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Abstract 
       The electron energy where aminimum in the differential cross section attains its smallest 
value is known as the critical energy , and the corresponding scattering angle is the, critical 
angle. The method which requires phaseshifts only at three energies is used for obtaining 
critical positions for the scattering of electrons by atoms .The method of partial waves along 
with an optical potential is employed .To explore the possibility of the existence of critical 
positions for the atoms , the differential cross sections for the elastic scattering of electrons 
from the light atoms having atomic number 4 to 10 are obtained in the 0-100  eV region .The 
values of the critical positions obtained by the proposed method are in excellent agreement 
with the computed values and other investigated values. 
 
 
Introduction 
       An investigation  of the results of the differential cross section (DCS) that was obtained 
theoretically and experimentally for the elastic scattering of electrons from complex atoms 
reveals very marked structures in the cross section for these atoms [1-6].  Further , at some 
incident , energy and scattering angle , depending upon the atom, the DCS becomes 
aminimum with respect to both the incident electron energy E and the scattering angle θ  . 
The combination of the impact energy and the angle are known as critical points (positions) 
and are represented by critical energy (Ec) and critical angle (θ c) [7] and a small change in 
either causes an increase of DCS [8] .The critical points (Ec , θ c) have been the subject of a 
number of experimental and theoretical investigations [9-20], It may be noted that it is not 
always possible to observe critical points in a normal scattering experiment or to predict them 
theoretically with the help of .the calculations carried out at arbitrary electron energies 
because of the narrow energy range over which the deep minima occur [4] However ,the 
understanding of this process is important for a number of phenomena including the newly 
developed field of spin polarization phenomena in low-energy electron diffractin (LEED) 
from surfaces [8]  A further reason for studying critical positions was given by Buhring [7], 
namely that they should give a more sensitive test of the atomic field than measurements of 
absolute differential cross section at arbitrary electron energies 
       The differential cross section I is, in the relativistic case, given by [4] 

22
)()( θθ gff +=                                                       ……………..(1) 

       where f is the direct and g is the spin-flip scattering amplitude .These amplitudes are 
evaluated from the spin -up and spin -down phase shifts +

1δ  and −
1δ  respectively for each 

partial wave (l) from the expressions [4]: 
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     where k is the momentum of the incident electron in atomic units and 
)(cos)(cos θθ

ll
PareP  are respectively the legendre and associated legendre polynomials. 

I is expressed in units of 20a , where a is the Bohr atomic radius. 
      When unpolarised electrons are scattered by atoms, the polarisation S of the scattered 
electrons is given by [4]: 
 
S = i (fg* - f*g) / I                                                            …..……..(4)  
 
