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Abstract:

The s-level of a screened hydogenic atora uniform magnetic field of arbitrary
strength B have been calculated accurately. Ftrst, related spherical symmetric case
1

E§22r2(§2~B) has been treated by using the linear variationalhoae The trial wave
function is taken as linear mixture of hydogenid &D harmonic oscillator wave functions of
s-symmetry.Second, the actual nonspherical —%:@szeéxz+y2) is studied by adopting the

correction proposed by Mustafa and Chhajlday]. The latter accounts for the difference
between the two cases in an approximate way biginglthe properties of the 2D and 3D
harmonic oscillators. We start our study with thesaeened hydrogen case to recover their

shifted %results and deal then with the more involved cdsihe screened hydrogen atom

covering wide ranges of the applied field and efshreening length.

Key words: Zeeman effect, screening, virial theorem.

1-Introduction:

A large number of physical problems requs@ving the schrodinger equation for
spherically symmetric potential in order to deterenithe energy eigenvalues and
eigenfunctions. Since only a handful of potentialsexactly solvable, in general, one has
to resort to numerical techniques or approximaschemes. A typical example of such a
potential the one that arise in an atomic systedeuthe effect of an external magnetic field
B. The treatment of the quadratic Zeeman effed(~&tracts most available perturbativ

techniques. These include the shiﬂédexpansion method based on logar perturbation theory

([7], [13], [14], [22 -24], [19], [5]), the shiftelexpansion technique ([15], [18], [14]) and the
so called PT-symmetric pseudperturbation ([2, B, semiclassical quantization method [6]
and the so calledi expansion method [4]. The eigenvalue problem fe& Yukawa (or
Debye-Huckel) potential fans into such a categf#9]( [8]). When a uniform static magnetic
field act on the screened electron, the problenoimes much more complicated even for
very weak screenings [9]. For example, the apjpdinaof such a field to the hydrogen atom
breaks the orbital symmetry, thus destroying thgulm momentum as a good constant of
motion [14].Conventional perturbation treatment tbis problem can handle the weak
and strong field limits where the problem becomedmoat separable.
However, the experimentally most important situaties the one in which the
magnetic and the Coulombic fields are comparable Bridge the two limits

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com


http://www.docudesk.com

H.AK

of the magnetic field, one has to rely on variougppraximations and
interpolation techniques. One of such techniques tise linear variational
method [23] which proves efficient in dealing wRID donor problems. The 3D problem is
much more complicated because the hamiltomian & ¢hse is no longer spherically
symmetric as in the 2D. As we all know, that mogimerical and perturbative techniques
such as the shifted 1/N method as an example, reecpiherical symmetric potentials as
a prerequisite initial condition. To overcome thdifficulty reasonably well,
we utilize the proposal due to [14]. This proposahbles one to consider initially a related
spherical symmetric problem close to the real numescal one and then account for the
nonspherical character in an approximate mannerthd next section, we outline the basic
idea behind such strategy. In sec.3, we presemt aalculational procedure. In
sec.4, discuss our results and finally sec.5 caediuhe paper.

1- The method

(i)- The Coulomb screening

Consider a positive point charge (+Z) that is imsaerin plasma. The Coulomb potential due
to this charge, namely, Z/r is screened by thetrelas surrounding it so that an electron
experiences the presence of this positive chargeZAs modified by this screening into an

effective charg&, =Ze™, where s is a screening parameter. To see how this
comes about, consider the expression [1]:

z
(27)°

[dq-—_ge 1)

V =
) a’(q)

and that in the Thomas-Femi approximation, the dieleabmstant is given by
2

£(Q) =1+~
q

and (2)

> _ 3Ke.

B,

S

where
a, =h’c/me’

Is the Bohr radius. The screened potential by using (25giv
Z a7 T
V()= d? g
O TG

Therefore
Z o
V(r):Te (3)
with
1 1 |

16 \3 2 295 0~

S:(B?Ja[ij KF = 1 A (4)
% (r,/a,)?
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Corresponding to a screening length D=l/s. Takingtoi account that for
most of cases, the ratio/a is between 2 and 6, we have that k2s < 2.1.
The influence of the applied magnetic field R is rm@ntrivial problem and in
the present article we assume that s is the sanadl fealues of B.

