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Abstract  
       This paper deals with the Dormand-Prince 8(5,3) algorithm to analyze two classical 
nonlinear systems, namely the parametrically damped pendulum and driven damped oscillator 
, and represents the Poincaré sections in two different ways. The basin of attraction illustrates 
the changing of the status for the system according to the choosing of the initial conditions. 
Many of algorithms like Euler, Runge-Kutta 2&4, Runge-Kutta Fehlberg, Extrapolation, 
Cash-Karp, Adams-Bashforth-Moulton4, Gear & Implicit Gear, Hamming, Milne and Heun 
show unstable solutions for our systems. The Dormand-Prince8(5,3) algorithm shows a stable 
solution for big values of integration step size of the time, in comparison with other 
algorithms. 
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Introduction 
 

       In a dynamical system,  the is world  observed  as  a  function of  time.  The  observations 
expressed as numbers and record how they change with time; given sufficiently detailed 
information and understanding of the underlying natural laws, a state of a physical system, at 
a given instant in time, can be represented by a single point in an abstract space called state 
space or phase space ( M ). As the system changes, so does the representative point in phase 
space. It is referred to the evolution of such points as dynamics, and the function f  t, which 
specifies where the representative point is at time t as the evolution rule. The most successful 
class of rules for describing natural phenomena is differential equations. In state space of two 
(or more) dimensions for dynamical systems, a new type of behavior can arise: motion on a 
limit cycle. The obvious question is the motion on the limit cycle stable. If the system slightly 
pushed away from the limit cycle, does it return (at least asymptotically) or is it repelled from 
the limit cycle? In actual systems both possibilities occur. The stability of limit cycle can be 
clarified by calculate characteristic values involving derivatives of the functions describing 
the state space evolution. In principle, one could do this, but Poincaré showed that an 
algebraically and conceptually much simpler method suffices. This method uses what is 
called a Poincaré section of the limit cycle [1]. 
Usually we want to know the fate of a system for long times, like, will the planets eventually 
collide or will the system persist for all times? The time of a dynamical system can be either 
continuous or discrete. Discrete time dynamical systems arise naturally from flows [2]; one 
can observe the flow at fixed time intervals (by storing it), or one can record the coordinates 
of the flow when a special event happens (the Poincaré section method). This triggering event 
can be as simple as vanishing of one of the coordinates, or as complicated as the flow cutting 
through a curved hypersurface. The Poincaré section method allows us to characterize the 
possible type of limit cycles and to recognize the kinds of changes that take place in those 
limit cycles [3]. 
 
* This integration code is based on the embedded Runge-Kutta method of order 8 with automatic step size 
control, developed by Prince and Dormand in 1981, as described in [4].   
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To understand the dynamics of parametrically damped pendulum and driven damped 
oscillator, they are essential to simulate it numerically. This can be done by using different  
algorithms , but the Dormand-Prince8(5,3) algorithm [4] is superior than Euler , Runge-Kutta 
2&4 , Runge-Kutta Fehlberg , Extrapolation , Cash-Karp , Adams-Bashforth-Moulton 4 ,Gear 
& Implicit Gear , Hamming ,Milne and Heun ,wherefrom conversion and stability of the 
solution ,according to special initial conditions . 
In general, Poincaré sections method needs to solve the differential equation numerically on 
the wide range of the time [5] - [11], and this caused serious problems in computational 
procedure [12]. 
We try to find a suitable treatment that avoids the conversion and stability problems.     

 
 

rocedure Numerical PTheory and  
  

:  parametrically damped pendulumThe  -1   
    Simth and Blackburn have studied this system [13], the equation of motion is, 

(1)                                      0)sin(θθ))-t(sin(ε1Qθ ][1 =++
•••

−+ δδδδΩΩΩΩ  

Where ( Q , ε , Ω , δε , Ω , δε , Ω , δε , Ω , δ )  are constants .  
Poincaré sections in this system represent by drawing         θθθθ   vs  dθ/θ/θ/θ/dt     at certain value of the 
time, as  
 t = 2ππππn / ΩΩΩΩ , where n = 1, 2 ,..... Nmax, for high-resolution Poincaré sections Nmax ~ 106, and 
the values of θθθθ restricted in the closed interval [- π , π π , π π , π π , π ], by subtracting or adding 2ππππm, where 
m is an integer number. 

