ρ h : P  P defined by : 

g ρ h(p) = gph for all p ∈P. 

Also the map ρ : (G×Hop)  Isom (P,P) defined by :  ρ  (g,h) = g ρ h for 
all g∈G and h∈H is a homomorphism ,called the (G,H)-action on P. 
(2) let P be a poset and a homomorphism σ: (G×Hop)  Isom (P,P) , then 
P is a (G,H)-poset with an action defined  by : gph = (σ(g,h))(p) for all 
p∈P , g∈G  and h∈H. 
Proof : 

Similar to the proof of theorems (1.1.9) and (1.1.10) in [10]. ■ 

Lemma (1.4): 
 Let X and Y be any two posets , then YX the set of all the maps 

from X to Y is a poset with a binary relation defined by : 
α ≤ β if and anly if α (x) ≤ β(x) for all x∈X. 
Proof :  
       The proof is straight forward .    ■ 
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Proposition (1.5) : 
Let X be a G-poset and Y be a right H-poset , then the poset YX is a 

(G,H)-poset with an action defined by : for any f ∈ YX , 
g ∈G  and h ∈ H :  
Proof : 
(i) YX is a G-poset since ; 
 
 
 
 
 

 
 
 

(ii) similarly , YX is a right H-poset. 

(ii) Now for any g∈G , h∈H and f∈ YX  ;  

 
Therefore YX is a (G,H)-poset. ■ 

§.2 : Freeness on colouring maps:
Let X be a G- poset and a poset C be a set of colours which is a 

right H- poset . 
In this section we shall give the conditions of freeness on CX, the 

set of colouring maps from X to C . 

Definition (2.1): 
A G- poset X is called free G-poet if :  

StabG(x) = {g∈G : gx = x} = {e} for all x ∈ X . [5] 
Similarly , the definition of free right H-poset and free 

(G,H) – poset . 
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In genral , if a (G,H)- set X is free , then X is a free G-set and a free 
right H-set. But the converse is not true. [10] 

In the following propositions we shall prove that a 
(G,H)-poset CX is free if and only if it is free G-poset with 
G = {e} and the right H-poset C is free. 

Proposition (2.2): 
The right H-poset C is free if and only if CX is a free right 

H-poset . 
Proof :  
Let C be a free right H-poset. 
Let α ∈ CX such that αh = α for  some h ∈ H. 
Hence (αh)(x) = α(x) for all x ∈ X. 
So, (α(x))h = α(x) for all x ∈ X. 
Since C is a free right H-poset , then h = e . 
Therefore CX is a free right H-poset . 

Conversely , suppose that CX is a free right H-poset. 
Let c∈C and ch = c for some h∈H. 
Let α∈CX defined by α(x)=c for all x∈X. 
Hence (αh)(x) = (α(x)) h = ch = c = α(x) . So αh = α . But CX is a free right 
H-poset , so h = e . 
Therefore C is a free right H-poset.   ■ 

Proposition (2.3): 
The G-poset CX is free if and only if G = {e}. 

Proof : 
It is obvious that CX is free G-poset when G= {e}. 

Now suppose that CX is a free G-poset.  
Let c∈C and consider the map α ∈ CX defined by : 
α(x)=c for all x∈X . So, (gα)(x) = α (g-1x) = c = α (x) for all x∈X.      
Hence gα = α for all g∈G. 
Now since CX is a free G-poset . Therefore G= {e}.  ■    

Proposition (2.4): 
The (G,H)- poset CX is free if and only if G = {e} and C is a free 

right H- poset. 
Proof : 

Suppose that CXis a free (G,H)- poset. 
Let α∈CX with gα = α for some g ∈G. 
Then gαe= gα = α . So, g=e , that is since CX is a free 
(G,H)-poset. Hence CX is a free G-poset and by [prop(2.3)] G = {e}. 
Similarly  we prove that CX is a free right H-poset. 
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Hence , by [prop. (2.2)] , C is a free right H-poset.  
Conversely , suppose that G = {e} and C is a free right H-poset. 

So, CX is a free G- poset since G = {e}. 
Now let α∈CX and gαh = α for some g∈G and h∈H. 
Since G = {e} , αh = α . Hence h = e. 
Therefore  CX is a free (G,H)- poset.  ■ 

§.3 G- posets as G- objects of the category Posets
In this section we look at group – Posets from the view point of 

category theory. 

Proposition (3.1) : 
Every poset is a category . 

Proof : 
Let P be a poset .Then we consider P to be the category P with :  

(i) ob (P) = P . (ii) for any a,b ∈ ob (P) ; there exist a unique arrow 
denoted (a,b) if and only if  a ≤ b . (iii) For any arrows (a , b) , (b , c) , 
(a , b) (b , c) = (a , c) , since (a ≤ b , b ≤ c) implies a ≤ c. 
(iv) For every object a of P , the arrow (a , a) denoted by 1a is an identity , 
since 1a(a , b) = (a , b) and (x , a)1a = (x , a). 

