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Abstract 
     We have investigated the role of instability-threshold ( the second-threshold ) on the dynamical behavior 
of the Lorenz-Haken laser system .Here, we report theoretical results of instabilities leading to chaos at low  
instability threshold , obtained through variation the laser system control parameters over a wide range of 
laser operating conditions. 
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Introduction       

       Instabilities play an important role in  a  large  
number  of  fields  for Example  in  hydrodynamics, 
ecology, economy, chemistry, biology, and 
semiconductor physics [1-5]. Also, in quantum 
optical systems,  such as lasers,  a  great  variety  of  
instabilities can  be found [6,7]. Compared to 
hydrodynamics, the  nonlinear equations  are, at 
least for simple  models, rather simple. Therefore, 
the investigation of  the instabilities  in  lasers is 
easier to carry out than in most other fields. 
 The type of instabilities in the dynamical systems 
depends on the control  parameters  and  the  
nonlinear  dynamics  model  used. In  laser  systems, 
the instabilities change mainly with increasing 
pumping strength. The variations of other laser 
operating parameters are also playing  important  
roles  on the dynamics  of the laser system. Of  these 
parameters  are  the  asymmetry  of   the  medium  
gain  profile  and  the inhomogeneous broadening 
which is introduced in the original Lorenz-Haken 
equations ( as additional parameters ) to produce 
more generalized equations. Homogeneously  
broadened  single-mode  lasers  are  well-known  to 
exhibit self-pulsing instabilities and chaotic 
dynamics under the combined  conditions  of  large  
ratio  of  gain over losses and low cavity quality 
[8,9]. In fact, a  two-level homogeneously broadened  
single-mode laser in resonance ( with  a  symmetric  
Lorentzian  gain   profile ) is  realistically described 
by the classical Lorenz-Haken model [9-11] which 
has served as a prototype model for investigating 
instabilities and chaos in continuous  dynamical  
systems. However,  the conditions  for observing 

instabilities in such systems require the bad-cavity 
condition in  conjunction with a gain considerably 
above first ( lasing ) threshold, thus making the 
experimental realization of this unfeasible for most 
lasers. The above mentioned requirements for the 
occurrence of Lorenz-Haken instability phenomenon 
have been realized only in a very few laser systems 
of  high  gains  and  narrow linewidths, satisfying 
the bad-cavity condition. The ideal candidates of 
these lasers are the optically pumped mid  and  far 
infrared laser systems ( MIR and FIR lasers ) [12-
14]. The single –mode semiconductor laser is also a 
good example that achieves the condition for the 
optical instabilities and can easily exhibit different 
types of dynamic instability ( such as pulsations and 
chaotic behaviors ) at low excitation power [5]. 
        The bad-cavity condition was originally derived 
by Korobkin and Uspenskii [15] and it implies  that  
the electric field relaxation rate ( k ) is  more 
strongly than the sum of the polarization relaxation 
rate ( γ ⊥  ) and the population inversion relaxation 
rate ( γ׀׀ ), i.e., k > γ ⊥  + γ׀׀  ( or in the 
present paper, σ  > b + 1 ). In contrast to the basic 
model of homogeneously broadened  lasers, 
the single-mode instabilities are realized with 
relative ease in an inhomogeneously broadened 
system although the onset of instabilities still 
requires a bad cavity but with rates considerably 
reduced to those needed for the corresponding 
homogeneous case. As a result of this situation, it is 
found that, the threshold for the observation of the 
pulsing instabilities and chaos ( or the second-
threshold ) in the inhomogeneously 

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

http://www.docudesk.com


Journal of Basrah Researches ((Sciences)) Vol. 35, No.2, 15 April   ((2009)) 
 

 13  

  broadened laser is much lower than for 
homogeneously broadened laser [16].  
In fact, the different types of laser systems are 
generally classified into three categories ( or classes 
), A, B, and C [17]. This classification is based  on  
the  relations  between  cavity  and  active  medium  
relaxation 
rates ( k , γ ⊥ , and  γ׀׀ ). For class-A lasers, γ ⊥  ≅  γ׀׀ 
>> k , therefore  the 
polarization and the population inversion can be 
adiabatically eliminated. For class-B lasers, γ ⊥ >> k 
≥  γ׀׀ , so that the polarization of the active medium 
adiabatically follows the cavity field and may be 
eliminated from consideration. Most solid-state 
lasers, semiconductor lasers, and certain molecular 
lasers belong to this class. For class-C lasers, all 
variables (the electric field, the polarization, and the 
population inversion) have comparable relaxation 
rates (γ ⊥  ≅  γ׀׀ ≅  k ) . 
      The general property of class-B lasers 
distinguishing them from class-A lasers is that they 