The driven damped oscillator :  -2  

     Buskirk and Jeffries have studied this system [14]; the equation of motion is,  

(2)                                                       sin(t)A1eyay y =−+
•••

+  
Where ( a , A ) are constants . 
Poincaré sections in this system represent by drawing y vs dy/dt at certain value of the time, 
as 
t = 2ππππn, where n = 1, 2,..... Nmax, for high-resolution Poincaré sections Nmax ~ 106. 

 
    Simth and Blackburn method depend on Fourth order Runge-Kutta algorithm to represent 
Poincaré sections, but Buskirk and Jeffries did not say which algorithm that they depend on. 
Our procedure for integrate equations (1) and (2) numerically consist of testing the following 
algorithms:  
1 – Euler                                                  2 – Heun  
3 – Runge Kutta 2                                   4 – Runge Kutta 4       
5 – Runge Kutta Fehlberg                       6 – Extrapolation   
7 – Cash Karp                                         8 – Adams Bashforth Moulton 4   
9 – Gear                                                  10 – Implicit Gear        
11 – Hamming                                        12 – Milne           
13 – Dormand Prince 8(5, 3)   
In addition, the comparison of the 12th algorithms with Dormand – Prince 8(5, 3) wherefrom 
conversions and stability of the solution, according to special initial conditions.  
We focused on Runge – Kutta 4 and Runge – Kutta Fehlberg algorithm because of the 
popularity of using them in the numerical simulation [15] – [20].  
The mathematical properties of all 13th algorithms summarized in table (1) [4]:  

 
 
  
  
  

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



Representation of the Poincaré sections via… 

 10

Table(1) mathematical properties of algorithms. 
  

Interpolation Step size Type Algorithm 

7th order polynomial 
Hermite ( 3rd order )  
Hermite (3rd order ) 
Hermite (3rd order )  
Hermite (3rd order )  
Hermite (3rd order )  
Hermite (3rd order ) 
Hermite (3rd order ) 
Hermite (3rd order ) 
Hermite (3rd order ) 
Linear ( 1st order ) 
Linear ( 1st order ) 
Linear ( 1st order ) 

variable 
variable 
variable 
variable 
variable 

fixed 
fixed 
fixed 
fixed 
fixed 
fixed 
fixed 
fixed 

embedded Runge-Kutta  
extrapolation 

embedded Runge-Kutta 
embedded Runge-Kutta 

Implicit 
predictor – corrector  
predictor – corrector  

Runge-Kutta 
predictor – corrector 
predictor – corrector 

elementary  
elementary 
elementary  

Dormand-Prince8(5,3) 
Extrapolation 

Cash-Karp 
Runge Kutta Fehlberg 

Implicit Gear 
Gear 

Hamming 
Runge – Kutta 4 

Adams Bashforth Moulton 4 
Milne 

Runge Kutta 2 
Heun  
Euler  

 

  
 

and Discussion sResult  
    Numerical solutions of equations (1) and (2) were obtained with several algorithms , and 
the tolerance appropriate with 10-15 for parametrically damped pendulum and 10-25 for driven 
damped oscillator , for Fig (1) – Fig (10) and the initial conditions are : 
1)  θ(0) θ(0) θ(0) θ(0) = 0 and (dθθθθ/dt) t =0 = -5 .   
2)  y(0) = -15 and (dy/dt) t = 0 = -24 .  
With the parameters Q = 18.33, ε = ε = ε = ε = 19.8    , δ =  δ =  δ =  δ = 27 0 , a = 0.05 and A = 2 . These parameters 
were chosen in accordance with those in [13] and [14] respectively, but  Ω  Ω  Ω  Ω here equal to 1.81. 
   
For Fig (11) and Fig (12) the tolerance appropriate with 10-25, these figures show the values of  
( tc critical time ) obey to the following relation : 

  
tc(Dormond-Prince8(5,3)) > tc(Runge-Kutta Fehlberg ) > tc(Runge-Kutta 4 ) ..............(3)  

  
Superiority of Dormand-Prince8(5,3) on the most popular algorithms, Runge-Kutta Fehlberg 
and Runge-Kutta 4 is shown in Figs(11) and (12), and these are valid for Fig (1) to Fig (10) , 
so that , tc(Dormand-Prince8(5,3))> tc(all 10th algorithm) ,in order to reach for high resolution 
Poincaré sections, this seek a big value of time , so that , 
t ( high resolution ) >> tc  ……………………………………………………………...(4) 
For big value of t, stability and conversion of the solution needs to:  
1- Tolerance of the solution << 10-25 . 
2- Upper bound of the inequality ( hmin < h < hmax ) for integration step size is (hmax << 10-10) 
. 
3- Under these considerations, expected run time reaching to very big value. 

