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Abstract

A sixth order compact difference scheme dpace with Crank-Nicholson scheme for
time is employed to solve one dimensional micrascheat transport equation. The
unconditionally stability of this new version ohfie difference scheme is proved with respect
to initial values. Numerical experiments are introeld to test the accuracy of the sixth order
compact finite differences and compare it with bdite second order and fourth order
difference schemes. Our Numerical results showad ttie sixth order compact scheme is
computationally more efficient and more accurasntthe second and fourth order schemes.
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1. Introduction

Microtechnologies based on high rate heatingham film structure have received much
attention in recent years due to the advancemeshaift pulse laser technologies and their
applications to micro manufacturing processes [1,TBiese microtechnology applications
frequently deals with thermal behavior of thin fdrf4].

Many applications can be modeled by the microshedg transport equation, for example
phonon electron interaction model [9], the singleergy equation [11, 12], the phonon
radiative transfer model [3], and the lagging bétvamodel [7, 10, 11].

Few authors deal with the numerical solution of dmaension microscale heat transport
equation. By using Crank-Nicholson technique Qud dien [8] solve the phonon electron
interaction model. Joshi and Majumdar [4] use apliex upstream difference method to
solve the phonon radiative transfer model in agimensional medium. Zhang and Zhao [14]
consider a fourth order compact finite differendscretization scheme to solve the one
dimension microscale heat transport equation anglepthis new scheme is unconditionally
stable with initial values.

Zhang and Zhao in [15] and [16] solve the two ahké dimension microscale heat
transport equation, respectively, using secondrdaotdime and space.

Heat transport equation concerned with thermal Wiehaf thin films is described by
[7, 13]:

0T 0°T 19T 7q0°T
St ===t "=
%2 ax2t aot a ot
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WhereT is the temperature,, 71, and Ty are positive constants. Note thgtand r, are

the time lags of the heat flux and temperatureigradrespectively.
For simplification, we rewrite equation (1) in ara@eneral and compact form as in [11]:
0°T 9T _ 0T 0T

= s——, )
9 x2 paxzat at a9t

T(X,F):I()E’E_)_-[.(O’E_) - X ’ t:t— ’
where T(L,t)-T(@Ot) 2/ar, 21y
p :ZT—T , R and S are positive constants.
T
q

The boundary and initial conditions are given as

T(O,t)zTo, T(L,t)le, t>0,
and
oT
T(X,O):Tz, E(X,O):TS, O<x<L.
To avoid the three level time discretization, reev(R) as
02 oT, _ 0 oT

— (T +P—)=—(RT+S—) . 3
PR TURF TR TY ®)

Define an intermediate function as;
0=RT+ Sa—T . 4)

ot
1- If S-PR=0, Eq.(4) becomes

oT 1
— =—(6-RT). 5
it s( ) ®)

Substituting (4) and (5) in (3) and after simplificatj we obtain

02 08
—|(S-PRT +Pg|=S—. 6
S Zl(S=PRIT+Pfl=S 7 (6)
2-If S-PR<O0, from (4) we have
1 oT
T==(0-5S—). 7
= at) (7
Substituting (4) and (7) into (3), and after simpétion, we obtain
02 oT|__a8
—| 8+(PR-S)— |=R—. 8
ax{ (PR-S) at} o (8)

Furthermore, the initial and boundary conditions wenitas:
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T(x0=T,, 6(x0)=RT,+ST, 0<x<lL,
and

TOY=T,, e(o,t):RT0+s‘E, T(L,t) =Ty, 6?(|_,t):RT1+sﬂ

at ot

In this paper we consider the microscale heat p@msequation in one dimension. We
introduce a sixth order accuracy for space andrekoaler for time as development to Zhang
and Zhao work in [14]. We prove that this new sceamunconditionally stable with initial
values. The results of sixth order are comparel g results of Zhang and Zhao in [14].

t>0.

2. Sixth order compact discretization

The domain[0,1]x[0,T] is divided into NxM mesh with the spatial step size
Ax=1/N in x and the time sizeAt =T/M .
We denoteT (i4x,n4t), conveniently, byT,", and the grid point{x;,t, )are defined by
X, = 14X, t, = n4t.
We denote the finite difference scheme based osdhend order central difference scheme
by

2 . . — . .
O < 2u +o(ax?) = T2 U L o a2,
ox“ |, Ax
4 . . — . .
O U - 5252, +O(a)? = 53(”'*1 2 ¥ Uiy +O(AX)2j,
ox™ |, Ax

By second order finite difference, we can discegiimy Poisson equation

u,=f, 9)
As
d2u, = f; +O(AX)2.