(ii) The Hamiltonian

In the nonrelativistic scheme, the Hamiltonian foa screened hydrogen
atom when a constant magnetic field B is appliedrpgedicular to the
(x,y) plane can be written as

1(- e= -\ ze
H=—/| p+=Bxr| -——e* S
Zm(p 2 j r ®)
Using atomic units (see the appendix) H becomes:
1 Ze¥ 1
H=-Z2[?-Z2=__ +20Q%p? 6
: S0P (6)

Where Fl is a dimensionless parameter which can thken as a measure
of the magnetic field, (in cgsX? =B/4.7x109 G. It is clear that H is not a
spherical symmetric because of the presence of l## term in (6) and so
the orbital quantum number 1 is no longer a goodangum number, The
angular momentum is not conserved as a qoesee of the
noncommutivity betweenH and [? namely H, 1[4 # 0. Furthermore, the
solution of the eigenvalue problem with H definedy b(6) cannot be
obtained in a closed form or even numerically bynwemtional techniques,
instead: we start with the related spherical symmetcounterpart, namely;

1., 2% 1 _,,
Hy, =—=0"———+=Q°r 7
»o2 roo2 0
and try to solve the corresponding Schrodinger gegua
Huw@=E'@ (8)
Even so the exact solution of (8) cannot be expressn a closed from
in terms of special functions. In the present papege choose to use a

mixed-basis variational method with trial functionas linear combination
of screened hydrogenic and 3D harmonic basis eaigetibn. Such a trial
function will reduce to the screened hydrogen atomhen Q=0 and to that

of the 30 harmonic oscillator for large values of in order to obtain an
estimate to the actual energy E, we use the appei@ formula (Mustafa
and Chhajlany (7994))

E= % (E'-E,,) + Ey, 9
Equation (9) is based on the fact that the grounites energies of an
isotropic pure 2D harmonic oscillator, with the potential term
Q%*(x*+y?)/2, are equal to two-thirds of the eigenvalues of awotropic
pure 3D harmonic oscillator with the potential term
Q3 (x> +y? +2%)/2. Thus for the around state and for isotropic

harmonic  oscillator, the eigenvalues ofQ?*(x* +y*)/2 contribute  two-

thirds of those of the spherically symmetric on&®r®/2, to the coulomb
energy eigenvalues. To derive a formula forcuE , we start from
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Hy=Ey¢ with H given by (6) and impose the normalizationondition
(@ @) =1, to obtain

E= <¢/‘% 2 - Zer_sr +%Qz(x2 ¥ y2)¢/> (10)
Using

(x)=(y2) =(r?) (11)

We obtain

(o)=2(") 12)

Using(12) into (10) we get:
E= <t,l/‘l 02 -2 +g(l§22r2j
r

d

2 3\ 2
2 1., 2% 1 _,, 1 1, ze*
=—(y|-=0"- +=Q°r +=(y|-=0°- 13
3<t/f > > w> 3<¢/‘ > ; w> (13)

Using equation (7) and (8), we obtain:

2,1 1., ze™
=ZE+Z(yl-=0%-
3 3<l//| 2 r l//>

If we denote the second term by, k we finally obtain (9) and

1 Ze™®
Ecoul :<[/j‘_ED2_ r

l//> (14)

It is clear that (13) cannot be evaluated exactipces W is unknown. If

Wis replaced by from (8), we arrive at an approximate formula
1 ze™
Ecoul = <_§D2 _T>Sph

Where ( ), denotes the ground state expectation value by gusib
instead of ¥ In the weak field limit (Q ~0), it can be shown (see the
appendix) that

Z e*
Ecoul (Q - O): _E<T>sph (15)

The evaluation of gy in either formula require the knowledge of the
screened hydrogenic eigenfunctiops, satisfying

1., 7 .
(_EDZ_?e jqoscH = schoscH (16)