 
     Our cogitation to avoid the complicating of computational procedure for ( t >> tc ) , is : 
1- Choosing value of the time like ( ττττ < tc ) . 
2- Solve equations (1) and (2) on the interval [ 0, τ τ τ τ ] , and change the initial conditions like : 
       α < α < α < α < (dθθθθ/dt) t = 0 < β , θ(0)β , θ(0)β , θ(0)β , θ(0) is a constant , a1 < (dy/dt)t = 0 < a2 , y(0) is a constant . 
3- Draw θ(θ(θ(θ(t = ττττ) vs (dθθθθ/dt) t = ττττ  , y(t = ττττ) vs (dy/dt) t = ττττ , for each initial conditions . 
4 - αααα , ββββ , a1 and a2 should be choosing carefully, in order to save the run time .  
Fig (13 – a) Poincaré sections show self-similarity and fractal structure, y vs dy/dt , storing at 
 t = 2ππππN, N = 1,2,….,2 x 106 , from numerical solutions of  equation (2) , boxed region of the 
strange attractor , magnified in Fig(14 – a ) .  
Fig(13 – b ) Poincaré sections in case of changing the initial conditions, from numerical 
solutions of  equation (2)  , boxed region of the strange attractor , magnified in Fig(14 – b ) .   
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Fig(15 – a ) Poincaré sections , θθθθ vs dθθθθ/dt , stored at t = 2ππππN/ΩΩΩΩ , N = 1,2,…..,106 , from 
numerical solutions of  equation (1) , boxed region of the strange attractor , magnified in 

Fig(16 – a ) . 
Fig(15 – b ) Poincaré sections in case of changing the initial conditions, from numerical 
solutions of  equation (1)  , boxed region of the strange attractor , magnified in Fig(16 – b ) .  

Figures (13 – b ) , (14 – b ) , (15 – b ) and (16 – b ) shows the similarity with Figures (13 – a ) 
,           (14 – a ) , (15 – a ) and (16 – a ) .  

Fig(17) Poincaré sections , y vs dy/dt , stored at t = 2ππππN,  N = 1,2,….,105 , from numerical 
solutions of  equation (2) , boxed region of the strange attractor magnified , y(0) = -15 , 

(dy/dt) t = 0 = -24 . 
Fig(18) Poincaré sections , θθθθ vs dθθθθ/dt , stored at t = 2ππππN/ΩΩΩΩ , N = 1,2,…..,105 , with several 

values of phase shift δδδδ , from numerical solutions of  equation (1) . 
The choice of initial conditions then determines which of the attractors selected by the 
system. This is illustrated by the basin of attraction presented in Fig(19) ; it is essentially a 
map of  the outcome of trying all combinations of 1000 different θθθθ(0) with 1000 values of 
(dθθθθ/dt) t = 0 over the ranges indicated . For each of the 106 initial conditions, equation (1) 
solved over a total time span covering 55 modulation cycles. The first 50 cycles were 
discarded to eliminate transient effects, and the behavior in the remaining five cycles was 
examined. The figure vividly indicates the complexity of even this nonchaotic motion. 
Although there is a uniform region surrounding the origin in which a stationary state is 
ultimately reached, the structure elsewhere appears to be fractal. Fractally intermixed basins 
have already been observed for forced pendulum, and for the radiofrequency (rf)-driven 
Josephson junction [13]. Fig(19) Basin of attraction for Q = 18.33 , ε = ε = ε = ε = 6    , δ = δ = δ = δ = 0 , and Ω = Ω = Ω = Ω = 1.7 
, the computational grid is 1000x1000 points. Black areas denoted stationary states .Blank 
areas are periodic, or multiperiodic.                                                                                              
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Figure (1 – a, b) solutions of equations (2) and (1) via Euler and Dormand-Prince8 (5, 3).  

