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Abstract    
                  In this paper we investigate the asymptotic stability of an equilibrium solution of 
the differential algebraic equations (DAEs) 

                                                  
effected by the Lyapunov-Schimdt reduction. The main conclusion of this paper is that, under 
the hypothesis  
                                             , 

 the stability or instability of an equilibrium solution (x0, y0, 0λ ) of the DAEs is determined by 
the sign of DyG where G is the reduced function obtained by the Laipunov-Schimdt  
reduction. 
 
Keywords: Differential algebraic equations, asymptotic stability 
 
 1- Introduction 
 Consider the   DAEs 

                                                                

where (f,g):Rn ×  Rm ×Rr →Rn ×Rm  are C1. Define the following related sets: 

                                         
 and the set 

                                                                    
where S is defined by 

                                       
Let (x0, y0, 0λ )∈ M such that f((x0, y0, 0λ ) = 0. If rank Dyg(x0, y0, 0λ ) = m then (x0, y0, 0λ )∈  E 

and it is just a non-degenerate equilibrium point. The degenerate equilibrium points belong to 
the singular surface S that is the points which satisfy the rank condition 

                                        
Since the constraint equation in the DAEs (1.1) is singular at singular point (x0, y0, 0λ ), the 
solution may bifurcate at that point, there may be impasse for which the solution does not 
exist near that point, or the solution is well defined through the singularity. Our study 
includes the stability of degenerate equilibrium points (x0, y0, 0λ ) ∈ S of the DAEs for which 
the solution near that point exists and well  is defined. This case is called the stability of 
singularity induced bifurcation point (SIB) [5], i.e. the equilibrium point on the singular 
surface S. Let (x0, y0, 0λ ) ∈ M be an equilibrium point for λ = 0, i.e. 0)0,,( 00 =yxf , and that   
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 The assumption (1.5) states that zero is an eigenvalue of Dyg(x0, y0, 0λ ). The linearization of 

the DAEs (1.1) results in the DAEs given by 

                                                                   
where    

                                                       

Where the script "0" indicates evaluation at the equilibrium point (0, 0, 0). Then because of 
the rank condition (1.5) the matrix pencil {A, B} has an eigenvalue with zero real part. 
 It is well known that the linearization (1.6) of the DAEs (1.1) yields no information about 
asymptotic stability if at least an eigenvalue of the matrix pencil {A, B} has zero real part. We 
claim to reduce the DAEs (1.1) to corresponding DAEs with lower dimension by using 
Lyapunov-Schmidt reduction. Then we may associate such degenerate equilibrium solution 
of (1.1) with solution of the reduced DAEs 

                                                                
where (F,G):Rn ×  R ×Rr → Rn ×R  is the reduced DAEs obtained by Lyapunov-Schmidt 
reduction process. Next is to prove under the hypothesis (1.5) the stability or instability of 
these equilibrium solutions of (1.1) is determined by the sign of DyG, the Jacobian of the 
reduced function (1.7) with respect to y. 
     For the proof of our result (Theorem 5.2), we will follow the proof procedure used in [3] 
for  similarly alternative treatments of the stability of solutions of ODEs.  So our result here 
can be considered as an extension of result [3] to DAEs. We emphasise here the result which 
we obtained that can be applied only to  the DEAs (1.1) in case x∈R, y∈Rn, λ ∈ Rr. For the 
case x∈Rn  Theorem 5.1 can't be applied because for determining the asymptotic stability the 
theorem depends on the sign of the Jacobian Gy of the reduced function  G(x,y,λ ) and when x 
Rn there is no meaning of the sign of the matrix  Gy. However the result of  this paper can be 
generalized  to the case  x∈Rn, y∈Rn,λ Rr when  it is applied  to the index-2  Hesenberg 
DAEs:  

                                                        

where f:Rn×Rm×Rr →Rn and g:Rn×Rr →Rn are C1 with rank condition, rank 1−= ngDx . 