Unfortunately (16) cannot be solved analytically  to abtai exact
@, can, however, be solved by numerical integration [20$ Would yield ¢, in a form

of tables only.
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(3)- Calculations:
If we attempt to apply the variational e using only ¢, for

the screened hydrogen atom. we will obtain a goodreament with
accurate results for small values d®, but this approach fails for large
even if we consider a basis with many terms. Ar@alsgsituation occurs if we use pure
oscillator basis for larg€, which converges very slowly for small values(fIn order to
overcome such difficulties, we use mixed basig@agh to represewd of equation (8)

9=2.Cq (17)

@, either belongs to the screened hydrogen ato@=¢scH)or belongs
to the 30 harmonic oscillator(gq:qoosc) where ¢ are varied so as to get

minimum energy. It is worth noticing that our mixedbasis are not
orthogonal under inner product i.&q|@)#0. We proceed to minimize

the  expectaton value (¢gHgl¢p  with the  normalization  condition
Y >CiC;§; =1 fulilled,
i

After performing a variation on the basis coefitee G we reduce our
problem to that of solving the matrix equation

[H i ~AS; ] LCJ =0 (18)

Where H;=(gHg|¢) and § = (g|g) Using the definiion (7) in
(18) and soling the secular equation|H; -AS|=0 to obtain the

lowest value ok. E'< A can be obtained in terms of End 3.

The advantage of this approach is two fold#irst we have a lower
bound for our energy E. Second we obtain a retivsimple expression
for the normalized eigenfunction.

In this paper we choose to work with a twerm mixed varaitional
basis. In order Lo compute the binding energy fdwe tground state, we use

a two term (1S) like states, name#§}, and ¢, i.e

@s = Clqasl; +CZ ozc (19)

substituting (19) inter (18): we get

A
H,,—As,,H,,— 4 C, 0

Where

Hiy = (@5 [H ol (21)
H,, = (@e|H | @) (22)

) (23)

S:SlZ :521:“”.};
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H21 = H12 = <¢;§H q”()l:c> 402

H g

The solution of the secular equation (18) is gilgn
A= Hyy+Hp,—28H,, _\/(Hll +H,, _23412)2 —4Q1- SZ)(HllH 227 lez )20~ Sz) (25)
By solving (20) for Cwith the normalization) |C, |2 =1, w get:

A Y [
c, =|1+] Huzd | o Hu=4 (26)
H,-AS H,-AS
p A Y N
c,=| Ay [ Huzd ) od Hy=4 27)
H,, - S H, - S H, - S

Hi1, Hizand S for the screened hydrogen may by evaluategkmcally
since is in the form of tables.

'scH

(4) Results and discussion

(i) The s=0 case (the unscreened Coulomb potential)
As a prime nary stage let us start withe tbare Coulomb potential

(—Eji.e with s=0. the computation of the energy by egnma (25) is
p

greatly simplified for this special case. Usingg® and ¢S given
by
34 1
1 Q —or?

S — e r’ OSSC = 2= e 2 28
= e[ 7] )
We get:

1 11 1 3
H = S_—DZ_—+—QZr2 S :____QZ 29
=G0 TR ) =D (29)
S l 2 l l 2,2 s 3 Q
H.., = -0 -=+=Q°r =-—Q-2|— 30
22 <¢¢1;sc 2 r 2 osc> 2 T ( )

1
_3 1Va], (2 o e
HlZ—EQS+A(ETj {1— aemj;/@e dx} (31)

Where S is given by:

I (VA S
s_4\/§(m3j {(1+Qje wjzg dx @} (32)

The details for getting (31) and (32) appear in the apgendihe
integral in (31) and (31), as a function of the appliédld, can either be
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evaluated numerically or taken from tables. Usinguagion (25), we can
evaluate an upper bound forEiS(E' </1) and the eigenfunction g, by

1s =

using G and G from (26) and (27) respectively..Ja Reduces to:

1., Z
E = - -=
coul <ﬂs 2 r §US>
1.2 3 /Q
=--C=-CC,S-C}|=Q-2|= 33
2 1 12 2[2 ]TJ ( )
(see the appendix).
The result (33) is suitable for intermediate. For very small Q,