Three points fourth order compact scheme to apprate (9) is given by

2
S2u; = (1+%5X2) fi +O(4x)*. (10)
Similarly we discretize equation (9) using sixtider compact scheme:
oy =1+ @)% g2 (D° ey, O(£4x)® (11)
X 1 12 X'l 36C X'l -

Hence, we can use the sixth order compact scheme (11) andddqh by considering

u=(S-PRT+Pg and f = S% , assuming - PR>=0, we have

%53 (S-PRT," + P@”+1]+%5X2[(s— PRT" +P4"|=
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36, (&% 506 , (49" 5469} 125

ot 12 ot 360 X ot ;

2
Letu ‘ZTZ’ (13)

Eq.(12) can be written as

> 82s-prm+par L o2l (s- PRyT + Par =

00 ()7 200 (40 ., 0u (14)
S 5 5 ~. |
6'[ 12 6'[ 360 ot i

Uin+l _ Uin

At

N+l _ gn
% :—e' e' , and @

ot|, Vi s ot
(14) can be written as follows

Since

2 32l(s-prmrt e parils L a2s-prr + Py =

n+ n n+ n (15)
{ei NGOy el +(Ax) 2 —u. )}

At 12 X 4 360

For computing T."", we discretize (4) using the trapezoidal method as
puting [

n+l n
e = DA T+ S, (16)

Rearrange (16) to get
(S+_)Tn+1 (Hn+l +€n) + (S__t)-l—ln
Dividing both sides b3(S+T), yields

Tin+l — (S—%)(S‘F%)_lﬂn +%(S+%)—l(ein+l + Hln) . (17)

This can be used to find a value f@™" . For computing™*, we discretize (13) using
central finite difference method and Crank-Nichol§@chnique, we get

u™t+ul =5Z(8M +8"). (18)

The last equation can be used to find a valueufér. Substituting (17) into (15), we get
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2 4
{a”*l—a”ﬂﬂxg S e -am + 00 sz -y | =

ﬂ
2
+ 2SS PR(S+ D) I @ ) + Pz

2 2lis-primn +par]+ 2 a2 (s- PRis+ By (s - Ry

Multiplying both sides by(8+%) and rearranging equation yields

2 4
(S+ RAt) 3n+l _gn + (AX) 52(3n+1 _gn) + (AX) 52 u‘n+1 _u‘n) —
2 1 1 12 X\ 1 360 X \M 1
(19)

(S-PRAGIT" + (P + )2 (@ +6]),

Eq.(19) can be used to compbﬁé+l. The truncation error is @4t) +(4x)®) , and

the method is said to be of sixth order accuratee $ame discretization scheme will be
obtained if we assuméS-PR) <0, and use (4) and (6) to the derivative. Now, wedn®

discretize the boundary and initial conditions as

W =TSR, =", 8 =(RE+ ST

T(x0=(T). 6(x0)=(RL+SE),,  0<xsL. (21)

)" (20)

3. Stability
Now, we discuss the stability of the schen(il7) ,(18) and (19), by using the discrete

energy method [2, 5, 14]. The set{af ={u}, with u; =uy =0} denoted by2. We make
the following definitions for any", v" 0 Q:

N-1
2
(u”,v”):AxZui”vi”, ul =@",uM),
i=1
2 - 2 (22)
‘Dxu” :(Dxu”,DXu”):AXZ(DXui”),
i=1
and
2 AX? 2
G@u™) =u"| ———|[O0.u"| , 23
u") 17 1% (23)
where
Ou" = Uy — U
XU AX

is the forward difference operators.
To prove that our scheme is unconditionally statileused the following two lemmas:

Lemma1[14]: For anw", v" O @, the following equality holds:

(afu”,v”): —(Dxu”,DXv”),
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Lemma 2 [14]: For anw" O Q, the following inequality holds.

2 sG(u”)s{l—izj
3N

2 2
u” u”

(24)

In the next theorem, we prove that our scheme t®naitionally stable with respect to
initial values.

Theorem: Assume that{T.",6",u"} and {T,",8",G"} are solutions of the
discretization schemes (17), (18) and (19) withtiahi values {Ti0,6*,0,ui0} and
{T.°,8°, 0% respectively. Let V"=8"-6", p"=u"-G", ¢ =T"-T" from
Eqgs.(17) ,(18) and (19), we obtain that" , n" , ¢ Satisfy

+(S-PR|O,¢™ :

<o 2 elf - s-rrip”
if (S-PR)>0. (25

047

2
" 360 Wﬂ

Wn+1 2

”\/ n+1]2
”V n+1||2

n+l

Vel + S

|f (S-PR) <0. (26
for any0<nAat <tg,, . This implies that the finite difference schemenconditionally
stable with respect to the initial values.