Also the result can be applied to the index-3 Hesenberg DAEs: 

                                                           

 where  f:Rn ×  Rm ×Rr →Rn  and  k:Rn ×  Rm ×  Rs ×  Rr  → Rm  g:Rn ×  Rr → Rn    are C1 with 
rank condition  rank 1−= ngDx . 

       This paper is organized as follows: In Section 2 we review the theory of asymptotic 
stability for DAEs. The Lyapunov-Schmidt reduction procedure for DAEs is introduced in 
Section 3. The equivalence behavior between the DAEs and its reduced DAEs is given in 
Section 4.  Section 5  isdevoted for the main result Theorem 5.2 and we formulated the proof 
of this theorem. 
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2- Asymptotic stability theory of DAEs 
        In this section the review of asymptotic stability theory will be given. For convenient the 
parameters λ  will be dropped in the differential-algebraic equation. 
 
Consider the DAEs (1.1) and suppose that (x0, y0) ∈S is an equilibrium solution of the DAEs 
on the singular surface, i.e. the following conditions are satisfied:           

                                                        
The definition of Lyapunov stability of the equilibrium solution (x0, y0) ∈ S of the DAEs 
(1.1) is stated in the following definition: 
 
 

Definition 2.1: 
         The equilibrium solution (x0, y0) ∈ S of the DAEs (1.1) is stable iff for any  ε  > 0 there 
exists a δ  > 0 such that if || (x(0), y(0)) - (x0, y0) || < δ , ∀ (x0, y0)  ∈   E  then ||(x(t),y(t))-(x0, 
y0)|| < ε , ∀ (x(t),y(t)) ∈ E, ∀ t ∈R+. The equilibrium solution (x0, y0)   of the DAEs (1.1) is 
asymptotically stable if it is stable and 

∞→t
Lim ||(x(t), y(t))|| = (x0, y0).  

 The definition of asymptotic stability in terms of the eigenvalues is called linear stability as 
given in the following definition: 
 
 Definition 2.2: 
        The equilibrium point (x0, y0)∈ E  is linearly stable if every eigenvalue of the matrix 
pencil{A, B}has a negative real part, linearly unstable if at least one eigenvalue has  positive 
real part, where 

                                  

 It is well known that it  is asymptotically stable if it is linearly stable and that is unstable if it 
is linearly unstable [2]. Now if (x0, y0)∈S  then every eigenvalue of{A, B}has a  negative real 
part but at least one real part vanishes, then is neither linearly stable nor linearly unstable. 
    In this situation there is no simple test for asymptotic stability even in using the test of 
Lyapunov function. So the theory of asymptotic stability mentioned above is not complete.       
 
3-Lyapunov-Schmidt reduction for the DAEs           
         Consider the DAE (1.1) and assume that the equilibrium point is (0,0)  for λ = 0 such 
that the conditions (2.1) are satisfied.  Let  Dy g(0,0) = B  then from conditions (2.1}) we have 
rank(B)(0,0,0) = m-1. Choose complements vector spaces H and N to kerB and rangeB 
respectively. Then 

                                                              
Then we conclude that dim H = {m-1} and dim N = 1.Define the projections E: Rm →  
rangeB and the complementary projection I-E: Rm →N such that the DAEs (1.1) expanded to 
an equivalent pairs of equations 

                                                        
    and                                         
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Because of this splitting any vector y ∈Rm can be decomposed in the form y = v+w, where v 
∈  ker B and w ∈  H. Then the equation (3.3) can be written as 

                                                 
  Then in (3.5) the second equation can be considered as a mapφ : Rn ×  ker B ×  H × Rr →  
range B, where  

                                                  
   Now we have  

                                              
 Since E act as the identity map on rangeB so 

                                            
and since  

                                                               
 has a full rank at (0,0,0), it follows from the implicit  function theorem  that the second 
equation of (3.3) can be solved uniquely for w near (0,0,0), i.e., w = W(x,v,λ ), where  W:Rn 
×  ker B × Rr  →  M  satisfies 

                                          
From the second equation of (3.5) and from DAE (1.1) we get the reduced DAEs: 

                                                               
where (F,G):Rn  ×  kerl B ×Rr →Rn ×  N defined by: 

             
Remark 1. 
       The reduced DAEs equation (3.7) has all the information we need from the Lyapunov-
Schmidt. The only disadvantage that it maps the second component y between one-
dimensional subspaces of Rm. 
 

