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Abstract

In this paper, fourth order compact difference soheis employed to solve two
dimensional microscale heat transport equationinBpducing an intermediate function for
the heat transport equation, we use the fourthrozdmpact scheme for the space with a
second order Crank-Nicolson scheme for the times Stability of this scheme is proved
unconditionally stable with respect to initial vets The computational accuracy is
demonstrated that the results of the compact foorder finite difference scheme is more
accurate than the second order finite differentese [12].

Key words heat transport equation, finite differences, tbwrder compact, Crank-Nicolson
scheme.

1. Introduction

The two dimension Microscale heat tramsmmuation for describing the thermal
behavior of thin films and other microstructure tanwritten as [12]

2 2 2
l(a_T+Tqa—I)=Tq 63T2 T 63T2+6T2+6T2+S, (1)
a ot ot atox atoy® ox° oy
with the initial conditions :
0T (x,y,0

Ty0=Totxy),  TO¥D =Ty, @
and the boundary conditions:
T@Ovy,t) =Ty (y,1), T(x,0,t) =T3(x1), 3
T(Ly,y,t) =T4(x1), T(x Ly, t) =Ts(x1), ®)

where T is the temperatureg, T+ and Ty are positive constants. Here is the thermal
diffusivity. Ty and T, represent the time lags of heat flux and temperature gtadien

respectively.S is the sours [11].

Many applications, can be modeled by the microscale heaptenequation for examples,
phonon electron interaction model [7], the single eneguyaion [9, 10], the phonon scatting
model [2], the phonon radiative transfer model [3] &émel lagging behavior model[5, 9, 8].
Few authors deal with numerical solution of one dimensiuoroscale heat transport
equation. By using Crank-Nicolson technique Qui and T&nhpve solved the phonon
electron interaction model. Joshi and Majumdar [3] have trs=explicit upstream difference
method to solve the phonon radiative transfer modehedmensional medium. Zhang and
Zhao [11] have solved the one dimension microscale heatptanequation using fourth
order compact scheme and have proved this new schemeditirmally with initial values.
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Only Zhang and Zhao in [12] and [13] solve the &vml three dimension microscale heat
transport equation, respectively, using secondrdotdime and space.

In this paper we consider the microscale heat p@msequation in two dimensions. The
aim of this paper is to develop the work of Zhand Zhao [12] forTy =T, . We increase the
accuracy of the finite difference scheme by usiagfourth order accuracy for space and
second order for time, while Zhang and Zhao [12jgi& second order for space and second
for time using Crank Nicolson technique . In additiwe prove that the fourth order compact
scheme is unconditionally stable with initial vadueNumerical results are provided for
comparison and testing purpose in [12] by ZhangZimab.

2. Fourth order compact discretization
For convenience, let us consider a rectangulamaih® =[0,L,]x[0,L,]. Here

subscripts are obviously not derivatives. We digoee2 with uniform mesh size&x and
4y respectively in the x and y coordinate directiddefine Nx= Lx/4 x and Ny= Ly/ 4y
the numbers of uniform subintervals along the x ycdordinate directions, respectively. The
mesh points are(x;,y;) where x;=i4x and y;= jd4y, 0<i<Nx, 0<j<Ny. In the
sequel, we may also use the index daij to)represent the mesh part, y;). Also, we
discretize the time interval with uniform mesh siae.

If Tr =T, then equation (1) can be written as;

10T  _ 0°T 03T 03T | 9%T  9°T
(T ) =T, - +T, s*t—5+—5+S. (4)
a ot at atox atayc ox= oy
Consider the following function
oT
O=T+T,—. S
9 ot ®)

Substituting (5) into (4), and after simplificatiome get

2 2
a_z +a_§ =f , (6)
ox= oy

wheref = 1% - S, with the modified initial and boundary conditions
a

6(x,y.0) =To (%, y) +ToTo(x, y),

6(0,y,t) :Tz(y,t)+Tq%, 0(x,0,t) :T3(x,t)+Tq%, (7)
T, (y.t) 0Ts(x.1)

O(Ly, y,1) =Ta(y, ) + Ty m

The standard second order central difference ograrat grid point(i, j )can be written as

O(x,Ly,t) =Ts(x,t) + T, pramt

026 Ax% 9%0  Ax* 9%
| =06 - o = +0(A°),
0x i 12 9x 360 9x
8) (
%6 . %o ayt oo 6
2| T T 0 3608 O
oy°|; oy oy

By using these finite difference approximatiolég,(6) can be discretized at a given grid
point (i, j) as

