Sphericity Test in Nested Repeated Measures Model of Gabbara

Abdul-Hussein Saber Al-Mouel ${ }^{1}$ and Jawad Mhmoud Jassim ${ }^{2}$
${ }^{1}$ Department of Mathematics-College of Education
${ }^{2}$ Department of Mathematics-College of Science-University of Basrah

ISSN -1817-2695

Received 12/3/2006, Accepted 6/9/2006

Abstract

The sphericity test in nested repeated measures model of Gabbara is given as an application of generalized sphericity test of Al-Mouel.
Key words : Sphericity Test, Likelihood Ratio Criterion, Nested Repeated Measures Model, Generalized Sphericity Test.

S1- Introduction

In many statistical analyses that considered univariate, the assumption is made that a set of random variables are independent and have a common variance. Several researchers consider a test of these assumptions based on repeated set of observations. More precisely, they used a sample of p-component vectors Y_{1}, \ldots, Y_{n} from $N(\mu, \Sigma)$ to test the hypothesis

$$
\begin{equation*}
\mathrm{H}: \Sigma=\sigma^{2} \mathrm{I} \tag{1}
\end{equation*}
$$

where σ^{2} is not specified and I is the identity matrix (see Anderson (1984) [2], Muirhead (1982) [6], Mauchly (1940) [5], Timm (2002) [7]). The null hypothesis in (1) is called the hypothesis of sphericity. Al-Mouel (2004) [1] considers testing problem which is a generalization of this problem and the test is given by letting Y_{1}, \ldots, Y_{n} be independent of each other, and identically distributed $N_{p}(\mu, \Sigma)$ and considering the partition

$$
\begin{aligned}
Y_{i} & =\left[Y_{i 1}, Y_{i 2}, \ldots, Y_{i k}\right]^{\prime}, \mu=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right]^{\prime} \text { and } \\
\Sigma & =\left[\begin{array}{cccc}
\Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1 k} \\
\Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2 k} \\
\vdots & \vdots & & \vdots \\
\Sigma_{k 1} & \Sigma_{k 2} & \ldots & \Sigma_{k k}
\end{array}\right]
\end{aligned}
$$

where $Y_{i r}$ and μ_{r} are $p_{r} \times 1$ vectors and $\Sigma_{r r}$ is $p_{r} \times p_{r}$ matrices $(r=1,2, \ldots, k)$ with $\sum_{r=1} p_{r}=p$. He tests the null hypothesis

$$
\mathrm{H}_{0}: \Sigma=\left[\begin{array}{cccc}
\mathrm{I}_{q_{1}} \otimes \Lambda_{11} & \overline{r=1} 0 & \ldots & 0 \tag{2}\\
0 & \mathrm{I}_{q_{2}} \otimes \Lambda_{22} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \mathrm{I}_{q_{k}} \otimes \Lambda_{k k}
\end{array}\right]
$$

where $\Lambda_{r r}$ is $m_{r} \times m_{r}$ matrices with $q_{r} \times m_{r}=p_{r}, r=1,2, \ldots, k, \mathrm{I}_{s}$ denote the $s \times s$ identity matrix and \otimes be the Kroncker product between two matrices. And he shows the criterion for H_{0} is

$$
\begin{equation*}
\Lambda=\frac{|A|^{\frac{n}{2}}}{\prod_{r=1}^{k}\left(\frac{\left|B_{r}\right|}{q_{r}^{m_{r}}}\right)^{\frac{n q_{r}}{2}}} \tag{3}
\end{equation*}
$$