360

Proof: Here, we prove (25) fo6-PR=0. The proof of (26) withS—PR <0 can be done
analogously and is therefore omitted here.
We rewrite (15) as

ot —gn (Ax) , 6M—gn (Ax) o umt—gh
S 52 52( )| =
At 12 At 360 At

S 82(S-PRIT™ +T") + 82RO + 7).

Since {T,",8", u" }and{T,",4", G } are solutions of the discretization schemes then
V"¢, n"0Q satisfy

S

N+l _\/n 2 N+l _\/n 4 n+l _ n
VMW (807 o VTV (M9 s ™l |

At 12 7% & 360 Vi 27)
SEE(S-PRIGM™ +yl) + 2 ST 4V,
From (16)
Lo = R g U, @9)
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and from (18)

™t nl =V ). (29)
Multiplying Eq. (27) by(V,"*! +V,")4x and summing from 1 to N -1 and using Lemma 1,
yield

2 (Mx)?
12

%["Vnﬂ 2_”\/n 2)_%(Dx(nn+1_l7n)’ljx(vn+l

V==L PR, M), D V) - T

0,V 2—‘

OV"

(

2
O, v™+vM)|.

(30)

Multiplying Eq. (28) byd? (@™ +¢") and summingi from 1 to N -1 and using
Lemma 1, yield

n+ 2 n 2 R n+ n 2 1 n+ n n+ n
S o™ ~[pem) =Sl o] L@@ s, V),
(31)
Multiplying Eq. (31) by(S- PR) and adding it to Eq.(30), we have
E n+1f2 |\, n 2_(AX)2 n+1)|2 n[|2 _(AX)4 n+tl _ .n n+l
L B VA B S (ANl I PR Rt Mt D e MV
n n+l 2 n 2 R n+l n 2
+V™) +(S=PR(Dx ™| ~[0w| 1+ S (- PR|D. @™ +4™)
(32)

Multiplying Eq. (29) by(/7i”+l—/7i” )and summing from 1 to N -1 and using Lemma 1,
yield

2 n+l n n+l n
" =@ @™ =), O, (v V). (33)

},7n+1 2

}’7”

. S(ax)* o
Multiplying Eq. (33) bym and adding it to Eq.(32), we have
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%[Nnﬂ z_w/n Z_A]-X_;(vanﬂ Z_HDan 2)+§X_6‘(1)(}I7n+1 Z_Hﬂn 2)) +
(s-PRD.4™" - |01+ S (s-PRIDL @™ )|

2
Ze(n. [ o
Since R and P are positive constants anfi- PR> 0, it follows that

S n+1||2 n
2V -

(=PRI ™" - |

2

2 AXZ n+12 2 AX4 n+l 2
-= (owVv - + = - +
(P | R ))

oV

}’7”

2
)] < 0.

This is equivalent to

}”inﬂ
(34)

by using the definition (23), (25) follows by resian with n in (43) and (24). o

n+l ax° 2 _ n+12< n ax° n|[? _ n||2
G+ S|+ (s-PRIDw ™| sev ™ + |+ (s-PR|Dw|

4.Numerical Results

In this section, we will test the accuracy of sixttuder scheme and compare its results
with the fourth and second order schemes We useotieedimensional test problem for
microscale heat transport equation with initial dwdindary conditions satisfying the exact
solutionT (x,t) = et 0<t<1l 0<x<1. The code was written in Fortran power station 90

programming language. The average absolute eredua@ed by using the following equation
N, -1

Z |Tei _T||

Averagebsoluteerror ==L |
(Nx )
where T, represents the approximate value agd represents the exact value.
Firstly, we choseS = 25, P =2, R= 05, which correspond to the ca8&-PR> .0

The errors of the sixth order and the fourth ordelnemes are compared in Fig. 1 for
At =0.001 and two choicesdx = 005 and 4Ax = 001. The errors of the sixth order scheme

are shown to be smaller than those of the fourtteroscheme in both cases. Note that the
truncation error is of ordero(At? Ax*)for the fourth order scheme and of order

O(At?,4x8) for the sixth order scheme. Thus, 4t is large and the temporal error

component dominates, the difference in error magdeitoetween the sixth order scheme and
the forth order scheme will decrease.
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S 2 E-g7 = = = Sixth order scheme — . 5 5.E074 fourh order scheme [L4]
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Fig. 1: Av. absolute error comparison of fourth and sixth order schemes with
S-PR>0, at t =1 and At = 0.001(first test).left subfigure: Ax = 005, right

subfigure Ax = 001

2.E-07 5.E-07
forth order scheme [14] fourth order scheme [14]
2.E-07 4 = = = .sixth order scheme 5 4.E-074 p
5 = = = .sixth order scheme »
1.E-07 - 9 3.E-07
_______ - 2
_______ ]
8.E-08 4 r - =" g 2.E-07 A
g >
4.E-08 | < 9.E-08
0.E+00 . . . . 0.E+00
0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
t t
X X

