
Eng. & Tech. Journal, Vol. 30, No. 9,2012

1582

Kernel Level Anti-Spyware Using Device Stack Lock Strategy

Mohammed Gheni Alwan
Computer Science Department, University of Technology/Baghdad
EmaiL: mgaz _ mgaz @yahoo.com

Received on: 26/10/2011 & Accepted on: 1/3/2012

ABSTRACT
This paper is devoted to design and implement an Anti spyware software package.

The targeted type is the kernel level spyware which is the most dangerous threat due to
the capabilities granted to the spyware code injected in this level. Kernel level is the
most trusted level and the code executed at this level will have accessibility to all
system resources. This paper will introduce a methodology to lock device stack for any
attaching of malicious filter driver, spyware is using filter driver as the main weapon to
intercept data exchanged by system devices (physical, logical or virtual) and the I/O
manager.

The paper interduces also, a locking methodology for the device stack is presented
and all kernel level APIs are explained. The ‘keyboard’ is the target stack to be locked
against famous attack of keyboard logger.
Keywords: device driver stack, windows kernel, IRP, spyware, computer security.

 برنامج مكافحة برامجیات التجسس على مستوى النظام
ق المكدسبأستخدام آلیة غل

 الخلاصة
هذا البحث مكرس لتصميم وتنفيذ حقيبة برمجية لمكافحة البرامجيات التجسسية من النوع الذي

يعمل في مستوى نظام التشغيل، ان هذا النوع يعتبر من أخطرانواع برامجيات التجسس كونه يعمل
جميع البرامجيات التي تعمل أن .في منطقة لها الصلاحية المطلقة في استخدام جميع مصادر الحاسبة

 .في مستوى نظام التشعيل تكون هي صاحبة الثقة الاعلى من بين البرامجيات الاخرى
أن هذا البحث سوف يقوم بتقديم طريقة وآلية لأغلاق منطقة مكدس الاجهزة لمنع دخول أي شفرة

كة التي تعتمدها برامجيات مشبوهة غريبة ، أن دخول منطقة مكدس الاجهزة يعتبراحد الوسائل الفتا
التجسس وذلك لقدرتها على أعتراض وأستلام البيانات القادمة أو الذاهبة عبر هذه الاجهزة وعدم قدرة

 .برامج الحماية التقليدية من الدخول الى هذه المنطقة
 جميع وبضمنها تفاصيلها بكل هذه الأغلاق آلية تقديم يتم سوف البحث هذا عرض مراحل خلال
 الخاص والمكدس المفاتيح لوحة هو هنا البحث مجال وسيكون.الغرض لهذا المستخدمة المكتبية الدوال
 .بة

 امنية، والاخراج الادخال بيانات وحدات،النوافذ لبنات، النظام سواقات مكدس: المرشدة الكلمات
 .الحاسبة

https://doi.org/10.30684/etj.30.9.11
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

mailto:@yahoo.com
http://www.pdffactory.com
http://www.pdffactory.com
https://doi.org/10.30684/etj.30.9.11

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1583

INTRODUCTION
pyware refers to programs that steal the user information stored in the user’s
computer and transmit this information via the Internet to a designated home
server without the user being aware of this transmission. Existing anti-spyware

solutions are not generic and flexible. These solutions either check for the existence of
known spyware or try to block the transmission of the private information at the packet
level. [1, 2]
The most common methods used to construct keylogging software are as follows:
• A system hook which intercepts notification that a key has been pressed (installed

using WinAPI SetWindowsHook for messages sent by the window procedure. It is
most often written in C);

• A cyclical information keyboard request from the keyboard (using WinAPI
GetAsyncKeyState or GetKeyboardState – most often written in Visual Basic,
sometimes in Borland Delphi);

• Using a filter driver (requires specialized knowledge and is written in C).[2] The most
effected one is that which uses filter driver due to most anti-spyware dose not reaches
that area without a special privileged authorization, this is in a hand and it is not easy
to tell if the filter driver is malicious or normal in a second hand.

WINDOWS ARCHITECTURE AND DEVICE STACK

Windows NT allows several driver layers to exist between an application and a
piece of hardware. Thus drivers are grouped together in stacks that work together to
completely process a request targeted at a particular device object.[3,4,5]

Windows NT uses a layered driver model to process I/O requests. In this model,
drivers are organized into stacks. Each driver in a stack is responsible for processing
the part of the request that it can handle, if any. If the request cannot be completed,
information for the lower driver in the stack is set up and the request is passed along to
that driver.[3,4]

This layered driver model allows functionality to be dynamically added to a driver
stack. It also allows each driver to specialize in a particular type of function and
decouples it from having to know about other drivers.[3,4,5]

In the windows Driver Model, each hardware device has at least two device drivers.
One of these drivers, which is the function driver, is which it appears to be thought as
the device driver; it understands all the details about how to make the hardware work.
It’s responsible for initiating I/O operations, for handling the interrupts what occur
when those operations finish, and for providing a way for the end user to exercise any
control over the device that might be appropriate. [1,3,5]