Remarke (3.2): 
For every poset P  ,    P (x,y) = 1 or zero.  

Hence , when x ≠ y ∈ P , P (x,y)  ≠ φ implies . P (y,x) = φ , but the 
converse is not true . 

Proposition (3.3): 
The set of all the posets is a category denoted by Posets. 

Proof : 
(i) ob (Posets) is the set of all posets .  
(ii) If P,Q ∈ ob (Posets) , then f ∈ (Posets) (P,Q) if and only if 
f ∈ Hom (P,Q) . (iii) If f ∈ Posets (P,Q) and g ∈ Posets (Q,W) , then      
fg = gof. (iv) for any P∈ Posets , 1p is the identity map on P.        ■ 

Let (G , *) be a finite group , then G  is a category with a single 
object G and  the arrows are the elements of G . So we can consider a 
functor F from G to Posets . Hence F(G) is an object in Posets , a poset P 
say . For each arrow g of G the image F(g) : P P is a poset isomorphism 
with (F(g))-1 = F(g-1). So {F(g): g ∈ Hom (G,G)} is a subgroup of the 
group of isom (P,P). Therefore , F determines a G- action on the poset P.  

For more generalization , we can define a group action on poset a s 
group action on object of Posets . For more details see [4] , [6], [7]. 
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Definition (3.4) : 
A left G- object in the category Posets is  a pair (α , P) with 

P is an object of Posets and α a left action on P defined by ; to each 
g ∈ G , there corresponds a unique morphism αg ∈ Isom (P,P) 
such that :  

 

(ii) αe = 1P where 1P : P P is the identity map.  

Proposition (3.5): 
The definition of G- object (α , P) in the category Posets is 

equivalent to the definition of a G- poset P. 
Proof  : 

Let (α , P) be a G-object in the category Posets .For each 
p ∈ P and g ∈ G let gp = αg (p). 
Hence ; (i) ep = αe(p) = 1P(p) = p. 
 
 

(iii) For p,q ∈ P , if p > q then αg(p) > αg(q) , that is , gp > gq. 
Conversely ; suppose that P is a G-poset . Then there exists a 

homomorphism α : G Isom (P,P) such that : 
α(g) = αg ∈ Isom (P,P) with ; 
(α(g))(p) = gp for all p∈P . So ;  
 

 (ii) αe(p) = ep = p = 1P(p) for all p ∈ P 
Therefore ; (α , P) is a G-object in the category Posets. ■ 

§.4 Semi- direct product poset groupoid :
A groupoid should be thought of as a group with many objects , or 

with many identities . 
The definition of groupoid were introduced by Brands in his 1929 

paper [2]  , is given with extra condition on the definition bellow , such a 
groupoid we nowadays called connected or transitive . [3] 

Definition (4.1): 
A groupoid G is a small category in which every arrow is invertible 

(every morphism is an isomorphism) . 
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Hence G has a set of morphims , may be called elements of G , a set 
ob(G) of objects , together with maps  s,t : G ob(G),  
i:ob(G) G such that si = ti = 1 the identity map . The maps s,t called the 
source and target maps respectively .  

If x , y ∈ G and t(x) = s(y) , then a product xy is exists such that 
s(xy) = s(x) , t(xy) = t(y) , and this product is associative . For every        
a ∈ ob(G) , the element i(a) is the identity morphism of a . 

Also each element x has an inverse x-1 with s(x-1) = t(x) , 
t(x-1) = s(x) , xx-1 = (is)(x) , x-1x = (it) = (x). 

Hence we can consider any group G to be a grouoid G with one 
object G and the arrows are the elements of G. So the definition of 
groupoids is an extension of  that of groups. 

The basic reference for the theory of groupoids is Higgins' book [4] , 
a survy of the wide range of applications of the theory is given by Brown 
in [3]. 

Example [4.2] : 
An equivalence relation R on a set X becomes a groupoid with X is 

the set of the objects , R is the set of arrows and product :  
(x,y) (y,z) = (x,z) whenever (x,y) , (y,z) ∈ R. 

This example is due to croisot [3] . A special case of this groupoid is 
the coarse groupoid XxX , which obtained by taking 
R = XxX .  

Lemma (4.3): 
Let P be a right H-poset . Then PxH is a right H-poset. 