Remark 2. 
      The zeros of (3.7) are in one to one corresponding with the zeros of (1.1) and equation 
G(x, v,λ ) = 0 is the bifurcation equation. 
To see this choose explicit coordinate on ker B and N.  For this purpose assume v and v0

* be 
none-zero vectors in ker B and (range B) ⊥  respectively. Then the vector v∈ ker B can be 

uniquely written in the form v = yv0 where y ∈R. DefineG
~

: R ×  Rn ×Rr →  R by: 

                                                    
where G is the reduced equation  (3.7).  It is easy to show that G

~
(x, v,λ ) = 0 iff 

0),,( 0 =λyvxG . So the zeros of G
~

 are in one-to-one correspondence with the solutions of 

g(x, y, λ ) = 0. Then the function G
~

 can be written in terms of the original DAEs (1.1) by 
using (3.8), i.e, 

                                           
The function G

~
 is the reduced function to the constraint equation g in the DAEs (1.1) in a 

new change of coordinates.  Also the relation between G
~

 and G is that G
~

  is just a 
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representation of G in  new coordinates. Hence the reduced DAEs in  new coordinate are 
given by 

                                                               
where   GF

~
,

~
: R ×  Rn ×Rr →  Rn  such that  F

~
 defined by 

                                                
and G

~
 as defined in (3.9). As we mentioned above 0),,(

~ =λyxG  iff 

0)),,,(,()(),,( 000 =+−= λλλ yvxWyvxgEIyvxG . Thus we have 

                                   
 On evaluating at (0,0,0) we have 

                                    
Since (I-E) B = 0 so 0)0,0,0( =yG . By a similar way we get 0)0,0,0(

~ =yG . This means that 

the reduced DAEs have a singularity at (0,0,0). 
 
4- Equivalence of the stability behavior of the DAEs and the reduced DAEs 
        In This section we shall show the equivalence between the stability problem for the 
DAEs (1.1) and the reduced DAEs (3.7). This will be performed by showing that the 
linearization of the DAEs (1.1) has the same eigenvalues of the linearization of the reduced 
DAEs (3.7). 
Consider the reduced DAEs (3.7) and define the following corresponding set: 

                                        
and the set 

                                                                   
where 

                                                
 Remark 3. 
                  The relation between those sets and the sets defined in (1.1), (1.2}) and (1.3) is              

                                                   
Remark 4. 
        The manifold M

~
 is (n+1)-dimensional manifold and will be considered as the reduced 

manifold of M, whereas forS
~

will be considered as the singular surface for the reduced DAEs 
(3.7). In other words,  the (n+m)-singular surface S is reduced to the (n+1)-singular surface 
S
~

by Lyapunov-Schmidt reduction process. Since Gy(0,0,0) = 0  so the singular  point (0,0,0) 

belongs to S
~

. 
    Let (0,0,0) be an equilibrium point of the DAEs (1.1) then as we have shown in Section 3 it 
is also an equilibrium point of the reduced DAEs (3.7). Our purpose is to study the stability 
of the degenerate equilibrium point (0,0,0) S of the DEAs (1.1}) which is associated  with the 
solution of the reduced DAEs  (3.7}). To study the stability problem of the solution we need 
to analyze the linearization of the system about the equilibrium point. The linearization of the 
reduced DAEs (3.7) about the equilibrium point is 

                                                                   
where  
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where the script ''0'' indicates evaluation at the equilibrium point. The linearization of the 
DAEs (1.1) about (0, 0, 0) is: 

                                                                   
where  
      
 

                                   
 