Ecouw =0.167, according to equation (15). For very lar§d the Coulomb
effect is negligible and we approximately hakze= g E'

In table (1), we list the results of owalculations for the special case
s=0 according to equations (29-33) for wvarious e@slu of Q. Eis is
evaluated by using equation (9) and listed in tlest Itwo columns where it
has been obtained by using two sets of values feyy EBs stated above. As
seen, these sets are very close in the randge=0.0-1.0)because the
Coulomb interaction overwhelms the magnetic, A% grows up, the values
calculated according to equation (33) becomes moralid. In table (2)
these calculations are extended to higher values @f For such high
values, Eoy becomes negligible compared with the effect of timagnetic
field and so E is approximately equals to 2E'Y/3. i also shown in
table (2) the results of other workers namely thdse to Rosen [21] and Mustafa and
Chhajlani [14], It is seen that our results ateyweose to those of Rosen in the low field
region but Slightly differ from Mustafa and Chhajldeing lower than ours in the low field
region. The tatter authors used the shifted 1/Nhotketdue to Imbo et.al [7] and as
pointed out by Vilalba and Pino [22] this method vecestimate the
energy of the ground state for low field and alsn the high field. The
variational  solution  obtained using the hydmog basis is in  good
agreement with the results obtained by Martin el.§l2]. The impressive
feature of our results as a whale is that the eg®rghave the Coulomb
limt of Ei<~-05 at very low field and approach the oote of the
Londau level E= Q in tile high field, thus describing the spectrumf o
the electron in a uniform large magnetic field sgté.
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Table: (2). Exstin atomic unitswith z =1), the energy of the ground state of an electron in
(1s) statein the hydrogen atom that is subjected to an exter nal magnetic field Q
compared the resultsof thereferences[14, 21 ]

M ustafa and
Chhajlany
Ref [14]

Rosen
Ref [21]

Present Work

-0.49754
-0.44872
-0.33685
-0.04429
0.12078
1.03356
3.05150
21.00130
44.46250
483.08610
976.19370
1966.45250
2958.96550
4947.10917
9925.3057

-0.498800
-0.470300
-0.331200
-0.165200
0.152450
1.119600
2.623000
19.87000
42.80000
477.50000

(All energiesare measured in Hartrees)

D=2

-0.49751
-0.44202
-0.25039
-0.12408
0.24045
1.14126
3.15018
20.62900
43.95300
482.23900
975.27000
1965.29000
2957.90700
4945.52300
9925.48000

Table (3) Eisof an electron that ismoving in a screened Coulomb potential under the
action of an external magnetic field of strength Q for various screening lengths D=1/s

D=1

-0.40447
-0.39732
-0.38609
-0.37096
-0.35122
-0.32529
-0.29127
-0.24879
-0.20102
-0.18392
-0.13793
-0.09423
-0.05491
-0.01829
0.01661
0.05065
0.08442
0.11829
0.15249
0.18713
0.36804
1.23670
3.24622
21.16220
44.61220
483.110
976.130

-0.32414
-0.31663
-0.30491
-0.28896
-0.26774
-0.23935
-0.23937
-0.15715
-0.10910
-0.11974
-0.07332
-0.03328
0.00396
0.03367
0.07240
0.10778
0.14459
0.17881
0.20880
0.24530
0.42513
1.46963
3.33500
21.26080
44.70410
483.202
976.217

-0.23383
-0.22558
-0.21263
-0.19442
-0.16910
-0.13455
-0.09112
-0.04364
0.00173
0.04204
0.07766
0.11013
0.14087
0.17084
0.20064
0.23058
0.26084
0.29149
0.32257
0.35409
0.49289
1.54269
3.9349
21.3746
44.82000
483.313
976.310

-0.14445
-0.13450
-0.118120
-0.09322
-0.05720
-0.01228
0.03406
0.07600
0.11267
0.14364
0.17658
0.20664
0.23650
0.26644
0.29673
0.32740
0.35850
0.39009
0.42206
0.45440
0.62175
1.62470
4.02440
21.50500
44.95300
483.455
976.410