FUNCTIONAL DRIVER

In the windows Driver Model, each hardware device has at least two device drivers.
One of these drivers, which is the function driver, is which it appears to be thought as
the device driver ; it understands all the details about how to make the hardware work.
It’s responsible for initiating I/O operations, for handling the interrupts what occur

S

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1584

when those operations finish, and for providing a way for the user End to exercise any
control over the device that might be appropriate. [1,5]

FILTER DRIVERS

A Filter Driver is a special type of layered driver. What sets a filter driver apart
from the layered driver is that it is invisible. They attach themselves to any other driver
and intercept requests directed at the lower driver's Device objects. It is developed
primarily to allow the addition of new functionality beyond what is currently available.
The filter driver may either use the services of the original target of the I/O request, or
use the services of other kernel-mode drivers to provide value-added
functionality.[3,4,5]

Filter drivers are divided into two classes, upper and lower class filters, what is
above the function driver is upper driver while what is below the function driver is
lower driver. Upper filter drivers see IRPs before the function driver, and they have the
chance to support additional features that the function driver doesn’t know about.
Lower filter drivers see IRPs that the function driver is trying to send to the bus driver.
[3,5]

Figure (1): Communication Scheme Between the Application
 and the Hardware[3]

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1585

The drivers form the chain with IRP as the data medium. Correspondingly the
simplest way to hook data from the device driver (and keyboard driver in particular)
is to attach own specially developed driver to the stack with the existing ones.[4,5]

Several Stack Locations might exist within an IRP. One for each device
belonging to the chain of layers that follow until the IRP reaches the target driver. In

other words, there is a Stack Location for the target driver and an additional one
for each filter driver installed on it.[3,4]

 typedef struct _IRP
 {
 SHORT Type;
 WORD Size;
 PMDL MdlAddress;
 ULONG Flags;
 ULONG AssociatedIrp;
 LIST_ENTRY ThreadListEntry;
 IO_STATUS_BLOCK IoStatus;
 CHAR RequestorMode;
 UCHAR PendingReturned;
 CHAR StackCount;
 CHAR CurrentLocation;
 UCHAR Cancel;
 UCHAR CancelIrql;
 CHAR ApcEnvironment;
 UCHAR AllocationFlags;
 PIO_STATUS_BLOCK UserIosb;
 PKEVENT UserEvent;
 UINT64 Overlay;
 PVOID CancelRoutine;
 PVOID UserBuffer;
 ULONG Tail;
 } IRP, *PIRP;

Figure (2) shows IRP (Input/Output Request Packet) structure

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1586

Building the Device Stack

Each filter and function driver has the responsibility of building up the stack of
device objects, starting from the PDO(Physical Device Object) and working upward.

This can be accomplished with a call to IoAttachDeviceToDeviceStack:[1,4,5]
NTSTATUS AddDevice(..., PDEVICE_OBJECT pdo)

{
PDEVICE_OBJECT fdo;
IoCreateDevice(..., &fdo);
pdx->LowerDeviceObject =
IoAttachDeviceToDeviceStack(fdo, pdo);

}
The first argument to IoAttachDeviceToDeviceStack (fdo-filter driver object) is the

address of the created device object. The second argument is the address of the PDO.
The second parameter to AddDevice is this address. The return value is the address of
whatever device object is immediately underneath fdo, which can be the PDO or the
address of some lower filter device object. Figure-3 illustrates the situation when there
are three lower filter drivers for your device. By the time AddDevice function
executes, all three of their AddDevice functions have already been called. They have
created their respective FiDOs (Filter Driver Object) and linked them into the stack
rooted at the PDO. When a call IoAttachDeviceToDeviceStack, the address of the
topmost FiDO will be returned. [1,4]

Being a topmost FiDO is an easy task, all we need to do is to call
IoAttachedDeviceReference which it responsibility is to find the previous top most
device object (i.e., FiDO) and return a pointer to it. The pointer will be used to mount
new FiDO on it. [1, 4]

Figure (3) shows Device stack that contains three drivers[3]

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1587

CHALLENGES IN PROTECTING AGAINST SPYWARE

Windows operating has a layered architecture that enable developers to add more
functionality to the system or the application, for example windows grants the
developer the opportunity to add compression layer to a network interface or add
coding to a modem connected to the internet.[6]

This feature is very attractive from developer point of view but it is a night mare for
the security developers due to the vulnerability occurred, windows can't prevent
software from installing layered software due to the privileges the operating system got
from and in the other hand it is not possible to expose the system is this way.[5,6]

Many security software were trying to verify and validate software products before
allowing its kernel to be embedded within the system, many methodologies were
created to make this task accomplished in a way to promote the security of the system
by validating the authenticity of the third party software before grant it the ability to
install its kernel there.[7]

Spyware uses different methodologies to embed its sensors within the system (i.e.,
embedding key logger filter driver within device stack), all methodologies rely on
compromising the protection of the system. Anti-spy software tries to expose these
methodologies and reject the embedding, previous efforts count on understanding the
methodology and design software module to fight back this methodology.[7,8]

This paper is presenting a new style of preventing spyware in a way that it does not
matter the type of the spyware or the methodologies used to accomplish the attack. The
proposal in this paper introduces locking mechanism for the device driver stack which
is the most crucial part of the operating system. The locking is done by a maneuver
technique around the sequence that the operating system is designed to install drivers
accordingly.