Fig. 2: Av. absolute error comparison of fourth and sixth order schemes with
S-PR=0, at t =1 and At = 0.001(second test).left subfigure: Ax = 005, right

subfigure Ax = 001

For the second test, we choSe=1, P =1, R=1, This corresponds t&-PR=0. The

test results are plotted in Fig. 2. We see thatheabsolute errors of the sixth order scheme
much better than the fourth order scheme.
For the third test, we choSe= 05 P=1 R= 15his corresponds t&-PR< 0.

The Av. absolute error against the timdt(= 0.001) with Ax =005 and 4Ax= 001 are
graphed in Fig. 3.
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2.E-07
7.E-07
2 E-07 4 fourth order scheme [14]
= = = .sixth order scheme 5 6.E-07
1.E-07 A =
¢ 5E07
9.E-08 ’ g
=8 Lo 2 4.E-07]
o - g - e " T - Y7
6.E:08 1 [¢ _ L S 2.E-07 . - R
! ~ . .- z ~4— fourth order s¢hem Y
3.E-08 4 e 1.E-07 ~ [141’1 .
l' - - - .sixth order schem‘é‘ .
0.E+00 . . . : 0.E+00 T T T T
0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
t t
X X

Fig.3: Av. absolute error comparison of fourth and sixth order schemeswith
S-PR<0, at t =1 and At = 0.001(third test).left subfigure: Ax = 005, right

subfigure Ax = 001

The results of Av. absolute errors f&f' att =10 are listed in table 1. Computations
are carried out fo(4x = 005 4x = 001) and (4t =0.002 4t = 0.001) using the second, the

fourth order and the sixth order finite differersmhemes. Also, we note that the errors of the
sixth order scheme are to be smaller than tho#iseafecond and fourth order schemes.

Tablel: Theabsolute errorsfor T(x,1) with threetest problems

Testl Test?2 Test:

Ax = 0.05 At =0.002 | At=0.001 | At =0.002| At =0.001 | At=0.002 | At=0.001
Second order 5.69E-05 5.62E-0% 6.42E-D5 6.37E-D5 41E605 6.38E-05
Fourth order 8.54E-07 1.81E-07 6.93E-07 1.28E-07 23B-07 9.78E-08
Sixth order 1.65E-07 7.40E-08 6.48E-08 3.79E-08 3B-08 3.83E-08
Ax =0.01

Second order 3.07E-06 2.33E-06 3.00E-p6 2.44E-D6 42E206 2.09E-06
Fourth order 8.32E-07 1.60E-07 5.55E-07 1.19E-Q7 92P-07 3.52E-07
Sixth order 2.43E-07 8.76E-08 1.80E-d7 9.77E-08 9H-B7 8.17E-08

Now, if we use the test problem of [14] which datisy the exact solution
_ % _3 _ _ .
T(xt)=e sinfztx for t=>0,x0[01]. We choseS—/ , P= , R=05, which
(%) [04] b2 P=% s

correspond to the case—- PR>  The errors of the sixth order and the fourth ostdremes
are compared in Fig. 4 fafit =0. 0@hd two choiceglx = 005 and Ax = 001.
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5.E-07 5.E-07
4.E-07 4 . 5.E-07 -
e
3.E-07 1 PN S 4.E-07 PN
V2 N % / ~
2.E-07 7 ~ S 3.E-07 Vi N
s N 4 N

A Y © _ B

2.E-07 - - fourth order schem‘e‘[l 3: 2.E-07 / fourh order scheng
. . aq | [L4 Y
8.E-08 1 , ‘- - - .sixth order scheme . 9.E-08 ! —p- -S|xtL order scherr \ 1
0.e+00 4= : : : . 0.+00 ¥4 : : L
0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
X X

Fig. 4: Av. absolute error comparison of fourth and sixth order schemes with
S-PR>0, at t =1 and At =0.001(test problem of [14]).left

subfigure: Ax = 005, right subfigure Ax = 001

5.Conclusions

We have introduced a sixth order compact finitéed#fnce scheme with Crank-Nicholson
technique for solving one dimensional microscalatteansport equation. Our scheme is
unconditionally stable with respect to the initialues. Our Numerical results showed that the
sixth order compact scheme is computationally neffieient and more accurate than the
second and fourth order scheme.
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