On Strongly γ – Regular Rings

Baida S. Abdullah

Department of Mathematics / College of Education, University of Mosul,

Received 17 / 12 / 2007

Accepted 07 / 05 / 2008

المخلص

الهدف الرئيسي في هذا البحث هو دراسة الحلقات المنتظمة القوية من النمط γ والتي الهدف الرئيسي في هذا البحث هو دراسة الحلقات المنتظمة القوية من الحلقة R تسمى حلقة (Mohammad A. J. and Salih. S. M.) الحلقة R منتظمة قوية من النمط R إذا كان لكل R في R يوجد R في R وعدد صحيح موجب R بحيث ان R R بحيث ان R أن المحتود على المحتو

كذلك درسنا بعض الصفات الرئيسية لهذه الحلقات . أخيراً وضحنا الع لاقة بين الحلقات المنتظمة القوية من النمط γ وبعض الحلقات الأخرى.

ABSTRACT

The main goal of the work is to study a strongly γ -regular rings, which was introduce by Mohammad A. J. and Salih. S. M. in (2006). That is, a ring R is said to be strongly γ -regular if for every $a \in R$ there exists $b \in R$ and a positive integer $n \ne 1$ such that $a = a^2b^n$.

We will study some basic properties of those rings. Finally, we show the relation between strongly γ -regular rings and other rings.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity and all modules are unitary right R-modules. Recall that; (1) A right R-module M is called right principally injective (briefly right P-injective) if for any principal right ideal (aR) of R, and every right R-homomorphism of aR into M extends to one of R into M. This concept was introduced by [6,1]; (2) A ring R is said to be regular if for every $a \in R$, there exists $b \in R$ such that a=aba; (3) A ring R is called strongly regular if for every $a \in R$, there exists $b \in R$ such that $a=a^2b$; (4) A ring R is called strongly π -regular, if for every $a \in R$ there exists $n \in z^+$ and element $b \in R$ such that $a^n=a^{n+1}$ $b(a^n=ba^{n+1})$; (5) For any element a in R we define the right annihilator of a by $r(a)=\{x \in R: ax=0\}$. And likewise the left annihilator l (a). In 2006 Mohammad A. [4] defined γ -regular rings, that is, a ring R with every $a \in R$, there exists b in R and a positive integer $n \neq l$ such that $a=ab^na$. Also, the definition of strongly γ -regular ring was introduced in [4].

2. Strongly γ-Regular Rings

In this section, we study some basic properties of strongly γ -regular rings.

Definition 2.1: [4]

An element a of a ring R is said to be strongly γ -regular if there exists b in R and a positive integer $n \neq 1$ such that $a = a^2b^n$.

A ring R is said to be strongly γ -regular if every element in R is strongly γ -regular element.

Hence, in a strongly γ -regular ring R, $a=a^2b^n$ if and only if $a=b^na^2$, see [3].

Remark 2.2: [4]

We see that every strongly γ -regular ring is strongly regular ring, however the converse is not true in general, for example, the ring (Q,+,.) of rational numbers, the rational (real) Hamilton Quaternion and a quadric field are strongly regulars, but not strongly γ -regulars.

Proposition 2.3:

If R is a reduced ring such that for each non zero element $a \in R$ there is a unique $b \in R$ such that $a^n = a^{2n}b$, a positive integer $n \neq 1$, then b is strongly γ -regular element.

Proof: Since $a^n = a^{2n}b$ for each $a \in R$, thenwe shall prove that R has no divisor of zero. Let a. b = 0, Then $a^n = a^{2n}b = a^{2n-1}$ a. $b = a^{2n-1}$. 0 = 0. So a = 0 (R is a reduced ring). Then cancellation low holds. $1 = a^n b \Rightarrow b = a^n b^2$. Therefore b is strongly γ -regular element by [3]. \square

Lemma 2.4: [5]

If R is a reduced ring, and if a is a non-zero element in R. then $r(a)=r(a^2)$, and l(a)=r(a).

Theorem 2.5:

Let R be a reduced ring. If R/r(a) is strongly γ -regular ring for all $a \in R$, then R is strongly γ -regular and γ -regular ring.

<u>Proof</u>: Suppose that R/r(a) is strongly γ -regular ring, then for any $a+r(a) \in R/r(a)$, there exists $b+r(a) \in R/r(a)$ and a positive integer $n\neq 1$ such that $a+r(a)=(a+r(a))^2$ $(b+r(a))^n$

=
$$(a^2+r(a)) (b^n+r(a))$$

= $a^2b^n + r(a)$

Then $a-a^2b^n \in r(a)$. So $a(a-a^2b^n)=0$. that is $a^2(1-ab^n)=0$. Then $(1-ab^n) \in r(a^2)=r(a)$ [Lemma 2.4]. So, $a(1-ab^n)=0$. Hence $a=a^2b^n$. Therefore R is strongly γ -regular ring. Also, since $(1-ab^n) \in l(a)=r(a)$, then $(1-ab^n) = 0$. So, $a=ab^na$. Therefore, R is γ -regular ring. \square

Proposition 2.6:

If y is an element of a ring R such that $a-a^2$ y^{α} is strongly γ -regular element then a is strongly regular element, where $l\neq\alpha$ is a positive integer.