Lemma 4.1.    Consider the DAEs (1.1}) and its corresponding reduced DAEs (3.7). Assume 
the rank condition rankDyg

0 = m-1 is satisfied. Then the pencils {A
~

, B
~

} is singular. 
Proof  
        Since the matrices A

~
 is already singular so it suffices to prove the non-singularly of the 

matrix B
~

  at (0, 0, 0).  For the matrix B
~

consider 

                                               
Solving for x and y we ge 

                                                    
Since rankDyg

0 = m-1 by the assumption and recall that (I-E) B = 0, 0
yW = 0 we have 

                                                 
Then we have x = y = 0 which implies the non-singularly of the matrixB

~
.  

From Lemma 4.1 we conclude that the pencil }
~

,
~

{ BA  has also zero eigenvalue as the 
pencil },{ BA has. The difference is that the eigenvalues of the pencil },{ BA $ satisfies the 
characteristic polynomial  {det(λ A+  B)} = 0  such that degree{det(λ A+  B)} =  n+m, 

whereas the eigenvalues of the pencil }
~

,
~

{ BA satisfies the characteristic polynomial 

{ } 0
~~

det( =+ BAλ  such that  degree{ } 1
~~

det( +=+ nBAλ . Hence the pencil },{ BA has (n+m) 
eigenvalues such that the zero eigenvalue is due to the rank condition rankDyg

0 = m-1. 
Consequently The pencil }

~
,

~
{ BA has (n+1) eigenvalues such that n none zero eigenvalue and 

one zero eigenvalue due to DyG
0 = 0. For the index of the reduced DAEs (3.7) in the 

following lemma we shall see that the Lyapunov-Schimdt reduction does not reduce the 
index of the DAEs (1.1), i.e. the index of the DAEs is invariant under the Lyapunov-Schimdt 
reduction process. 
Lemma 4.2. 
                   If the DAEs (1.1) is of index 1 then the reduced DAEs (3.7) obtained by 
Lyapunov-Schmidt reduction is of index 1 also. 
Proof    
       Assume the DAEs (1.1) is of index 1. Differentiate the constraint equation 0),,( =λyxg  
with respect to t we get 

                                             
According to the definition of the index concept [6] the DAEs (1.1) will be of index 1 iff 
(4.6) solved for y&  to get the corresponding ODEs,                 
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which defined on the manifold M. The ODEs (4.7) is well defined on M iff 
1)},,({ −λyxgDy exist at every point Myx ∈),,( λ . Now for the reduced DAEs (3.7) will be of 

index 1 iff the corresponding ODEs,  

                                         
of index 1   where F and G as defined in (3.8). We have shown in Section 3 ),,( λyxG  is 
singular if ),,( λyxg is singular. Then we conclude that the reduced DAEs (3.7) is of index 1 
also.   
                                                                                                                              
5- Asymptotic Stability of the Degenerate Equilibrium Point Via Reduced 
DAEs 
       In this section we state the main result Theorem 5.2, which determines the asymptotic 
stability of the DAEs (1.1). Let (x0, y0, 0) be an equilibrium point of the DAEs (1.1) and that B 
= m-1 where B = Dyg(x0, y0, 0). Since   B is singular so the equilibrium solution of (1.1) at (x, 
y,λ ) = (x0, y0, 0) will bifurcate into several equilibrium solutions when 0≠λ . In Section 3 
we used Lyapunov-Schmidt reduction to associate such bifurcated equilibrium solutions of 
(1.1) with solutions of a scalar DAEs (3.10) (the scalar here is y component). In this section 
the main result Theorem 5.2 states that under the rank condition, rankB = m-1 the stability or 
instability of such bifurcated equilibrium solutions of (1.1) is determined by the sign of G

~
y 

the Jacobian of G
~

 with respect to y where G
~

 is the reduced constraint equation (3.9). 
Assume the eigenvalues iµ , i  = 1,2,...,m of the matrix   B satisfy 