       Hence, in general , scattered electrons are partially polarised .Since f is normally the 
dominant amplitude, large values of S are obtained only when  f is small , which from 
equation(l) is seen to occur at a cross section minimum .In particular , at the critical position , 
f usually vanishes , and so at electron energyies and scattering angle close to the critical 
position, the elastically scattered electrons may be fully polarised, i.e. S = ± 1 . Hence one 
reason for the establishment of the critical position is that it is the first stage in the search for 
electrons which have been fully polarised as a result of elastic scattering. A more detailed 
analysis of the behaviour of the observed polarisation features following elastic scattering has 
been made by Buhring [11]. Several theoretical estimates have been made of the critical 
positions and points of total polarisation in a number of atoms .These have been referred to by 
Lucas et al. [16] . Buhring [11] using a simple analytical potential which he expected to be 
unreliable for light atoms . The first successful measurements of some of the critical positions 
in argon, krypton and xenon were reported by Lucas and Liedtke [13] . More extensive results 
were presented by Kessler et al. [14] . Some preliminary measurements in neon have been 
reported by Lucas et al. [16] . The simplest theory is the static potential calculation of Khare 
and Kumar [2] they solved the Schrodinger equation for a simple atomic potential. They also 
extended their calculations by making an approximate allowance for exchange between the 
incident and atomic electrons, and for distortion of the atomic electrons by the polarizing 
effect of the incident electron. 
     An extention of relatively simple models to include absorption has been made by 
McCarthy et al. [17] ; the results have also been discussed by Lucas and McCarthy This 
model makes allowance for those electrons which are scattered inelastically . The remaining 
Schrodinger equation calculations from which critical positions have been derived are those 
of Thompson [21-22] who not only made a full exchange calculation but also allowed for 
distortion .A similar degree of sophistication has been achieved by D.W. Walker (private 
communication) using the relativistic Dirac equation solved for arelativistic Hartree-Fock 
atomic potential .For comparision , critical positions from his earlier result [12] including 
exchange but no distortion have also been derived.Unfortunately , no approximations such as 
close coupling or R-matrix, which enable more exact allowance for absorption , appear to 
have been applied to elastic electron scattering in argon.Electron correlation has been 
included in calculations by Pindzola and Kelly [23] and by Tancic [24] but neither 
unfortunately meets the criteria stated above for calculating critical positions .Other 
calculations of elastic scattering in argon which do not satisfy these criteria are the analytic 
potential calculations of Bery et al. [25] , the optical-model calculations of Joachain et al. [26-
27] , the relativistic non- exchange calculations of Fink and Yates [28] , the non-relativistic 
calculations of Ritey and Truhlar [29] which cover six different types of exchange 
approximations , and the polarized orbital calculations of Yau et al. [30] . The phase shifts 
have been derived from recent experimental results for absolute differential cross sections by 
Gibson and Rees [31] . They analysed the measurements of Gupta and Ress [32-33] , DuBois 
and Rudd[34] Williams and Willis [35] and Vuskovic and Kurepa [36] at electron energies 
where structure was present .In fact Gibson and Rees used the corrected values for argon later 
reported by DuBois and Rudd [37] .In addition Westin [38] made a phase shifts analysis of 
his own measurements in argon , using an analogue computer he built for this purpose. Lucas 
[4] has suggested a method by which critical energies and critical angles can be obtained .This 
method uses theoretically •obtained or experimentally determined phase shifts as the 
unput .For a reasonable accuracy phase shifts corresponding to more than six incident 
energies should available and the, critical energy should lie within the energy range 
represented by these impact energies.Khare and Raj [8] proposed an alternative method of 
obtaining the critical points for a theoretical central potential (the static field of the atom). In 
this method phase shifts at only three energies are required, the energies being reasonably 
close to the critical energy . Unlike Lucas’s method, this method does not require any iteration 

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



Critical Points of Scattering Electrons by… 
 

  

9

and hence saves computer time .To test the occuracy of this method , critical points are also 
theoretically computed for light atoms ( 106 ≤≤ Z ) in the static -field approximation and the 
computed values are compared with the values obtained by the proposed method with great 
success. It may be noted that so far no theoretical or experimental values Ec and θ c are 
available for light atoms . Only Yates [ 10]has remarked that for Z<7 the value of Ec should 
be less than 30 eV. Also, the linear relationship between Ec and Z proposed by Yates does not 
hold over a wide range of Z[12].In the present investigation we have employed the method 
proposed by Khare and Raj [8] to obtain the critical points for light atoms , to test the 
occuracy of this method , critical points (Ec , θ c) are also theoretically computed for light 
atoms ( 104 ≤≤ Z ) in the optical approach and by using the partial wave method . Also we 
compare our results with the other investigators results [3,5,39] our results are in good 
agreement with the other results . Also we have obtained results explain the relationship 
between the differential cross section and the incident electron energy at the constant critical 
angle θ c for all atoms in this investigation. 
 
 

Theory and Calculations 
          As already remarked , to obtain the critical points we require DCS for the electrons 
elastically scattered by the atom .In the present investigation we have employed the optical 
approach in which the many-body problem is reduced to a one-body problem. According to 
this approach, the wave function ψ (r) of the scattered electron is a solution of the following 
one-body scattering equation [39]: 

0)()).(2( 22 =−+∇ rrVK opt ψ                                     ……………… (5)  
where Vopt(r) known as optical potential is, in general, a local, and energy- dependent 
potential, 1/2(K2) is the energy of the incident electron and 2∇  is the kinetic energy operator 
(we employ atomic units unless specified otherwise). The exact solution of the above equation 
is as difficult as the solution of original many -body Schrodinger equation .Hence , we solve 
eq.(5) using the static field exchange correlation polarization (SFECP) approximation in 
which Vpot(r) is written as [40]: 

