A relations among some kinds of continuous and open functions in topological, bitopological and tritopological spaces

Asmhan Fleih Hassan Al-Zuhairy Kufa Unversity - college of education for girls ISSN -1817 -2695 ((Received 5/12/2006, Accepted 21/6/2009))

ABSTRACT :-

In this work, I introduce a relations among four kinds of continuous functions (i.e. continuous, α^* -continuous, weakly - δ -continuous) and relations among four open functions (i.e. open, α^{**} -open, λ -open, λ^* -open) in Topological, Bitopological and Tritopological spaces.

Keywords :- α^* -continuous function , weakly - δ -continuous function , weakly - δ^* -continuous function , α^{**} -open function , λ^* -open function .

1-INTRODUCTION :-

Throughout this paper I adopt the notations and terminology of [4], [5], [3] and [2], X and Y are finite sets and the following conventions $:(X,T), (X,T,\Omega), (X,T,\Omega,\rho)$ will always denot to Topological space, Bitopological space and Tritopological space respectively.

Let (X,T) be a topological space, and let A be asubset of X, then A is said to be a α open set iff $A \subseteq T - int(T - cl(T - int(A)))$ [4], and the family of all α -open sets is denoted by α .O(X). The complement of α open set is called α -closed set.

Let (X,T,Ω) be a Bitopological space, and let A be asubset of X, then A is said to be a δ open set iff $A \subseteq T - int(\Omega - cl(T - int(A)))$ [3], and the family of

all δ -open sets is denoted by δ .O(X). The complement of δ -open set is called δ -closed set.

And let (X,T,Ω,ρ) be a Tritopological space , a subset A of X is said to be δ^* -open set iff $A \subseteq T - int(\Omega - cl(\rho - int(A)))$ [2], and the family of all δ^* -open sets is denoted by $\delta^*.O(X)$. The complement of δ^* -open set is called a δ^* -closed set. The definitions of the four continuous functions are :-

- 1. The function $f: (X,T) \longrightarrow (Y,T')$ is said to be **continuous** at $x \in X$ iff for every T'- open set V in Y containing f(x) there exists T- open set U in X containing x such that $f(U) \subset V$. We say f is continuous on X iff f is continuous at each $x \in X$ [6]
- 2. The function $f: (X,T) \longrightarrow (Y,T')$ is said to be α^* - continuous at $x \in X$ iff for every T' - open set V in Y containing f(x) there exists α - open set U in X containing x such that $f(U) \subset V$. We say f is α^* - continuous on X iff f is α^* - continuous at each $x \in X$. [4]
- The function f: (X,T,Ω) → (Y,T') is said to be weakly δ-continuous at x∈X iff for every T' open set V in Y containing f(x) there exists δ-open set U in X containing x such that f(U) ⊂V. We say f is weakly -δ-continuous on X iff f is weakly -δ-continuous at each x∈X.[3]
- 4. The function $f:(X,T,\Omega,\rho) \longrightarrow$ (Y,T') is said to be weakly $-\delta^*$ -

continuous at $x \in X$ iff for every T'-open set V in Y containing f(x) there exists δ^* -open set U in X containing x such that $f(U) \subset V$. We say f is weakly - δ^* -continuous on X iff f is weakly - δ^* -continuous at each $x \in X$. [2]

And The definitions of the four open functions are :

- 1. The function $f: (X,T) \xrightarrow{(Y,T')}$ is said to be **open** iff f(G) is a T'- open set in Y for every T- open set G in X. [6]
- 2. The function $f: (X,T) \longrightarrow (Y,T')$ is said to be α^{*^*} - **open** iff f(G) is α -open set in Y for every T - open set G in X. [4]
- The function f: (X,T)→(Y,T',Ω') is said to be λ open iff f(G) is δ open set in Y for every T open set G in X . [3]

2- Some important theorems :

2.1 Theorem :

Continuous function leads to a α^* - continuous function.

Proof:

Let f be a continuous function, to be f a α^* continuous function ; let V be a T'- open set in Y , then $f^{-1}(V)$ is T- open set in X because f is continuos function, and because [every T-open set can be a α -open set] therefore $f^{-1}(V)$ is α open set.

Hence f a α^* - continuous function.

2.2 Remark :

The converse of the above theorem is not held, because α - open set not necessary to be a *T* - open set [4].

2.3 Theorem :

Continuous function leads to a weakly - δ - continuous function .

I make relations among these four continuos functions by using theorems [every T-open set can be α -open set], [every T-open set can be δ -open set] and [every T-open set can be δ^* open set] and the converse is not hold [1].