Proof: Suppose that $a-a^2y^{\alpha}$ is strongly γ -regular element, then there exists an element $b \in R$ and a positive integer $n \neq 1$ such that:

$$a - a^{2}y^{\alpha} = (a - a^{2}y^{\alpha})^{2} b^{n}$$
now
$$a - a^{2}y^{\alpha} = (a - a^{2}y^{\alpha}) (ab^{n} - a^{2}y^{\alpha}b^{n})$$

$$= a^{2}b^{n} - a^{2}y^{\alpha}ab^{n} - a^{2}y^{\alpha}ab^{n} + a^{2}y^{\alpha}a^{2}y^{\alpha}b^{n}$$
Then
$$a = a^{2}y^{\alpha} + a^{2}b^{n} - a^{2}y^{\alpha}ab^{n} - a^{2}y^{\alpha}ab^{n} + a^{2}y^{\alpha}a^{2}y^{\alpha}b^{n}$$

$$= a^{2}(y^{\alpha} + b^{n} - y^{\alpha}ab^{n} - y^{\alpha}ab^{n} + y^{\alpha}a^{2}y^{\alpha}b^{n}) = a^{2}z$$

where $z = y^{\alpha} + b^n - y^{\alpha}ab^n - y^{\alpha}ab^n + y^{\alpha}a^2y^{\alpha}b^n$. Therefore a is strongly regular element. \square

In the following; For any ring R, let P(R) be the prime radical of R and N be the set of the nilpotent elements of R. [4]

Theorem 2.7:

Let R be a commutative ring, if R/P(R) is strongly regular ring then for each $a \in R$ there exists a positive integer $n \neq 1$ such that a^n is strongly γ -regular element.

Proof: Since R/P(R) is strongly regular ring, then for each $a+P \in R/P$ (R) there exists $y+P \in R/P$ (R) such that $a+P=(a+P)^2$ (y+P)= $(a^2+P)(y+P)=a^2y+P$, then $a-a^2y \in P(R)$. So $a-a^2y \in N$. Hence there exists $n \in z^+$ such that $(a-a^2y)^n=0$

Now, $(a-a^2y)^n = a^n - c_1^n a^{n+1} y + c_2^n a^{n+2} y^2 - \dots + (-1)^n a^{2n}y^n = 0$, then $a^n = a^{n+1}z$, where $z = c_1^n y + c_2^n a y^2 - \dots + (-1)^n a^{n-1}y^n$ So $a^n = aa^n z = aa^{n+1}zz = a^{n+2}z^2 = \dots = a^{2n}z^n$.

Therefore a^n is strongly γ -regular element. \square

Definition 2.8: [7]

A ring R is said to be a semi-commutative ring if every idempotent element in R is central.

Hence every reduced ring is semi-commutative ring. [7].

Theorem 2.9:

Let R be a ring. If R is semi-commutative strongly γ -regular ring, then R/N is γ -regular ring.

Proof:

Since *R* is strongly γ -regular ring, then from (Theorem 5.6, [4]) *R* is γ -regular ring. So R/N is strongly γ -regular ring (Theorem 5.10, [4]).

3. Strongly γ-Regular Rings With Condition (*)

The following condition (*) was introduced by Mohammad A. J. and Salih S. M. in [4].

(*): let R be a ring such that for every $1 \neq a \in R$ and $b \in R$, there exist a positive integer m > 1 such that $ab = b^m a$.

In this section we discus the connection between strongly γ -regular ring with the other rings which they are commutative, reduced or satisfies condition (*).

Theorem 3.1:

Let R be a reduced ring. If R is strongly π -regular ring satisfies condition (*). Then R is strongly γ -regular ring.

Proof: Since R is strongly π -regular ring, then for every $a \in R$ there exists $m \in z^+$ and element $b \in R$ such that $a^m = a^{m+1}b$. Now since R satisfies condition (*), then for every $a,b \in R$, $ab = b^n a$ for some positive integer n > 1. Then $a^m = a^m b^n a$. So $(1 - b^n a) \in r(a^m)$. By 4.8 [2], $r(a^m) = r(a)$. By [Lemma 2.4] r(a) = l(a), whence $(1 - b^n a)a = 0$. then $a = a^2 b^n$. Therefore R is strongly γ -regular ring. \square

Theorem 3.2:

If R is a reduced ring satisfies condition (*), and for all $a \in R$ there exists unit element $d \in R$ and some idempotent $e \in R$ such that a=de. Then R is strongly γ -regular ring.

Proof: Let $a \in R$, and a=de for some unit $d \in R$ and some idempotent $e \in R$. Hence e=xa, where x is the inverse of d. Now $ae=axa=dexa=dee=de^2=de=a$. Therefore a=ae=axa. Since R satisfies condition (*), then $ax=x^na$ with a positive integer $n\neq 1$ for every $a,x\in R$. Then $a=axa=x^naa=x^na^2$. Therefore R is strongly γ -regular ring. \square

REFERENCES

- 1. Azumaya G., Strongly π -Regular Rings, J. Fac. Sci. Hokkaido Univ. Vol. 13 (1954), 34-39.
- **2.** Chiba K. and Tominaga H., On Strongly Regular Rings, Proc. Japan Acad., Vol. 49 (1973), 435-437.
- **3.** Luh J., A Note On Strongly Regular Rings, Proc. Japan Acad., Vol. 40 (1964), 74-75.
- **4.** Mohammad A. J. and Salih S. M., On γ -regular Rings, J. Edu. Sci, Vol. (18) No. 4(2006).
- **5.** Mahmood A. S., On Von Neumann Regular Rings, M. Sc. Thesis, Mosul University (1990).
- **6.** Mahmood R. D, Ibraheem Z. M. and Qasim N. Y., On Zero Commutative Strongly π -Regular Ring, Tikrit Journal for pure Science, Vol. 9 No. 2 (2003).
- 7. Naoum F. S., On π -Regular Rings, Ph. D. Thesis, Mosul University, (2004).