Where

$$
\begin{align*}
& A=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(Y_{i}-\bar{Y}\right)^{\prime}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 k} \\
A_{21} & A_{22} & \ldots & A_{2 k} \\
\vdots & \vdots & & \vdots \\
A_{k 1} & A_{k 2} & \ldots & A_{k k}
\end{array}\right], \tag{4}\\
& A_{r r} \text { are } p_{r} \times p_{r} \text { matrices, } B_{r}=\sum_{i=1}^{q_{r}} A_{r r, i i}, \text { and } \\
& A_{r r}=\sum_{i=1}^{n}\left(Y_{i r}-\overline{Y_{r}}\right)\left(Y_{i r}-\overline{Y_{r}}\right)^{\prime}=\left[\begin{array}{cccc}
A_{r r, 11} & A_{r r, 12} & \ldots & A_{r r, 1 q} \\
A_{r r, 21} & A_{r r, 22} & \ldots & A_{r r, 2 q} \\
\vdots & \vdots & & \vdots \\
A_{r r, q_{r} 1} & A_{r r, q_{r} 2} & \ldots & A_{r r, q_{r} q_{r}}
\end{array}\right], \tag{5}
\end{align*}
$$

for $r=1,2, \ldots, k$. In this paper we study the sphericity test in nested repeated measures model (NRMM) of Gabbara (1985) [4] as an application of generalized sphericity test .

S2- Nested Repeated Measures Model (NRMM) of Gabbara (1985) [4]

In this section, we state the NRMM of Gabbara (1985) [4], which is given below. Gabbara considered the NRMM, which occurs in the analysis of variance (ANOVA) when a particular individual (person, rat, field, etc.) has a number of subindividuals (children, offspring, subfields, etc.) and each subindividual receives several treatments. He assumed that each individual has the same number, d, of subindividuals and each subindividual receiyes the same number r of treatments. He supposed that $Y_{i j k}$ be the $k^{\text {th }}$ observation on the $j^{\text {th }}$ subindividual from $i^{t h}$, individual, for $i=1, \ldots, m, j=1, \ldots, t h$ and $k=1, \ldots, r$, and $Y_{i j}=\left(Y_{i j 1}, \ldots, Y_{i j r}\right)^{\prime}$ be the vector of observations on the j th sub-individual from the $i^{t h}$ individual and $Y_{i}^{\prime}=\left(Y_{i 1}, \ldots, Y_{i d}\right)^{\prime}$ be the vector of observations on the sub-individuals of the $i^{\text {th }}$ individual. Let $\mu_{i j k}=E\left(Y_{i j k}\right), \mu_{i j}=E\left(Y_{i j}\right)$ and $\mu_{i}=E\left(Y_{i}\right)$. It is assumed that Y_{i} are independently normally distributed with mean μ_{i} and common covariance Σ, which is positive definite matrix. He assumed that all the measurements have the same variance σ^{2}, every pair of measurements that come from the same subindividual have the same covariance $\sigma^{2} \rho_{2}$; every pair of measurements that come from the same individual but different subindividuals have the same covariance $\sigma^{2} \rho_{1}$, and every pair of measurements that come from different individuals have covariance zero. In symbols

$$
\operatorname{COV}\left(Y_{i j k}, Y_{i^{\prime} j^{\prime} k^{\prime}}\right)= \begin{cases}\sigma^{2} & \text { if } i=i^{\prime}, j=j^{\prime}, k=k^{\prime} \tag{6}\\ \sigma^{2} \rho_{2} & \text { if } i=i^{\prime}, j=j^{\prime}, k \neq k^{\prime} \\ \sigma^{2} \rho_{1} & \text { if } i=i^{\prime}, j \neq j^{\prime} \\ 0 & \text { if } i \neq i^{\prime}\end{cases}
$$

He assumed that

$$
\begin{equation*}
\mu_{i}=\delta_{i} j_{d} \otimes j_{r}+\gamma_{i} \otimes j_{r}+\eta_{i} \tag{7}
\end{equation*}
$$

where δ_{i} is a scalar, $\gamma_{i}=\left(\gamma_{i 1}, \ldots, \gamma_{i d}\right)^{\prime}$ is a $d \times 1$ vector orthogonal to j_{d} , $\eta_{i}=\left(\eta_{i 11}, \ldots, \eta_{i d r}\right)^{\prime}$ is a $d r \times 1$ vector orthogonal to every column of the matrix $\mathrm{I}_{d} \otimes j_{r}$ and j_{s} is the $s \times 1$ vector of one's. Let Y_{1}, \ldots, Y_{m} be independent $d r-$ dimensional normal random vectors such that

$$
\begin{equation*}
Y_{i} \sim N_{d r}\left(\mu_{i}, \Sigma\right), i=1, \ldots, m \tag{8}
\end{equation*}
$$

where μ_{i} is given in (7) and Σ is defined in (6).