)()()()()( rVrVrVrVrV LR
pol

SR
cor

HFEG
exsopt +++=               ……………….(6) 

the static potential Vs(r) is given as [39]: 
>ΦΦ=< 021 ),,....,,()( rrrrVrVs z                                  ………………(7) 

        where 0Φ  is the ground -state wave function of the target atom having Z electrons and 
V(r1, r2, ... , rz ,  r) is the interaction potential due to the target and the incident electron 
interaction. 
     )(rV HFEG

ex is the exchange potential of Hara [41] for free electron gas as given by [42]: 
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        where KF(r) is the local fermi momentum, which relate to the electronic charge density 
ρ (r) as in eq.(9), and ξ =K(r) / KF(r). 

Hara [41] suggested that the scattered electron momentum must be equivalent with the 
bound electrons momentum in gas, therefore the variation r with K(r) resulting from KF(r) as 
an eq.(11) , where in this equation , I represent the ionization potential for target atom and K 
is the momentum of the incident electron , therefore )(rV HFEG

eα  as in eq.(8) depend on the 
incident electron energy through eq.(l1) [42] .This potential gives a good results in the energy 
calculations for atomic valence states [43] and photoionization [44-45] .  
            In order to calculate the static potential Vs(r) and exchange potential for any atom we 
have employed the Roothaan-Hartree-Fock wave function for the ground state of the atom, 
given as Clementi and Roetti [46] with: 
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nlΦ (r) = Rnl (r)  Y lm(r) or nlΦ (r) = ∑=Φ pipi CrXr λλαλα )()( ,  

  where ),(),()(),,( φθφθθ λαλαλλα YYrRrX pp =Φ  are the normalized spherical  

harmonics and the radial function )(rR pλ  is given by: 

),exp()( 1 rrNrR p
n

pp λλλ ∈−= −  

pNλ  are the normalization constants and are given as: 
2/12/1 )2(])!2[( +− ∈= p

n
pp pnN λλλ λ  

α  and β  are the spin-up and spin-down .wave functions , respectively. In the case of Be 
atom (Z=4), the values of λ  and α  are zero. Thus we can write 

∑ ∑
= =

=Φ=Φ
6

1

6

1
21 ),()()()(

i i
iiSiiS rXBrandrXAr  

and Xi = Ni exp(-Cir) ),(00 φθY  where i=1 to 6. The constants Ai , Bi and Ci are given by 
Clementi and Roetti [46].  
         Now , employing the wave function Φ 0 for the atom in eq.(7), Vs(r) is  calculated .The 
exchange potential, in principle, is a local potential. For the short range correlation potential, 
we have employed the describe model by Perdew and Wang [47], where they give an simplest 
analytical representation of the correlation energy for the uniform electron gas as a function of 
the charge density parameter rs and relative spin polarisation ξ (r) .The dependent parameters 
on ξ (r) are calculated in the low and high density limits , therefore the correlation potential 

),( ξrsV SR
cor for the case ξ (r) =0 (unpolarised), small rs- density, is :- 

)0,(rsV SR
cor =0.031091 lnrs-0.0570076+0.0044266 rs lnrs – 0.0091666 rs        -------(12) 

and for large rs -low density, the form is :- 
)0,(rsV SR

cor =-0.578 1−
sr +2.1612 2/3−

sr                                                           ----------(13) 

while for ξ (r) = 1 (polarized), for small rs is :- 

)1,(rsV SR
cor =0.015545 lnrs – 0.0307806 + 0.0021266 rs lnrs – 0.0036233rs     --------(14) 

and for large rs is:  
)1,(rsV SR

cor =-0.4382666 1−
sr  + 2.65455 2/3−

s
r                                             ------------(15)  

where 3/1]
)(4

3
[

r
rs πρ

=                                                                                -----------(16)  