0.01514
0.05858
0.09291
0.12441
0.15531
0.18627
0.21750
0.24911
0.28110
0.31346
0.34619
0.37928
0.41270
0.44644
0.48049
0.51482
0.54943
0.58430
0.61941
0.65476
0.83472
1.82363
4.25427
21.83344
45.29440
483.543
976.876
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(ii) The screened electron
In order to obtain ¢, in (19), we have to solve equation (16)

S

numerically ¢, is given by

11
Ly = ——R.(r 453
7= a0 :
Where Rssatisfies the radial Schrodinger equation
1d*> ze™ N
_= — =g3 35
[ 2 drz r les scH S ( )

Equation (35) has no analytic solution in a close@rm in terms of special
functions; It assumes an approximate analytic ®nut as a series in
powers of the screening parameter, s but such ieoluts only valid in the

asymptotic region [10]. In order to computesRnd £5,, Eg. (35) has to be solved

scH ?
numerically using for example Numerov method [12]l integrals involving ¢, will be

evaluated numerically accordingly. To calculates Eariationally, we follow similar
step using the relations (21-27) to obtain the matelements K and §,
and then A by numerical integration. To calculate .off we use equation
(33) with suitable replacements, in the form:

o)

Ze +EQ2I’2
r 2

where €5, and , S are obtained numerically and; Care calculated
accordingly,

Evidently, the £ depends on two, parameters. the screening length
D=1/s and the magnetic field strength through. The range of the former
is taken as4 D < 10.

In table (4). We have Ilisted the results a@ur calculations for the
values s=0.1,0.2,....,1.0 for a wide range ©X (0.05—1@) t can be seen
that the Yukawa potential shifts up the energy llevas long as the
screening parameters increases For s-1 the presétioe magnetic field shifts the,Hevel
away words the continuum. As s increases, theriboibn of the magnetic field becomes
more important and the energy eigenvalues are rctosthose given by the oscillator energy
expression i.e to Landau levels. Therefore acatitvalue for s (or Bl) for which
it stops binding the electron in the s-states.

As a whole, the above results show that tmesence of bounded states
in a Yukawa hydrogenic atom strongly depends on tk#ength of the
screening, The inclusion of the magnetic field p&mone to recover the
Landau energy levels. In summary, the mixed vanmali approach gives
the most accurate numerical results even for Iexrgalues.

Ecoul = gi(fH C12 - C1C28+ C22 {SQ - <¢o}:c

5- Conclusions

The Mustafa and Chhajlany proposal for cwaking energies in the
presence of a magnetic field on a screened hydiogesiom is successful
in treating such peculiar nonseprable mixed Hami#o. It permits one to
start with far easier spherical symmetric Hamilkoni instead. Thus
presents a direct and fairly easy way for correctiand accounting for the
most crucial effect of the applied field. In thisay it is easy to treat a
much more realistic potential such as the Yukawatem@ by using a
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much simpler and straight forward approach as coetbawith much more
involved approaches such as the shifted 1/N methtmt example. The
mixed variational method with only two basis fupcti remarkably yields
highly accurate results as compared with shifted\N lapproach. This would
encourage one to extend these -calculations to eexcistates such tile 2s,
2p, ...etc.

Appendix
(i) Derivation of Equation (6)

By using P =-iz0in Equation (5), we obtain

1] .2 1 (= _-\] ze*e™
H —En{—lhD+§e(er)}— . (A1)
If the applied magnetic field is in the z- directighen
B =Bk (A2)
and
Bxr = B(-y,x0) = Bpe, (A3)

Noting D.(pe_(;) =0and employingL; = —ih%, we get:

A 2 A 2 2 S0
H :_h_D2+e_BLZ+e_sz2_Zee (A4)
2m 2m 8m r
For states with s—symmetrﬂ, =0m = O)Lz @ =0, we get
S 2 2 —Sr
H :_h_D2+e_B Z—Zee (A5)
2m 2m r