                                                
 (5.1) means rankB = m-1. The equilibrium solution (x0, y0,λ ) of (1.1) will be asymptotically 
stable if all the eigenvalues of B have negative real part; and unstable if at least one 
eigenvalue has positive real part. Now for (x, y,λ ) near (0,0,0) the eigenvalues of Dyg(x, 
y,λ ) will be close to those of Dyg(0,0,0). However the eigenvalues of Dyg(0,0,0) satisfy 
(5.1), so the last n-1 eigenvalues  will be bounded away from the imaginary axis on an 
appropriately small neighborhood of (0,0,0) and could not cause ),,( λyx  to be an unstable 
equilibrium point of (1.1). In contrast, the first eigenvalue (which we denoted by ),,( λµ yx  
will be close to zero and might cause such instability. In fact an equilibrium solution (x, y,λ ) 
is linearly stable or unstable according to ),,( λµ yx  is negative or positive respectively. We 

claim to prove that the reduced constraint function G
~

(x, y,λ ) obtained from the Lyapunov-
Schmidt reduction process has the same sign as µ (x, y,λ ). 
Before giving the main result the following lemma will be useful in the proof. 
Lemma 4.1. 
                   Letφ , ψ: Rn → R  be  C∞ -maps  defined on a neighborhood of zero which is 
vanish at zero. Assume that 

                                                        
where∇ indicates gradient. Then ϕ (y) = φ (y)/ψ (y) is C∞ -map and non-vanishing on some 

neighborhood of the origin. Moreover .)0(),0(sgn)0(sgn ψφϕ ∇∇=  

proof , see[3] 
Now The following theorem is the main result which determines the asymptotic stability of 
the eguilibrium solution of (1.1). 
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Theorem 5.2. 
                     Let 0=+ xBxA&  be the linearization of DAEs (1.1) and assume that eigenvalues 
of B satisfy (5.1). Let (3.10) be the reduced DAEs obtained by Lyapunov-Schmidt reduction 
process. Then the equilibrium solution of the DAEs (1.1) corresponding to solution (x, y,λ ) 

of reduced DAEs (3.10) is asymptotically stable if 0),,(
~ <λyxGy  and unstable if 

0),,(
~ >λyxGy  where 0),,(

~ =λyxG  is the reduced constraint equation defined in (3.9). 

Proof. 
        The proof of Theorem 5.2 according to Lemma 4.1 requires showing that the quotient 

                                                              
defines a smooth map which is positive near the origin. Here ),,( λµ yx  is the first eigenvalue 

of ),,( λyxgDy . 

First in order to prove that ),,( λµ yx is a smooth function of y andλ , we assume that entries 

of ),,( λyxgDy  vary smoothly with y and λ  and that the eigenvalues of a matrix vary 

smoothly with its entries. So the first eigenvalue ),,( λµ yx  is a smooth function of y and λ  
thus the first condition of Lemma 4.1 is satisfied. Recall that the equilibrium point of (1.1) 
corresponding to a solution of 3.10) is asymptotically stable or unstable according as 

),,( λµ Ωx  is positive or negative where ),,(),,( 00 λλ yvxWyvyx +=Ω , v0∈  ker B. For 
verifying the second condition of the lemma, i.e, to prove 

                                                    
 Assume 0),,(

~ =λyxGy , for some ),,( λyx rn RRR ××∈  .Rewrite the equations (3.6) and 

(3.9) as 

                                                                 

                                                        
Differentiating (5.5) and (5.6) we get 

                                                        
Recall from Lyapunov-Schmidt reduction process that: If u ∈ Rn ×Rm then 

                                                    
Then applying (5.9) to (5.7) and (5.8) we get Dyg(x, λ,Ω ). yΩ  = 0. This means that zero is an 

eigenvalue of Dyg(x, λ,Ω ) corresponding to the eigenvector yΩ  and since all the other 

eigenvalues of Dyg(x, λ,Ω ) are bounded away from zero we conclude that µ (x, λ,Ω ) = 0.  