Then he showed that

$$
\begin{equation*}
\Sigma=\sigma^{2}\left[\left(1-\rho_{2}\right) \mathrm{I}_{d r}+\left(\rho_{2}-\rho_{1}\right) \mathrm{I}_{d} \otimes J_{r}+\rho_{1} J_{d r}\right] \tag{9}
\end{equation*}
$$

The model defined by (6)-(9) is called the NRMM.

S3- Transforming the NRMM (Gabbara (1985) [4])

In this section, we use the transformation of the NRMM, which is given by Gabbara (1985) [4]. This transformation is given below.

Let U_{*} be an $d r \times d r$ orthogonal matrix given in the following form

$$
U_{*}=\left[\begin{array}{c}
(d r)^{-\frac{1}{2}} j_{d}^{\prime} \otimes j_{r}^{\prime} \tag{10}\\
r^{-\frac{1}{2}} U_{d}^{\prime} \otimes j_{r}^{\prime} \\
U_{d}^{*} \otimes U_{r}^{\prime}
\end{array}\right]
$$

where U_{s}^{\prime} be $(s-1) \times s$ matrix such that $U_{s}^{\prime} U_{s}=\mathrm{I}_{s-1}, \quad U_{s} U_{s}^{\prime}=\mathrm{I}_{s}-\left(\frac{1}{s}\right) J_{s}$, $U_{s}^{\prime} j_{s=0}, j_{s} U_{s}^{\prime}=0$, and U_{s}^{*} be $s \times s$ orthogonal matrix defined as:

$$
U_{s}^{*}=\left[\begin{array}{c}
-\frac{1}{2} \tag{11}\\
s^{\prime} j_{s}^{\prime} \\
U_{s}^{\prime}
\end{array}\right]
$$

Let $\quad Y_{i}^{*}=\left[\begin{array}{l}Y_{i 1}^{*} \\ Y_{i 2}^{*} \\ Y_{i 3}^{*}\end{array}\right]=U_{*} Y_{i}=\left[\begin{array}{c}(d r)^{-\frac{1}{2}} j_{d}^{\prime} \otimes j_{r}^{\prime} \\ r^{-\frac{1}{2}} U_{d}^{\prime} \otimes j_{r}^{\prime} \\ U_{d}^{*} \otimes U_{r}^{\prime}\end{array}\right] Y_{i}$,
where $Y_{i 1}^{*}, Y_{i 2}^{*}, Y_{i 3}^{*}$ are $1 \times 1,(d-1) \times 1, d(r-1) \times 1$ respectively.
Since U_{*} is an invertible matrix and doess not depend on any unknown parameters, observing $Y_{1}, \ldots, \hat{Y}_{m}$ is equivalent to observing $Y_{i 1}^{*}, Y_{i 2}^{*}$ and $Y_{i 3}^{*}$. Then the Y_{i}^{*} are independent. Also

$$
\begin{equation*}
Y_{i}^{*} \sim N_{d r}\left(U_{*} \mu_{i}, U_{*} \Sigma U_{*}^{\prime}\right) \tag{13}
\end{equation*}
$$