4. The function $f: (X,T) \longrightarrow$ (Y,T',Ω',ρ') is said to be λ^* - open iff f(G) is δ^* -open set in Y for every T- open set G in X. [2]

Also i make relations among these four open functions by using theorems [every T-open set can be α -open set], [every T-open set can be δ -open set] and [every T-open set can be δ^* -open set] and the converse is not hold [1].

Moreover I introduce the following theorems :

Proof:

Let f be a continuous function, to be f a weakly - δ - continuous function ; let V be a T'-open set in Y , then $f^{-1}(V)$ is T - open set in X because f is continuous function, and because [every T-open set can be a δ - open set] therefore $f^{-1}(V)$ is δ -open set.

Hence f a weakly - δ - continuous function .

2.4 Remark :

The converse of the above theorem is not held, because the bitopological space does not always represent a topology [3]. (i.e. δ -open set not necessary to be a T-open set).

2.5 Theorem :

Continuous function leads to a weakly - δ^* -continuous function .

Proof:

Let f be a continuous function , to be f a weakly - δ^* - continuous function ; let V be a

T'- open set in Y, then $f^{-1}(V)$ is T- open set in X because f is continuos function, and because [every T-open set can be a δ^* - open set] therefore $f^{-1}(V)$ is δ^* - open set.

Hence f a weakly - δ^* - continuous function .

2.6 Remark :

The converse of the above theorem is not held, because the tritopological space does not always represent a topology [2]. (i.e. δ^* -open set not necessary to be a T- open set).

The following diagram illustrates the relations among that four continuos functions in topological, bitopological and tritopological spaces.

2.7 Theorem :

Open function leads to a α^{*} - open function.

Proof:

Let f be an open function, to be f a α^* open function; let G be a T-open set in X, then f (G) is T'-open set in Y because f is an open function,

and because [every T-open set can be a α -open set] therefore f(G) is α -open set.

Hence f a α^{*} - open function.

So that every Open function can be a α^* - open function.

2.8 Remark :

The converse of the above theorem is not held, because α -open set not necessary to be a *T*-open set [4].

2.9 Theorem :

Open function leads to a λ - open function.

Proof:

Let f be an open function, to be f a λ -open function; let G be a T-open set in X, then f(G) is T'-open set in Y because f is an open function, and

because [every T-open set can be a δ -open set] therefore f(G) is δ -open set .

Hence f a λ - open function.

So that every Open function can be a λ - open function .

2.10 Remark :

The converse of the above theorem is not held, because the bitopological space does not always represent a topology [3]. (i.e. δ -open set not necessary to be a T-open set).

2.11 Theorem :

Open function leads to a λ^* - open function.

Proof:

Let f be an open function, to be f a λ^* - open function; let G be a T- open set in X, then f(G) is T'- open set in Y because f is an open function, and because [every T-open set can be a δ^* -open set] therefore f(G) is δ^* -open set.

Hence f a λ^* - open function.

So that every Open function can be a λ^* - open function.

2.12 Remark :

The converse of the above theorem is not held, because the tritopological space not always represent a topology [2]. (i.e. δ^* -open set not necessary to be a T- open set)

The following diagram illustrates the relations among that four open functions in topological, bitopological and tritopological spaces.

References :

- [1] A. F. Hassan. "Relation among topological, bitopological and tritopological spaces", Al-Qadisiya. J.,V. 11, No.3, 217-223. 2006.
- [2] Hassan. A. F. " δ *-open set in tritopological spaces "MS.c thesis . University of Kufa , 2004 .
- [3] I. D. Jaleel. " δ -open set in bitopological spaces "MS.c thesis . University of Babylon, 2003.
- [4] A.S., Mashour ,Hasanein , J.A. , and El-Deep , S.N. " On α - continuous and α open mappings " , Acta Math . Hungaria , 41 (3-4) , , :213 – 218 . 1973.
- [5] N.Bourbaki, "General Topology", Addison Wesley Reading, Mass, 1966.
- [6] S.T., Hu, " Element of General Topology " , Holden – Day San Francisco, 1964.

الخلاصة :

في هذا العمل قدمت علاقات بين أربعة أنواع من الدوال المستمرة ؛ وهي (المستمرة و α^* - مستمرة و δ - مستمرة الضعيفة و δ - مستمرة الضعيفة) ، وكذلك قدمت علاقات بين أربعة أنواع من الدوال المفتوحة ؛ وهي (المفتوحة و λ - المفتوحة و δ^* - المفتوحة و α^{**} - المفتوحة) في الفضاء التبولوجي و الفضاء الثنائي التبولوجي و الفضاء الثلاثي التبولوجي .