-
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356, +056; = f; +O(Ax®, 4y?). (9)
The fourth order compact scheme for (6) can tvediced as [14]
2 2
2 2 1, .2 252, _ X s AT 52 4 4
Ox 6 +0y6; +E(AX + Ay? 1050y 6 = fj +—— T Ox i 17 —— 0y fj +O(AX™ + 4y").
(10)
Applying the Crank-Nicolson technique to the foustder compact scheme (10) where
(f= l%—S) we get
a ot
1
1 1 1 106 _n+,
553(@?*1+a?>+55§(a?*1+ei?>+—(Ax2+Ay2>535§(a}‘*1+9r> oS ?
1
X2 5,100 _nt Ay ,,100 "2
+ 28 52(=2l -5 2 Oy ———S
5o 2+ ¢ i
(11)
+1
t; 4t
Then the final formula can be written as follows:
n+1 n
1 1 1 i
SOHOT O)) S SHO  O)) + (88 + yP)SESHE P+ 6]y = — (L i
”*% AX n+1 on } Ay 1 9n+1 an ”’%
-5 x((” Uy-g ty oy — ")3, )
(12)

where
1
53026 =——— 146 ~264; + Biasj + 1+ 012) * Bgja *+ Bragj + Ornjr *+ By
(axy)?

After simplification (12), we obtain

n+l n+1 n+1 n+l n+l n+1 n+l n+l n+
agj — +b(Gigj + ) +c(Gj1 +641) +d(Bi1ja + 01 B4+ 6 l]+l) = u )

(13)
where

=0, Pt b1(9|+11 + 9-11 )+ Cl(gn—l + 911 )+ dl(eir-]r-lj—l + ein-lj 4t 9|qu +1

1
+9nlj+l) + R(S] 2)

2 5,1 1
" 3ot GAX ViV
2 51 .11
T12a4t 12 452 12 py?’
_ 2 51 11
1204t 12 Ay? 12 Ax%
1,1 1
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qo 2 5.1 .1,
1 3a4t 6 42 ViV

2 51 11

"= Ton 122 1247
2 51 11
G = Y T 2 T 1o
1204t 12 py= 12 Ax
1 1
dl——( —)
24Ay Ax

2 n+% NG ) n+} Ay2 5 n+%
R(Sh ) = 51] +_5 51] 12 5)’51]
Equation (13) used to evaluaﬁ?”. For computing'ijml, we discretize (5) using Crank-
Nicolson method

L@ a) = ST AT (14)

Simplification equation (14) to gﬁf" we have

1)t At

A4t -
T = (ST (Mg rw+( S G+ 6.

which can be used to evalu@fé”.

3. Stability analysis

In this section, we prove that the fourth order commatieme (12) and (14) is
unconditionally stablevith respect to the initial values. To prove this, we ti®e discrete
energy method [1, 5]. For achieving this purpose, wé¢ dafineD as the set of discrete
values

{e“ :{q’j‘}, with ef; =e}j =&p =ey =0, 1<i,j< N}.

We then make the following norm definitions for agl, f" O D,

broin)=ae Y. e e,

i,j=1
The following results can be verified easily [1, 4]
Lemmal: Forany", f" 0D, the following equalities hold.

62, 17)=-(5,e" 5,17} (62", £7)={o,e",5, ")
(5252 " f”) —(55e ) f”)

2
g"

where o,€e" —M, 5ye”
AX

are the forward difference operators.
Theorem: Suppose thal{T,J ,9”} and ij”,fij”} are the solution of the finite difference
scheme (12) and (14) which satisfy the boundargitioms (3) and (7), and have different

elj +1 elj
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initial vaIues{T,J N } and ijo,fi?}, respectively. Letwj = &' - & and &' =T;" -V; then
{ Wi , € } satisfy

ﬂ\w“ﬂ%z + 2}% “2+2Tquayen
2 2
K I zuavaﬂ
o Ouﬂmuaysou slac szl

(15)
for any0< nAt <tg,, . This implies that the finite difference schemenconditionally

stable with respect to the initial values.

Proof: Firstly, we substitute (14) into (12) we get,

%52(Tn+1+-|— )+ CI 52(-|—n+l_-|— )+ 52(-|—n+1+-|— )+ CI 52(-|—n+1 Un)

e L0+ AT T ¢ DL (08 + )RS T (16)

1

— aAt |:en+l en + = 52 (eln+l ) + 2 Ay 52 (9|n+l elln )} ]

Since {T,J ,9”} and ij”,fij”} are solutions of (16) with the same boundary @@,
SO {vvij  Eij }D D, and they also satisfy

ﬁ{vvi?*l—w., 2C 2 vvi,-”>+ﬂy—;62(w.?+1—wi?>}
=le? (e.,“ﬂ vef )+ 2 (o2l + e
e (g2t - )2 65 e - )
T LY i e, )+% (? + a2 o202 e - o).