4 2
Expressing in atomic units (energy innh% and distances in Bohr uni%si?), we get:

H =—ED2 +l92p2 _Ze
2 2 r
WhereQ is measure of the strength of B and is given GBS by

B
Q= 47x10°G (A7)

(A6)

(ii) Derivation of Equations (12, 15)

The virial theorem2 < -02 /2 >=<r [V >
With respect to Equation (14, 17) yield respecyivel

<DZ+Ze

+Q%(x®+y?)>=0 (A8)

<D2+ZeT+Q2r2>Sph:O (A9)
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Using the Hellmann - Feynman theorem on Equatioftd, (17) we respectively
obtain

0E(Q,2) e

5 =-< >
z r
(A10

aE(Q,Z):Q<X2+y2 S

0Q
and
k(07 __e7,

9z r /N
o (A11)
oz :Q<r2>sph

Provided all wave functions are normalized.

The Euler homogeneity condition associated with Egoga (A8, A9) yields:

<02 >= z(a—Ej -Q(ﬁj (312
0z 0z
OE' oE'
<[> _=7-—|-Q — Al3
" (azj (azj (AL9)
Respectively.

Using Equations (14, 17) we obtain
1_O0E oE

E==z2%+0% (A14)
270z oQ

g-1,0E ,0F (A15)
270z a0

By substituting Equations (Al14, A15) into EquatioB)lwe obtain
Eza_E+Qa_Ezg(£za_E+Qa_E)+lEcoul (Al6)
2 0z 0Q 32 oz 0Q" 3

Substituting Equations A12 and A13 into A16, we get
1 e 2~z ¢€e*¥ 1
T7<— _ >+0%<¥®+Vyi>=5(—S<Z >  +0%<r?> _)+=E Al7
2 r y 3( 2 r sph sph) 3 coul ( )
Consider now two limiting cases for Equation (A17).
() The limitQ - 0: Equation (A17) reads
1 e* 1 e*

E  =3z-<—>_ —-—<—>

oou {3 roo™ 2 }

Assuming
e e
< — >sph:< _—>
r r

Provided that

H = —EDZ _ze
2 r
We obtain
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Ecoul = _g < eT >sph (A18)
(a) The limitQ - o : Equation (A17) reads
Qz<x2+y2>=§Qz<r2>Sph (A19)

Provided that

H=lpz+lgee
2 2

Equation (A19) furnish a sound justification forethvalidity of approximate formula
(15) and equation (A18) provides an approximat@mmg.. at low field
(iii) Evaluation of 92 and H3

s, =<¢lg >= 4L a)lTr G g (A20)
12__3129 4(_3)lTr Gy (A21)

Integrating the second integral by parts once &edsecond integral twice, we finally obtain
single integral of the form

< o2 1 |7
2 (@C+xH0) g — _\/7 (b7 ~4a0) 2y fo_D_y (A22)
{ 2\ a J_
Where
erfc(p) = iOj:e‘XZ dx (A23)
J]_T p

Using (A22), (A23) in (A20), (A21) obtain:

1

" 1

)44 (1+1/ Q)e j e ———dx (A24)
N 2Q
@
1 1 o
H., :SQSH 4Ly 1—\/%e29 fe~ (A25)
1
V20
(iv) Derivation of Equation (46):
Ewou =<¢/|Ne > (A26)
where
h=1pz-2 (A27)
2 r
t// =C@ +C s (A28)
=cl <g|ng’ > +chc2 <@gl > +c2 < g |nleis >
___Cl —CC,S, +— CZQ Cz < s Z+ ;QZ ? > (A29)
r

The integral in the last step maybe evaluated as follows:
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z 1
<gsFeoQ
r 2

3 ] o
e > = aELyre z[re™ dr + EQZI e dr (A30)
T 0 2 0

Using the result:
m+1
o r( )

J'x“’e'aXz dx = 2 (A31

m+1

0 2a 2
we finally obtain

1 3 Q
Ecoul = E C12 - Clczslz + C§ (EQ - 2\/; (A32)
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