Now $U_{*} \mu_{i}=\left[\begin{array}{c}(d r)^{-\frac{1}{2}} j_{d}^{\prime} \otimes j_{r}^{\prime} \\ r^{-\frac{1}{2}} U_{d}^{\prime} \otimes j_{r}^{\prime} \\ U_{d}^{*} \otimes U_{r}^{\prime}\end{array}\right] \mu_{i}=\left[\begin{array}{c}(d r)^{\frac{1}{2}} \delta_{i} \\ r^{\frac{1}{2}} U_{d}^{\prime} \gamma_{i} \\ \left(U_{d}^{*} \otimes U_{r}^{\prime}\right) \eta_{i}\end{array}\right]$,
where μ_{i} is given in (7), and

$$
U_{*} \Sigma U_{*}^{\prime}=\sigma^{2}\left[\begin{array}{ccc}
1+(r-1) \rho_{2}+r(d-1) \rho_{1} & 0 & 0 \tag{15}\\
0 & {\left[1+(r-1) \rho_{2}-r \rho_{1}\right] \mathrm{I}_{d-1}} & 0 \\
0 & 0 & \left(1-\rho_{2}\right) \mathrm{I}_{d(r-1)}
\end{array}\right]
$$

or

$$
\Sigma^{*}=U_{*} \Sigma U_{*}^{\prime}=\left[\begin{array}{ccc}
\tau_{1}^{2} & 0 & 0 \tag{16}\\
0 & \tau_{2}^{2} \mathrm{I}_{d-1} & 0 \\
0 & 0 & \tau_{3}^{2} \mathrm{I}_{d(r-1)}
\end{array}\right]
$$

Where $\tau_{1}^{2}=\sigma^{2}\left[1+(r-1) \rho_{2}+r(d-1) \rho_{1}\right]$,

$$
\begin{gather*}
\tau_{2}^{2}=\sigma^{2}\left[1+(r-1) \rho_{2}-r \rho_{1}\right] \\
\tau_{3}^{2}=\sigma^{2}\left[1-\rho_{2}\right] \tag{17}
\end{gather*}
$$

$\left(\tau_{1}^{2}, \tau_{2}^{2}, \tau_{3}^{2}\right)$ is just an invertible function of $\left(\sigma^{2}, \rho_{1}, \rho_{2}\right)$ which is a reparametrization. Hence $Y_{i 1}^{*}, Y_{i 2}^{*}$ and $Y_{i 3}^{*}$ are independent and $Y_{i 1}^{*} \sim N_{1}\left(\sqrt{d r} \delta_{i}, \tau_{1}^{2}\right)$,

$$
Y_{i 2}^{*} \sim N_{d-1}\left(\sqrt{r} U_{d}^{\prime} \gamma_{i}, \tau_{2}^{2} \mathrm{I}_{d-1}\right), \quad Y_{i 3}^{*} \sim N_{d(r-1)}\left(\left[U_{d}^{*} \otimes U_{r}^{\prime}\right] \eta_{i}, \tau_{3}^{2} \mathrm{I}_{d(r-1)}\right)
$$

S4- The Sphericity Test in NRMM

We consider the covariance structure in NRMM of Gabbara (1985) [4]. We wish to test the null hypothesis

$$
\begin{equation*}
\mathrm{H}_{0}: \Sigma=\sigma^{2}\left[\left(1-\rho_{2}\right) \mathrm{I}_{d r}+\left(\rho_{2}-\rho_{1}\right) \mathrm{I}_{d} \otimes J_{r}+\rho_{1} J_{d r}\right] \tag{18}
\end{equation*}
$$

which is based on the sample Y_{1}, \ldots, Y_{m}. Since the observing $Y_{1}{ }_{\Sigma}{ }^{*}, Y_{m}$ is equivalent to observing $Y_{i 1}^{*}, Y_{i 2}^{*}$ and $Y_{i 3}^{*}$, and Σ is equivalent to Σ^{*}, where Σ^{*} is given in (16), then testing the null hypothesis (18) is equivalent to testing the null hypothesis

$$
\mathrm{H}_{0}: \Sigma^{*}=U_{*} \Sigma U_{*}^{\prime}=\left[\begin{array}{ccc}
\tau_{1}^{2} & 0 & 0 \tag{19}\\
0 & \tau_{2}^{2} \mathrm{I}_{d-1} & 0 \\
0 & 0 & \tau_{3}^{2} \mathrm{I}_{d(r-1)}
\end{array}\right]
$$