 

 

 
Figure (2 – a, b) solutions of equations (2) and (1) via Heun and Dormand-Prince8 (5, 3). 
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Figure (3 – a, b) solutions of equations (2) and (1) via Adams Bashforth Moulton 4 and 
Dormand-Prince8 (5, 3).  

  
  

  

  
  

Figure (4 – a, b) solutions of equations (2) and (1) via Runge Kutta 2 and Dormand-Prince8 (5, 3).  
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Figure (5 – a, b) solutions of equations (2) and (1) via Milen and Dormand-Prince8 (5, 3). 
  
 

 

Figure (6 – a, b) solutions of equations (2) and (1) via Hamming and Dormand-Prince8 (5, 3). 
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Figure (7 – a, b) solutions of equations (2) and (1) via Gear and Dormand-Prince8 (5, 3). 
  

  

  
Figure (8 – a, b) solutions of equations (2) and (1) via Implicit Gear and Dormand-Prince8 (5, 3). 
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Figure (9 – a, b) solutions of equations (2) and (1) via Cash – Karp and Dormand-Prince8 (5, 3). 

 
 

  

  
Figure (10 – a, b) solutions of equations (2) and (1) via Extrapolation and Dormand- Prince8 (5, 3). 
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Figure (11) solutions of equation (2) via Runge – Kutta 4, Runge Kutta Fehlberg and Dormand- 
Prince8 (5, 3).  
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Figure (12) solution of equation (1) via Runge – Kutta 4, Runge Kutta Fehlberg and Dormand- 
Prince8 (5, 3).  
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Figure (13 – a) Poincaré sections from numerical solutions of equation (2).  
Figure (13 – b) Poincaré sections from numerical solutions of equation (2) with τ = 40πτ = 40πτ = 40πτ = 40π. 

 

 

  

  
Figure (14 – a, b) magnifying boxed region of Fig (13 – a, b). 
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Figure (15 – a) Poincaré sections from numerical solutions of equation (1). 

Figure (15 – b) Poincaré sections from numerical solutions of equation (1) with τ = 50π/Ωτ = 50π/Ωτ = 50π/Ωτ = 50π/Ω.  

 
 
  
  

Figure (16 – a, b) magnifying boxed region of Fig (15 – a, b). 
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Figure (18) Poincaré sections from numerical solutions of equation (1), with several values of δ .δ .δ .δ .    
  

 
Figure (18) Poincaré sections from numerical solutions of equation (1), with several values of 
δδδδ .  

  
  
  
  

  
  
  

Figure (18) Poincaré sections from numerical solutions of equation (1), with several values of δ .δ .δ .δ .    

  

Figure (17) Poincaré sections from numerical solutions of equation (2), with several values of (a, A). 
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Figure (19) Basin of attraction from numerical solutions of equation (1).  
  
  

  

Conclusions   
     In this study, we can perform the fallowing conclusions:   
1 – Dormand-Prince8 (5, 3) is a good choice wherefrom conversion and stability of the 
solution, when 
      we try to solve a nonlinear ordinary differential equations. 
2 – Dormand-Prince8 (5, 3) is faster than other algorithms in case of run time. 
3 – Varying the initial conditions is another way to obtain Poincaré sections. 
4 – The maximum tolerance is less than 10-7in order to achieve confidential solutions.  
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  علي أحمد عمارة 

  العراق , البصرة , جامعة البصرة , لوم كلية الع, قسم الفيزياء 

  الخلاصة
وهمـا البنـدول المتضـائل , لتحليـل نظـامين كلاسـيكيين لا خطيـين  Dormand-Prince8 (5, 3)اسـتخدمنا خوارزميـة     

توضح التغيرات في حالة النظام . بطريقتين مختلفتين ) Poincaré(بارامتريا و المتذبذب المساق المتضائل وتمثيل مقاطع 
الخوارزميـــات المســـتخدمة هنـــا تعطـــي حلـــولاً غيـــر مســـتقرة . وفـــق شـــروط ابتدائيـــة مختـــارة مـــن خـــلال حـــوض الجـــذب للنظـــام

ارنة بالمق, أظهرت حلولاً مستقرة لقيم كبيرة من شرائح التكامل الزمني Dormand-Princeخوارزمية . للنظامين قيد الدراسة
  .مع بقية الخوارزميات
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