Proof : 
1. PxH is a poset defined by (p,a) ≥ (q,b) if and only if p ≥ q.
2. PxH is a right H-poset with action defined by :
(p,a)h = (ph,a) for all p∈P , a , h ∈ H ; that is since :  
(i) (p , a)e = (pe, a) = (p,a) 
 
 
(iii) (p,a) > (q,b) ⇒ p > q ⇒ ph > qh ⇒ (ph,a) > (qh,a)  

⇒ (p,a)h > (q,b)h ■ 

Proposition (4.4) : 
Let P be a right H-poset . Then we have a groupoid denoted by       

P  H with P is the object set and arrows (p,h) : p p 1h −  with 
p ∈ P and h ∈H , and the product : 
(p,h) (p 1h −  ,t) = (p, th) with p ∈ P , h,t ∈ H . 
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(p,h) 1t −

Proof :  
1. For any p ∈P and h∈H there exists a unique arrow
(p,h) : p p 1h −  .  

So, p            p 1h −              (p 1h − )    = p 1)th( −  
i.e : (p,h) (p 1h − ,t) : p  p 1th −  . But (p , th) : p  p 1)th( −   .
Hence (p,h) (p 1th −  ,t) = (p, th). 

2. For p ∈ P, 1p = (p,e) : p  p 1e −  = pe = p.
So , (p,e)(p,t) = (p,e) (pe,t) = (p,e) (p 1e −  ,t) 

= (p, te) = (p,t) for all t ∈ H. 
Similarly (p,t) (p,e) = (p,t) for all p∈P , t ∈ H. 
3.For any arrow (p,h):p  p 1h −  ,(p,h)(p 1h − , h-1)= (p, h-1h) = (p,e) = 1p.
Similarly (p 1h −  ,h-1) (p,h) = (p 1h −  , h-1) ((p 1h − )h ,h) 

= (p 1h −  , hh-1) = (p 1h −  ,e) = 1
)

1
hp(

−
 . 

Therefore the arrow (p,h) is invertible and it’s inverse is the arrow 
(p 1h −  , h-1).                                                                              ■ 

The groupoid P  H may be called semi-direct product poset 
groupoid because this groupoid is a special case of the 
semi-direct product groupoid obtained from an action of a group on a set . 
[8] 

Note that for any right H- poset P we have two groupoids , PxP  
considering P as a set and P  H , we shall prove that 

≅PxP  P    H  if and only if P is a regular right H – poset . 

Proposition (4.5): 
Let F : P    H  PxP  defined by ; F(p) = p and F(p,h) = (p,p 1h − ) for 

all p ∈ P and h ∈H. Then F is a functor . 
Proof : 
F (1p) = F(p,e) = (p,p 1e − ) = (p,p) = 1p = 1F(p) 
F((p,h)(p 1e − ,t)) = F(p,th) = (p,p 1)th( − ) 
(F(p,h))(F(p 1h − ,t)) = (p,p 1h − )(p 1h − ,p 1)th( − ) = (p,p 1)th( − ) 
Hence ; F((p,h)(p 1h − ,t)) = (F(p,h)) (F(p 1h − ,t)).              ■ 

Definition (4.6) :[5] 
A right H- poset P is called right transitive H- poset if  P ≠ φ and for 

any p , q ∈ P there exists h ∈ H such that ph = q. 

(p 1h − ,t) 
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Equivalently , if there is some element p ∈ P such that for any 
q ∈ P there exists h ∈ H with ph = q. 
Definition (4.7) :[5] 

A right H- poset P is called right regular H-poset if it’s free and 
transitive right H- poset . 

Proposition (4.8) : 
P  H PxP≅  by the functor F defined above if and only if the right 

H- poset P is regular . 
Proof : 

Suppose that P  H PxP≅  by the functor F. Then F is an 
isomorphism functor . That is F is onto and 1-1. 

Now let p,q ∈ P. Since F is onto then there exists h∈H such that 
F(p,h) = (p,q) . So , (p,p 1h − )= (p,q) .  
Hence q= ph-1 . So P is a transitive right H-poset . 

Let ph = p and k = h-1 .Then F(p,e) = (p,p
1e−
 ) = (p,p) and F(p,k)

= (p,p
1k−
) = (p,ph) = (p,p) . So F(p,e) = F(p,k) . Since F is injective , (p,e)

= (p,k). That is k =e . Hence h =e and the right H-action on 
P is free. 
Therefore the right H- poset P is regular . 

Conversely , suppose that P is regular right H-poset . Then P is 
transitive and free right H-poset . 
Let (p,q) ∈ PxP . Since P is transitive right H-poset, then there exists       
h ∈ H such that q = ph. 
So, (p,h-1) ∈ (P   H) and F(p,h-1) = (p,ph) = (p,q) 
Also , let p ∈P then F(p) = p .Hence F is onto . 
Now let F(p,h) = F(q,k) .Then (p,p 1h − ) = (q,q 1h − ) 
So, p =q  and p 1h −  = q 1k −  . Hence p 1h − k = q. 
Since the right H- poset P is free, h-1k = e. So , h=k .  
Also , let F(p) = F(q) then p =q .Hence F is injective . 
Therefore F is an isomorphism and PxPHP ≅ .          ■ 
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