which is based on the sample $Y_{1}^{*}, \ldots, Y_{m}^{*}$. We see that (19) is a special case of the form (2). Then we can apply the generalized sphericity test of Al-Mouel (2004) [1] . Hence, the likelihood ratio criterion for H_{0} is :

$$
\begin{equation*}
\Lambda=\frac{|A|^{\frac{m}{2}}}{\prod_{g=1}^{3}\left|B_{g}\right|^{\frac{m}{2}}}, \tag{20}
\end{equation*}
$$

where $\quad A=\sum_{i=1}^{m}\left(Y_{i}^{*}-\overline{Y^{*}}\right)\left(Y_{i}^{*}-\overline{Y^{*}}\right)^{\prime}=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]$,
A_{11}, A_{22}, A_{33} are $1 \times 1,(d-1) \times(d-1), d(r-1) \times d(r-1)$,

$$
\begin{align*}
& B_{g}=\operatorname{trace}\left(A_{g g}\right), g=1,2,3, \text { and } \tag{22}\\
& A_{g g}=\sum_{i=1}^{m}\left(Y_{i g}^{*}-\overline{Y_{g}^{*}}\right)\left(Y_{i g}^{*}-\overline{Y_{g}^{*}}\right)^{\prime}, g=1,2,3, \tag{23}
\end{align*}
$$

and $\overline{Y^{*}}$ be the sample mean vector formed from a sample observations on Y_{i}^{*} that means $\overline{Y^{*}}$ partition as : ${\overline{Y^{*}}}^{\prime}=\left({\overline{Y_{1}^{*}}}^{\prime},{\overline{Y_{2}^{*}}}^{\prime},{\overline{Y_{3}^{*}}}^{\prime}\right)$, where ${\overline{Y_{1}^{*}}}^{\prime},{\overline{Y_{2}^{*}}}^{\prime},{\overline{Y_{3}^{*}}}^{\prime}$ are $1 \times 1,(d-1) \times 1, d(r-1) \times 1 \quad$ respectively.

Conclusion

The likelihood ratio criterion, for H_{0} (19) which is based on the sample $Y_{1}^{*}, \ldots, Y_{m}^{*}$, is

$$
\Lambda=\frac{|A|^{\frac{m}{2}}}{\prod_{g=1}^{3}\left|B_{g}\right|^{\frac{m}{2}}}
$$

where A and B_{g} are given in (21) and (22) respectively.

References

[1] Al-Mouel, A.H.S., Multivariate Repeated Measures Models and Comparison of Estimators, Ph.D. Thesis, East China Normal University, China. (2004).
[2] Anderson, T.W., An Introduction to Multivariate Statistical Analysis, Second Edition, Wiley, New York. (1984).
[3] Bilodeau, M., and Brenner, D., Theory of Multivariate Statistics, New York, Springer-Verlag, Inc. (1999).
[4] Gabbara, S.D., Nested and Crossed Repeated Measures Models, Ph.D. Thesis, The Pennsylvania State University, USA. (1985).
[5] Mauchly, J.W., Significance Test for Sphericity of a normal n-Variate Distribution, Annals of Mathematical Statisties, 11,204-209. (1940).
[6] Muirhead, R.J., Aspects of Multivariate Statistical Theory, Wiley, New York. (1982).
[7] Timm, N.H., Applied Multivariate Analysis, Springer-Verlag Inc.
New York. (2002).

الاختبار الكروي لنموذج القياسـات المتكررة المتداخل لكبارة

$$
\begin{aligned}
& \text { عبد الحسين صبر المويل¹ و جـواد مـمـود جـاسـ2 } \\
& \text { 1- قسم الرياضيات - كلية التتريبية- جامعة البصرة } \\
& \text { 2- قسم الرياضيات - كلية المعلوم- جامعة البصرة }
\end{aligned}
$$

[^0]
[^0]: (لـمستتخاص
 تمت تدراسة الاختبار الكروي لنموذج القياسات المتكررة المتداخل لـ (كباره) بوصفه تطبيقاً للاختبار الكروي
 \qquad