readily exhibit relaxation oscillations leading 
themselves to modulations. This is why under 
moderate strength of modulation the dynamical 
response of such lasers becomes strongly nonlinear, 
and the lasers display a rich variety of nonlinear 
phenomena. In order to consider the more general 
case, the standard Lorenz-Haken model, based on a 
two-level laser system with a symmetric Lorentzian 
lasers gain profile, was modified by introducing two 
additional parameters describing the effects of the 
asymmetry of the gain profile (represented by the 
asymmetry parameter α) and the inhomogeneous 
broadening (represented by the detuning parameter 
θ) in the Lorenz-Haken equations [18]. The resulting 
set of equations is named the generalized Lorenz-
Haken model.In this paper we study the effects of 
the additional parameters on the dynamical 
behaviors of the laser system and on the laser 
instability-threshold ( the second laser threshold ). 

 

 
Theoretical Considerations 
  
     The numerical studies of dynamical behaviors of 
the semiconductor laser system have been obtained 
using the following generalized Lorenz-Haken rate 
equations for the amplitudes of electric field ( X ), 
atomic polarization ( Y ), and population inversion ( 
Z ) [18]:           
 •                           
X = σ ( Y – X )                                  …. (1) 
 • 
Y = - ( 1 + i θ ) [ Y – ( 1 – i α ) X Z ]  ... (2) 
• 

Z = b ( r – Z ) – Re ( X* Y)                …..(3) 

 

Where σ = k / γ ⊥  , b = γ׀׀ / γ ⊥  and r is the pump 
parameter. α  and θ are new control parameters, 
where α  is the linewidth enhancement factor which 
controls the coupling between the amplitude and the 
phase variations ( it is related to the medium 
refractive index ) and θ controls the inhomogeneous 
broadening of the resonance. Re and (*) in Eq. (3) 
are denoting the real part and the complex conjugate, 
respectively.   
 

 
 
Results and Discussion  
 

       We have numerically solved the Lorenz-Haken 
equations (1)-(3) for selected  values  of  the  
dynamical  system  control  parameters  using the 
fourth-order Runge-Kutta method.  
Let us  start  with  the case of  two-level resonant 
laser system ( when     α = θ = 0 ), where the 
generalized Lorenz-Haken equations reduce  to  the 
well-known  standard  ( or classical )  Lorenz-Haken  
equations [9].  Here we  study  the  effects of  
varying the values of the laser operating control 
parameters, σ , b , and  r on  the dynamical  
behaviors of the laser system.   
Figs. 1 to 3 ( a to c ) illustrate  the  effects of  σ  on 
the  behaviors of  the  laser  system  for  different  
values of  the  pump  parameter ( r ). The value of  σ  
is  changed over  the chosen small range  σ = 3.0 – 