1)

(17)
From (14), we can see that

2T
1 1 q(.nv
Wi+ g ‘(£|?+ t & )+E(EIT+ Eijn)- (18)

Using (18) and Lemma 1, we can obtain the folloneggalities:
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) )
(Bl - n) 5 (w4 wh) = 5,6 - |52 +_q( 5 lem-en)
6, e+ n) 8, fwt v wr )=, e+ ) +2Al?(uayg”+l “—oer Zj
(6, (- ") 5, Wt +wn)) =[5, o’ +A_?(H5y(g”+l g" Zj
(68, (™ +2") 8,8, (W +wn)) = 5X5y(g”+1+g”]2+%(5X5ya”+1 5.5,€" zj,
(0,72 -27), 5,0, (Wt + wr) = [o8,6™ [ 5,5, 2+A—?(5X5y(g”+1 s”]z}

(19)
By multiplying both sides of (17) b)(\/\/,”+l + W,T)Axﬁy and sum over and j we can get
n

b)) 2 (e )

s P Ry

n+l 2

W n+l 2_

Tl ) wrt ) oo o) )

+i(AX2+AyZX5252( n+l ) n+l )

;At(AX + 2y X5252( n+l _ ) n+l )

(20)
We can find each term on the right-hand side of.(BBing lemma 1 and (19), we can get

%(5f(€”+1+£”), W"+1+Wn):‘%(5x(€”+l+g 12+%( 1) ® : 2)}
%(53(«?”1 —5”), wt +W”)=—%( e g n +%( 5X(£”+l —E”lzj}
%(53(5”*1 +£”), wm™ +w )— —%(de (£”+1 +& 12 +2l(“5 g deé‘" 2)}

2T,

(53 (£n+1 _en )’ whtL +Wn): _%(degnﬂ +A_?(H5y (£n+1 _En]

_ n
dea
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2—14(AX2 +Ay2)(5355(£n+1+£n)’Wn+1+Wn)
2 2T 2 2
:—i(Ax2+Ay2{ dey(£”+l+£”] +—q( 50,™H" ~|5,0,&" ﬂ
24 At
T
12th (sz +Ay2X5353(£n+1_£n)’Wn+l+Wn)
T, 2 2 2T 2
_ q 2 2 1 q 1
—_M(AX +Ay {deyfn-* - 5X5y£n +E( dey(ng fn] j:|

Substituting (21) into (20), yields

2 2 2 2 2 2 2 2
L we]® < wn]F ]+ 2 S WM —la w" s ||5yWn+l ||5yw”
a Ot 12 12
2 2T 2 2
= —%( oM (£”+1 + g”l +A_?( o™ —|loem jj
1 n+l n 2 2Tq n+l 2 n 2
—E( 5y(£ +& ] +E ||5y£ ||5y£
T, 2 2 2T 2
—Z(l( 3™ [0 +A_'?( JX(£”+1—£” j
T, 2 2 2T 2
q n+l n q n+l n
_Z( Oy€ —||5y£ +E(”5y(£ £ J
1 2 2 n+l n 2 2Tq n+l n 2
—Z(AX +y {cx(dy(a t& l +E OxOyE —|0x0y€
T, 2 2 2T 2
—1—2th(sz +Ay2{ 50,™H" ~|5,0," +A—E( JXJy(£”+1—£" ﬂ
(22)
after dropping the six negative terms from the trigdand side of (23), we get
1 n+l 2 n 2 AXZ n+l 2 n 2 Ayz n+l 2 n 2
—| W =(w +——| |[OxW —[OywW +—— ||5yw —||5yw
a bt 12 12
2T, 2 2T, 2 2T 2 2T 2
P T T TE
At At At At
1(, 2 2\Tq n+1/? n||2
_E(AX +Ay )Z 5x5y£ - 5x5y£ .
This implies the following inequality
-7B-
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ai“ whl 2 Z:II-XZZ n+1) 2 +A1Y_22H5ywn+l Z:I +2Tq n+1||2 +2—|—qH5y£n+l 2
+%(Ax2 +Ay2)% 5.8,e™’ saiﬂwn ? ﬂxzz | +£2‘ 1
+ 2T, : 2+2Tq“5y£” (Ax +ly )