For the second condition of Lemma 5.1 we need to prove that 0),,(
~ ≠Ω∇ λxGDy  

and 0),,( ≠Ω∇ λµ x .  For these purposes we will use indirect proof, i.e an extra parameter β  
will be added to the DAEs (1.1) then we get: 

                                                              
where yyxgyxgyxfyxf ββλβλβλβλ +== ).,,,(),,,(~),.,,,(),,,(

~
. The DAEs (5.10) will be 

considered as the unfolding DAEs to the DAEs (1.1) because for 0=β  the DAEs 
(5.10) is equal to the DAEs (1.1). Define ),,,(~ βλµ yx \mu} to be the eigenvalue of 

),,,(~ βλyxgDy  which is close to zero. Then applying the Lyapunov-Schmidt rewduction to 

the unfolding DAEs (5.10) we get a reduced DAEs 
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where ),),,,,(

~
,(~,),,,(),,),,,,(

~
,(

~
),,,( * βλβλβλβλβλβλ yxxgvyxGyxxfyxF Ω=Ω=

((
 

and ),,,(),,,(
~

00 βλβλ yvxWyvyx +=Ω . It is easy to show that the reduced DAEs (5.11) is 

unfolding to the reduced DAEs (3.10). By a similar way above we can show that 

                                                  
 Now to show that the 0)0,0,0( ≠∇ GDy

(
 and 0)0,0,0( ≠µ   we have 

                                            
Since 0)0,0,0,0(~ =gDβ  and )~( βgDy ·v0 = v0 so we have  

                                              
Recall that v0 ∈  ker B and nonzero vector *0v  ∈ (range ⊥)B . Hence 0, 0

*
0 ≠vv  and we can 

choose the vectors v0 and *
0v   such that 0, 0

*
0 >vv . Then this prove that 

                                             
Next to check the )0,0,0,0(~µ∇  we have from Lyapunov-Schmidt reduction process that 

                                                        
where ),,,(

~ βλyxΩ   is obtained by solving for Ω~  by implicit function theorem. Hence 

Ω~  is unique and since 0),0,0,0(~ =βg  so we have 

                                                                 
From (5.10) we have 

                                                 
Thusβ  is an eigenvalue of ),0,0,0(~ βgDy  with eigenvector0v . Since the other eigenvalues of 

),0,0,0(~ βgDy  are bounded away from zero so we have 

                                                                 
Then from (5.13) and (5.15) we conclude that  

                                                                
By differentiating (5.16) we have 

                                                            
Hence the second condition of Lemma 5.1 is satisfied. Then we have 

                                                                
is a ∞C  and non-vanishing on some neighborhood of the origin. Moreover we have                     

                                                              
Then this prove that the quotient ),,

~
,(~ βλµ Ωx  and ),,,(

~ βλyxGDy  has the same sign. The 

proof of Theorem 5.2 will follow on setting 0=β  in (5.17). 
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  لملخصا

 في هذا البحث درسنا الاستقرارية المطلقة لنقطة الاتزان للمعادلة التفاضلية الجبرية الوسيطية من النوع      
 
 

( )
( ) mn RyRxyxg

yxfx

∈∈≡
≡

,,,,0

,,

λ
λ&

 

 

  . Lyapunov Schmdit Reduction ) ( بواسطة استخدام طريقة لبايونوف للتقليص  

)النتيجــة الرئيســية للبحــث هــي انـــه اســتقرارية وعــدم اســتقرارية نقطــة الاتـــزان  )000 ,, λyx   للمعادلــة أعــلاه يمكــن معرفتهـــا

هـــي الدالـــة المقلصـــة والتـــي يمكـــن الحصـــول عليهـــا مـــن طريقـــة ليـــابونوف   Gحيـــث    GDyبمعرفـــة إشـــارة المصـــفوفة  

  : المستخدمة في هذا البحث وتحت شرط 

 
 

( ) 1,, 000 −≡ myxgDrank y λ  
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