4.0 , when b = 1.0. In each figure, the  left  side 
represents  the  laser output intensity  
( | X | 2 )  as  a  function  of  time ( the electric-field  
intensity  evolution ), while the  right  side  
represents the phase-space portrait ( the laser output 
intensity  ( | X | 2  ) against  the  population  inversion 
)  corresponding  to the  time  intensity  series  in  
the  left  side. In Fig.1 ,  when  σ = 3.0 , the 
relaxation oscillations  toward  a  steady-state  
behavior seen in Figs.1(a ) and ( b ) develop to a 
chaotic behavior in ( c ) when  the  pump parameter  
( r ) increases  gradually  over  the  range  r = 16 – 
21.  We  find  that  the behavior  of   the   laser   
system   becomes  completely  chaotic   when   the   
pump parameter  increases  to  approximately 21 ( 
where  this value  represents  the  second  laser 
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threshold  ( r th . 2 ) or  the  laser   instability threshold 
).  As  the  value  of  σ  increases  to  3.5 ( Fig. 2 ),  
the   second threshold  ( at  which  instability  starts  
to  appear )  significantly   drops 
down, where the  pump  parameter  reduces to 18. 
The damped oscillations behavior in  Figs.2 ( a )  
and   ( b)   convert   to   a   chaotic   
behavior   in   Fig.2 ( c ).   When the value of σ is 
further  increased (σ = 4.0 ) the instability threshold 
reduces more further, here r th . 2 = r ≅  16.5, as 
shown in Fig. 3. The phase – space  portraits  
corresponding  to  the  time  series plots  in  
Figs.1 to 3 ( a to c ) are shown in the right side of 
these figures, where the appearance of a fixed point 
attractor [19], as shown in Fig. ( a ), is always 
associated with damped oscillations, while the 
chaotic oscillations behavior leads to the appearance 
of  the  strange attractor trajectory [19], 
as shown in Fig. ( c ). It  is clearly seen  that  the 
dynamical behaviors in 
the  three  figures ( Figs.1 to 3 )  are  qualitatively  
similar,  namely ,  the  
laser system is always driven directly into the 
chaotic state from the damped oscillations state and 
remains there when the pump parameter still 
increases. 
Now, if  we  keep the  parameter  σ  fixed at a 
chosen value (σ = 3.0 ) and  vary  the  parameter b  
over  the  selected  range b = 0.20 – 0.75 , we find ( 
roughly ) a similar behavior to that we have seen  in  
the  preceding figures (i.e., Figs.1 to 3 ), and  this  is  
clearly seen in Figs.4 to 6 ( a to c ). From  these  
figures, we  can easily find that the laser instability 
threshold is lower than for the case of  varying the 
value of σ , here r th . 2  is dropped to 12.5 ( Fig.4 ( c ) 
).  
Let us  now consider the case  of  including the 
parameters α  and θ in  the Lorenz-Haken equations, 
i.e., using  the generalized Lorenz-Haken model. Let 
us take the case  when  α = θ ≠ 0  ( the detuned case 
)  and  set    σ = 3  and b =1 (are fixed ). Figs.7 to 10 
illustrate  the effect  of  variation       α = θ on the 
dynamical behaviors of the laser system. In Fig.7, 
when        α = θ = 0.5 , the behavior changes from 
damped oscillations to chaos when the pump 
parameter increases from r = 14.0 ( Fig.7 (a) ) to               
r = r th . 2 ≅  16.3 ( Fig. 7 ( c ) ), similar in its features 
to that seen in the previous figures ( the resonant 
case, α = θ =0 ). Here, the laser instability starts to 
appear at r th . 2 = r ≅  16.3 . When we continue to 
increase the pump parameter ( r ), over the chosen 
range r = 27.0-35.0., the laser system starts to 
display a completely different sequence of behaviors 
and this is clearly evident in Figs.7 ( d  to  f ). In 
Fig.7 ( d ) we notice periodic oscillations behaviors 

of period six when r = 27.0 , changes to period –
three oscillations when r = 3.0 , shown in Fig.7 ( e ). 
When r increases further to 35.0 , the laser system 
driven again to the chaotic regime and a fully 
chaotic behavior appears, as shown in Fig.7 ( f ). 
The phase-space portraits ( attractor trajectories ) 
corresponding to the intensity evolution plots in 
Fig.7 are shown in the right side of this figure. As α 
= θ increases to 0.75 , the dynamical system starts to 
display a different sequence of behavior transitions 
as shown in Fig.8. Here, the damped oscillations 
behavior is directly changed to periodic oscillations 
of period two  ( Fig.8 ( c ) ), when r th . 2 = r ≅  13.25 , 
and evolves towards period four and period twelve 
oscillations ( Figs.8 (d ) and ( e ) ), and eventually 
approaches to chaotic behavior when  = 25.0 , as 
shown in Fig.8 ( f ). We notice that our system 
follows the well-known universal route to chaos, the 
so-called period-doubling route ( or Feigenbaum 
scenario [20] ).  
When the value of  α = θ  increases  to  1.0 ,  the  
dynamical  behavior begins to follow the sequence 
transitions seen  in  Fig.9 , as  r  varies over the 
range  r = 8.0 - 65.0 . In this case the damped 
oscillations ( Figs.9  (a ) and  ( b ) ),  change  to  
stable   period-one   oscillations,  as  shown   in 
Fig.9 ( c ), then  they  change  to  period-two and 
period-four oscillations, 
as shown in Figs.9 (d ) and ( e ). Increasing the value  
of  r  to  35.0  leads to  a  reverse  sequence  of   
transitions  ( period – doubling  bifurcation ), where 
the period – two oscillations ( when r = 35.0 ) back 
to period – one oscillations   ( when  r = 65.0 ),   as   
shown   in   Figs.9  ( f )   and   ( g ) , respectively. 
The corresponding attractor trajectories to the laser 
intensity evolution  are  shown  in  the  right  side  of  
Fig.9. These are : fixed point attractors ( ( a ) and  ( 
b ) ),  single – limit  cycle ( (c ) ),  two  limit  cycles 
( (d ) ) , four  limit  cycles ( ( e ) ), and  again  two  
limit cycles and single limit cycle ( ( f ) and ( g ) ) , 
respectively. 
As  α = θ   increases   to  2.0 ,  the  sequence  of  
behavior  transitions changes  as  illustrated  in  
Fig.10 . The damped  oscillations in  Figs. ( a ) and ( 
b ) convert  to  stable period –one oscillations, when  
r varies to 5.1. 
It is interesting to  note  here that the behavior of the 
laser system remains unchanged, namely that the 
laser system persists to exhibit stable periodic 
oscillations  of  period – one  over  the  whole  range  
of  increasing pump parameter  ( r = 5.1 – 30.0 )   
and  the  corresponding  attractor  trajectory 
 ( orbit ) always shows single – limit cycle ( single 
orbit ). Such a  case of behavior plays an important 
role in the operation of laser system  because over 
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this range of the selected values for the control 
parameters ( the laser operating conditions ) we are 
able ( easily and nicely ) to control the laser system 