(23)
(15) follows from (23) by recursion with respectrio

4.Numerical Results

We consider two dimensional model probléo test the high order compact
formulation for microscale heat transport equatweith initial and boundary conditions
satisfying the exact solutidi(x, y,t) = e**¥*! 0<t<1, 0<x y<1. The code was written

in Fortran power station 90 programming languades absolute error evaluated by using the
following equation

Ny-1 Ny
2 2l 7Tl

(N —1)(N D
where T; represents the approximate value aRg represents the exact value.We chose
Tg=la= 05, S=00,. The errors of the fourth order and the secomkroschemes are
compared in Fig. 1 and Fig. 2 fd.001< At < 002 with two choices4x =4y = 0.1and

Ax = Ay = 005. The errors of the fourth order scheme are shaaretsmaller than those of
the second order scheme in both cases. Note tlttrtincation error is of order
0(4t?, 4x*, ay*) for the fourth order scheme and of ord®(At?, Ax?, 4y?) for the second

order scheme. Thus, it is large and the temporal error component donsnatee
difference in error magnitude between the fourttheoischeme and the second order scheme
will decrease.

Av. |Error|=

4.E-041

4.E-04 1

3.E-04

absolute error

2.E-04

1.E-04 -

second order scheme
fourth order scheme

7.E-05

3.E-07

0.001 0.011 0.014 0.016

At

0.004 0.006 0.009 0.019

Fig. 1: Absolute error comparison of second and fourth order schemes at
T,=1% a=05 S=00,Ax=Ay=01andt=10.
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1.E-04 A g

1.E-04 A .

8.E-05 - /

6.E-0 second order scheme L/
E-05 fourth order scheme o

absolute error

4.E-05 7

2.E-05 A L7

3.E-07 ——
0.001 0.004 0.006 0.009 0.011 0.014 0.016 0.019

At

Fig. 2: Absolute error comparison of second and fourth order schemes at
Tq=1 a=05 S=00,6 dx=4y=005andt=1.0.

Table.1l: Theabsolute error computed by second
order and fourth order scheme with

Ax = Ay = 005
At=0.002 At=0.001
second fourth second fourth

X y order order order order

0.05 | 0.05 6.20E-06 4.43E-07 6.10E-D6 1.115-07
0.1 0.1 1.99E-05 5.10E-07 1.96E-05 1.27Er07
0.15 | 0.15 3.82E-05 5.89E-07 3.76E-D5 1.458-07
0.2 0.2 5.93E-05 6.76E-07 5.83E-D5 1.65E+07
0.25 | 0.25 8.17E-05 7.70E-07 8.03E-D5 1.868-07
0.3 0.3 1.04E-04 8.69E-07 1.02E-p4 2.07E}07
0.35 | 0.35 1.25E-04 9.71E-07 1.23E-p4 2.28H-07
04 | 04 1.45E-04 1.08E-06 1.42E-p4 2.48E}07
0.45 | 0.45 1.61E-04 1.18E-06 1.58E-D4 2.67H-07
0.5 0.5 1.73E-04 1.29E-06 1.70E-p4 2.85E}07
0.55 | 0.55 1.80E-04 1.40E-06 1.77E-D4 3.03E-07
0.6 0.6 1.81E-04 1.51E-06 1.78E-p4 3.19E}07
0.65 | 0.65 1.77E-04 1.63E-06 1.74E-D4 3.35H-07
0.7 0.7 1.65E-04 1.74E-06 1.63E-p4 3.50E}07
0.75 | 0.75 1.47E-04 1.86E-06 1.45E-D4 3.64H-07
0.8 0.8 1.22E-04 1.98E-06 1.21E-p4 3.78E}07
0.85 | 0.85 9.06E-05 2.11E-06 8.99E-D5 3.93H-07
0.9 0.9 5.54E-05 2.25E-06 5.51E-p5 4.10E{07
0.95 | 0.95 2.11E-05 2.42E-06 2.10E-D5 4.325-07
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The results of errors foTij” att =10, computed forAx = Ay = 005 and two choices

At =0.002 and 4t =0.001 using both the fourth order and second orderéfidifference
schemes are listed in Table 1. Also, we note thatetrrors of the fourth order scheme are
smaller than those of the second order schemetindases.

5.Conclusions

We have introduced a fourth order compact finifeedence scheme with Crank-Nicolson
technique for solving a two dimensional heat transpquation at the microscale. We proved
that the scheme is unconditionally stable with eesgo the initial values. Our Numerical
results shows that the fourth order compact schism@mputationally more efficient and
more accurate than the second order scheme [12].
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