↓+↑
↓−↑=

nn

nn
r)(ξ                                                                                       -------------(17)  

where n↑  and n↓  represents spin densities of electrons. 
        For the polarization potential LR

polV (r) we have employed an empirical energy dependent 
and spherically symmetric potential proposed by Ali [48] given as :  
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where 2L represent the order of multipole , )0(2Lα  static multipole 

polarizabilities of the target atom, and dn cut -off parameter that explained by Ali[48]. 
Following O’Conell and Lane [49] we have connected ),( ξrV SR

cor with )(rV LR
pol  at the point r0 a 

given by: 
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where r0 represent the crossing point between SR
corV (r) and LR

polV (r) , this point have theoretical 
value as given by [48]: 
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 the paramenters r0 and dn one depend on other, therefore we must compute them very well to 
obtain a good results. 
         Thus , after having obtained the value of Vopt (r)  which is spherically symmetric in the 
(SFECP) approximation the equation [50]: 

0),(])(2
)1(2

[ 2
22

2
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−+ rKRKrV
rdr

d

rdr

d
opt l

ll
               ---------------(21)  

is numerically solved to obtain the phaseshifts where )(k
l

δ  is the phaseshifts for the lth 
partial wave due to the presence of the potential Vopt(r) .The scattering amplitude f(k,θ ) is 
then obtained from the relation [50]:  

∑ += )(cossin)12(
1

),( 1 θθ
ll

l pse
k

kf is                             ------------------(22)  

it is noticed that eq.(22) is the same as eq.(2) .Therefore after having obtained the scattering 
amplitude f(k,θ ) from eq.(22), the differential cross section I(θ ) is obtained by taking the 
sequare modulus of f(θ ) .The differential cross section thus obtained are utilised to calculate 
the critical points (Ec, θ c).  Let us consider the elastic scattering of a beam of unpolarised 
electrons by an atomic target. If we replace the target by a central potential but include the 
spin -orbit interaction due to the spin and orbital angular of the incident electron , the 
differential cross section for the incident energy E is given by eq.(1) which reduces to zero in 
the absence of a spin -dependent potential. Furthermore , for height atoms the spin -dependent 
potential is weak and the neglect of this potential does not appreciably effect the positions of 
the critical points .Hence, in the present investigation we neglect g(θ ) and take I(E,θ )as[8]:  

22),(
l

ffEI R +=θ                                    -------------------(23) 
where fR and f1 are the real and imaginary parts of the directs scattering amplitude and are 
obtained from eq.(22) .The values of I(E,θ ) are calculated by the numerical solution of eq.(21) 
and with the help of eqs. (22) and (23) and thereby the values of E and θ  which yield 
minimum values of I(E,θ ) are obtained . Thus the critical points (Ec,θ c) are computed for 
hight atoms. In this investigation we have employed the method preposed by Khare and Raj[8] 
to obtain the critical points which has yielded satisfactory results for atoms having 104 ≤≤ Z  
as small as the other method that determine by computation. The partial waves method is used 
to calculate the phase shifts, (Sl ) and the scattering amplitude f(k,θ ) with the help of eq.(6) 
and by utilizing the (CAVLEED) international program [ 51] and some auxiliary programs, 
also we have employed the Roothaan-Hartree - Fock wave functions for free atoms given by 
Clementi-Roetti[46] in the calculations.The method proposed by Khare and Raj[8] requires 
phase shifts only at three incident electron energyies reasonably close to the critical 
energy .This method is based on the observation that near the critical points the value of DCS 
is very small. Hence, one may take: 

0),(),(),( 22 =+= cclccRcc EfEfEI θθθ                                  --------------------(24) 
without any significant error .Therefore at the critical points one may take real as small as 
imaginary parts of the scattering amplitude represented by fR and fl  , respectigvely , 
separately equal to zero .Khare and Raj[8] noted that θ i (where fR = fl =0) can be expressed 
as a polynomial in fi, and terms up to second power of fi, are sufficient .Hence, we take 

cbfaf ii ++= 2θ                                                          ----------------------(25)  
the computed values of fi , at three energies are used to evaluate a, b and c. The value of c is 
equal to the critical angle θ c .Similarly, the critical energy is obtained by the following 
expression: 

hgfefE iii ++= 2                                                               -----------------------(26) 
where the constant e,g and h are calculated with three fi and corresponding Ei The value of h 
yields the critical energy Ec .Since eqs.(25) and (26) involve three constants , 
separately ,hence fi or the phase shifts are required at three energies to evaluate Ec and 
θ c .After we computed the critical points, we have two sets of results, one determined by 
computation and other by the method of Khare –Raj[8], are in excellent agreement. Also our 
results compared with the results of other investigators [3,5,39] ,are in good 
agreement .Furtheromre, with the help of critical angle θ c , the relation between the values of 
the differential cross section and incident electron energies in the range           (0-100)eV , at 
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constant θ c for Be (Z=4) , C (Z=6) , N(Z=7) , O(Z=8), F(Z=9) and Ne(Z=10) atoms are 
evaluated. 
 