simply by varying the laser operating control 
parameters.  
 

 
 
 
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Left side : Intensity time series ( normalized laser field intensity 
versus normalized time ) at α = θ = 0 , b =1.0 , and σ = 3.0 for  different values of  r . 

Right side : The corresponding phase – space portraits ( laser field  intensity against population inversion ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Time  

In
te

ns
ity

  

P
op

ul
at

io
n 

In
ve

rs
io

n
  

Intensity  

r =16.0 r =16.0 

r =19.5 r =19.5 

r =21.0 r =21.0 

(a
) 

(b) 

(c
) 

(c) 

(b) 

(a) 

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



Journal  of Basrah Researches ((Sciences)) Vol. 35, No.2, 15 April   ((2009)) 
 

 16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Same as Fig.1, but with σ = 3.5 . 
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Fig.3. Same as Fig.1, but with σ = 4.0 . 
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Fig.4. Same as Fig.1, but with b = 0.20 . 
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Fig.5. Same as Fig.1, but with b = 0.50 . 
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Fig.6. Same as Fig.1, but with b = 0.75 . 
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Fig.7.  Left side : Intensity time series ( normalized laser field intensity  versus normalized time ) at α = θ = 0.5 , b =1.0 , and σ      
                        = 3.0 for different values of r . Right side : The corresponding phase – space portraits ( laser field 

intensity against population inversion ). 
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Fig.8.  Same as Fig.7, but with α = θ = 0.75 . 
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Fig.9.  Same as Fig.7, but with α = θ =1.0 . 
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Fig.10. Same as Fig.7, but with α = θ =2.0 . 
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Conclusions 
 

         We  have  investigated  the  effects  of   the  
main  laser  control parameters on the dynamical 
behavior of the laser system. We have found that 
including the asymmetry of the medium gain 
parameter (α ) and the detuning parameter (θ ) in the 
classical ( standard ) Lorenz – Haken equations 
leads to a completely different dynamical behavior 
to that obtained by using the classical Lorenz – 
Haken equations. In the case of resonant laser 
system ( when α = θ = 0 ),  we find that the laser 
system is always  driven  into  the  chaotic regime 
even with  a high excitation level  
( i.e., strong pump power ), while the variation of the 
pump parameter leads to periodic oscillations (in 

addition to the chaotic oscillations) when the 
parameters α and θ  are taken into account. Perhaps 
the most interesting and important case of the 
several cases of our study is the case shown in 
Fig.10 , where the dynamical laser system exhibits 
only stable periodic oscillations of period – one as 
the pump power increases. In this case the laser 
system becomes highly stable making the output of 
the laser easily  ( and nicely ) controllable only by 
choosing and adjusting the suitable values of the 
laser operating control parameters. This is 
practically important in the laser applications and in 
the study of  the properties of the nonlinear media 
where high stability is required.    
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  هاكن–دورة عتبة اللااستقرارية في منظومة ليزر لورنس 
 

 عماد الدين حسين السعيدي     و    فرات احمد السيمري
ياء ، كلية التربية ، جامعة البصرة قسم الفيز  

 

  

  الخلاصة 

نقدم هنـا  .  هاكن –لمنظومة ليزر لورنس ) الديناميكي (على السلوك )  الثانية –العتبة (  اللااستقرارية – قمنا بدراسة دورة عتبة       

ليها من خلال تغير عوامل تحكم منظومـة  نتائج نظرية للااستقرارية المؤدية الى الفوضى عند عتبة استقرارية منخفضة ، تم الحصول ع    

  . الليزر على مدى واسع لظروف عمل الليزر 
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