 

Results and Discussion 
       To determine critical points , phase shift obtainde by the numerical solution of the 
differential equation(21) are employed to generate fR(E,θ ) and fl(E,θ ) which are then plotted 
as a function of θ  for different values of E and the curve of intersections of fR and fl  is 
obtained .The intersection of this curve with theθ  axis yields the critical angle θ c and the 
corresponding energy at which the intersection with the θ  axis has happened represent the 
critical energy Ec [8]. If the values of the chosen energies are reasonably close to each other 
and to critical energy, the obtained results are more accuracy [8]. 
 
           In this investigation, the method of partial waves is employed, also we have employed 
the method proposed by Khare and Raj[8] to obtaine the critical points for light atoms, to test 
the accuracy of this method, the obtained results by this method compared with the results 
obtained by computation and with results of other investigator [3,5,39] where we have 
obtained two sets of values , one determined by computation and other by Khare –Raj[8] 
method, are in good agreement with each other and with other results [3,5,39]. Also we have 
obtained results explain the relation between the differential cross section and incident 
electron energy at constant critical angle θ c for all atoms in this investigation. 
 
 Khare -Raj [8] explained that the simple proposed method is successful even if the difference 
between the energies chosen to obtain fi and θ i is as large as 20eV .The critical points vary 
with the uses of scattering potential for any atom because of many effects such as the 
static ,exchange, correlation and polarisation effects , however , for any atom θ c is much less 
sensitive to the potential [8]. 
 
       The dipole )0(2α  and quadrupole )0(4α polarisabilities are employed to calculate the 
critical points for atoms , as shown in table (1) , for the Be-atom we have used )0(2α = 37.0 
[52] , )0(4α  = 302.0 [53] , for C-atom )0(2α =1.88 [54] , while for N-atom )0(2α  = 7.62 [55]  
for O-atom )0(2α =5.0 [55], )0(4α =18.746 [56] for F-atom we have used )0(2α =4.5904 [48] 
and for Ne-atom we have utilized )0(2α = 2.669 and )0(4α =5.541 [48].  
 
      The critical points result from atoms are shown in table (2) with other investigators 
results , where the points values Ec and θ c for Be-atom are 6.73 eV , 101.62° respectively , as 
shown in figure (1) , for C-atom are 18.40 eV , 102.90° respectively, as shown in figure(2), 
for N-atom are respectively, 30.05 eV , 97.44° as shown in figure (3) , for O-atom the value 
of Ec and θ c are 45.50 eV, 98.64° respectively as shown in figure (4) , while for F-atom the 
results are 59.29 eV , 98.76° as shown in figure (5) and for Ne-atom, the critical points are 
shown in figure (6) where the values are 70.95 eV and 99.48° respectively. Furthermore, we 
have obtained results explain the relation between the differential cross section and incident 
electron energies in the (0-100) eV energy range, at constant critical angle θ c for all atoms in 
this investigation, as in figure (7) , where we note that the differential cross section minimum 
for atom attains its smallest value at the critical energy Ec, for constant critical angle θ c. 
     We conclude from the present study  that the differential cross section minimum attains its 
smallest value at the critical points (Ec, θ c) .Also we note from table (2) that the critical 
energy Ec increases with Z, therefore this result is in accordance with the prediction of 
Buhring [11]. 
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Table (1) : The parameters (r0 , rs , d1 or d2 ). the correlation -polarization potential with the 
dipole )0(2α , quadrupole )0(4α  polarizabilities and ionization potential I(eV) for atoms (in 

atomic units a.u : 0α  = e = h = m = 1.0). 
 

 
Atom 

Atomic 
number Z 

r0 
(a. u. ) 

rs(r0) 
(a. u.) 

d1 
(P. W.) 

d2 
(P. W. ) 

)0(2α  

(a0
3) 

)0(2α  

(a0
5) 

I 
(eV) 

Be 4 4.050 5.9628 --- 1.6149 37.0 302.5 9.32 
C 6 2.806 3.5633 0.7140 --- 11.88 --- 11.26 
N 7 2.540 3.2575 2.558 --- 7.62 --- 14.54 
O 8 3.060 5.2987 --- 2.1750 5.00 18.746 13.61 
F 9 2.806 5.0381 --- 1.8950 3.60 4.5904 17.42 

Ne 10 2.038 2.5966 --- 0.5755 2.669 5.5410 21.56 

 
P. W. represent the present work.  
The ionization potentials I(eV) in the above table are chosed from ref. [58].  
 
 

Table (2) : Critical energy (Ec) and angle (θ c )for light atoms obtained by using Khare –Raj[8]  
method and by computation, with other investigators results. 

 

 
Atom 

Atomic 
number Z 

Ec (eV) Oc (deg.) Energies(cV) 
Employed in 

eq.(25)and(26) 
Ec(cV) θ c(deg.) Ref. 

From 
eq..(26) 

Computed 
(P. W. )  

From 
eq..(25) 

Computed 
(P. W. )  

Be 6.73 6.73 101.62 101.62 5,8,18 5.80 94.80 a 
C 18.40 18.40 102.90 102.90 15,20,25 17.49 97.63 b 
N 35.05 35.05 97.44 97.44 30,40,45 26.80 97.50 b 
O 45.50 45.50 98.64 98.64 40,50,55 35.59 98.65 b 
F 59.29 59.29 98.76 98.76 55,65,70 45.20 99.73 b 

Ne 70.95 70.95 99.48 99.48 50,60,80 73.7± 1 10± 0.5 c 
 

 
P.W. represent the present work. 
ref.(a) : Kaushik et al. (1983) , Theo.[39] 
(b) : Raj(1981), Theo.[5] 
(c) : Kollath-Lucas (1979), Exp.[3] 
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Figure(1) : Critical points results for Beryllium atom. 

 
Figure(2) : Critical points results for Carbon atom. 
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Figure(3) : Critical points results for Nitrogen. atom. 
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Figure(4) : Critical points results for Oxygen atom. 
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Figure(5) : Critical points results for Fluorine atom. 
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Figure(6) : Critical points results for Neon atom. 

Figure(7,) : The relation between the differential cross section ( sr/2
0α ) and incident electron energies 

(eV) , at constant critical angle θ c (degree) , in the (0-100) eV energy range , for atoms (a) Beryllium (b) 

Carbon (c) Nitrogen (d) Oxygen (e) Fluorine (f) Neon. 
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  النقاط الحرجة لاستطارة الالكترونات من الذرات

  الخفيفة عند الطاقات الواطئة
  

  

  عبد الحسن علي عقيل ھاشم حسين     و    فلحي
 العراق –جامعة البصرة ، البصرة  –كلية العلوم   -قسم الفيزياء 

  

  : المستخلص 
اما زاوية . ته الصغرى تدعى بالطاقة الحرجة ان طاقة الإلكترون التي يبلغ عندها المقطع العرضي التفاضلي قيم      

لقد استخدمت الطريقة التي تتطلب ازاحات الطور عند ثلاث .  الاستطارة المقابلة لهذه الطاقة فتدعى بالزاوية الحرجة 
ة طاقات لاستحصال المواضع الحرجة لاستطارة الإلكترون بواسطة الذرات ، وكذلك تمت الاستعانة بطريقة الموجة المجزئ

ولاكتشاف امكانية وجود النقاط الحرجة للذرات فأن المقاطع العرضية . وبأستخدام نموذج الجهد البصري لانجاز الحسابات
تم حسابها لمدى الطاقات  10الى  4التفاضلية للاستطارة المرنة للالكترونات من الذرات الخفيفة التي عددها الذري من 

eV  )100 – 0  . (صلة بأستخدام الطريقة المقترحة متوافقة بصورة جيدة مع النتائج المستخرجة كانت النتائج المستح
  . حسابيا ومع نتائج باحثين آخرين 
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