LOCKING DEVICE DRIVER STACK

This paper is presenting a technique to lock the device driver stack according to the
following scenario; figure-4 shows the standard architecture of device driver stack.
1- Installing uppermost filter driver using ‘IoGetAttachedDeviceReference’, make

sure no other filter driver is above by inserting code inside upper filter driver to
drop I/O operation if there is other filter above. To be the upper most the IRP
should hold a stack size exactly the same as the location of the trusted upper most
filter in the device driver stack.

2- Installing lowestmost filter driver using the pointer to PDO (physical Device
Object) , make sure no other filter driver is below , this can be done by using the
registry keys and values.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1588

3- All traffic come from the port driver will be encrypted by the lower most filter

Driver and send through the device driver stack. this will insure that even if in a way or
another a malicious filter driver managed to hook itself with the device driver stack, it
will get an encrypted traffic.

After implementing this scenario, the device driver stack should be like figure 6,
where lower most and upper most filter drivers are surrounding the whole stack and
make sure that I/O traffic are fully encrypted. The following sections will present how
to install upper and lower most filter drivers.

INSTALL UPPERMOST FILTER
 The key technique used by this proposal is to install two filter drivers; the
uppermost and lowermost filter drivers. Microsoft does not provide direct way to do
that, thus this proposal introduces someway around this limitation.
This section is introducing the technique used by this paper to install uppermost filter
driver:

The following flow chat is presenting the methodology of installing upper most
filter driver, all structures and kernel APIs are declared in ntddk.h within the DDK
package from Microsoft.

Figure (4) shows the device driver stack after implementing
the locking scenario [5]

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1589

1- [Initialization] Define place holder of type PDEVICE_OBJECT and let it be
topmost and another one of type PDEVICE_EXTENSION and let it be
devExt.

2- [Move Device Pointer to top most]Get current topmost device driver by using
IoGetAttachedDeviceReference(Physical Device Object) method as the
following
 topmost = IoGetAttachedDeviceReference(kbpdo);
Now topmost points to the head of device stack.

3- [Create device object] Create Device Object to be use by driver, use
IoCreateDevice() API to create that device. Let created object named
mUpperFilter

4- [Get pointer to mUpperFilter extension]
 PDEVICE_EXTENSION pDevExt = mUpperFilter
→DeviceExtension;

5- [Chain all device stack created object]
attach topmost device object to created object in step-3
 pDevExt->TopOfStack = IoAttachDeviceToDeviceStack(mUpperMost,
topmost);

6- [end]

INSTALLING LOWER MOST FILTER DRIVER

Installing a lower filter driver is a little bit different than installing upper
filter driver, where , some registry values have to be added to some specific
registry keys and a re-boot is needed to finish the installation. The adding of
these registry values can be done in two ways, either to write a setup program if
the device is not of PNP type or to install it using inf file.

The key point in installing lower most filter driver is the following registry
keys device and lowerfilter, where windows installer will first search for all
devices registered in the registry, and then looks for other keys within that
device such as lowerfilter key and load drivers in the order it appears in that
registry key, figure-5 shows the procedure of installing filter drivers

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1590

Figure (5) shows the main components of INF file used to
install lower most filter driver

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1591

After installing the filter driver, a new value will be added to direct the system to

load lower drivers in the sequence appeared in LowerFilters value. The following
screen shot shows how registry keys have been added to the registry.

When the installation is completed the upper filter driver can talk to the lower filter

driver and an enumeration to stack size and layers can be accomplished, this way any
third party software tries to install a spyware within this stack will be detected and
prevented, this will lock the device stack against any spyware or malicious third party
modules.

CONCLUSIONS

As a conclusion from the work presented in this paper, it has been proved that
multi-layer operating system is hard to be secured against embedding malicious
software module, where the nature of the environment is prohibited rejecting
automation. The real assistance can come by embedding software and hardware
modules. The hardware modules will play the role the security gate guard before

Figure (6) shows a screen shot for the registry after installing
lower most filter driver

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30 , No. 9, 2012 Kernel level Anti-Spyware Using Device
 Stack lock Strategy

1592

accepting new software module that want to inject itself into the system, it is not
possible to rely totally on the security presented by the operating system due to the
fact, it adopts the same layering architecture. USB dongles can serve well in this issue
as it could be combined with kernel level drivers.

The stack driver is a very crucial element in the security schema imposed by
windows operating system, where authorization can be compromised easily if a
malicious software managed to inject a filter driver into a device stack of any type, this
will not just provide the access to the data exchanged as I/O traffic but to compromise
operating system security. User accounts can easily accessed and system resources can
be deployed.

 REFERENCES
[1]Art Baker and Jerry Lozano, “The Windows 2000 Device Driver Book”, second

edition , prentice-Hall, 2001
[2]Sherman S.M. Chow and Lucas C.K. Hui , “A generic anti-spyware solution by

access control list at kernel level “, 2004
[3]Walter Oney, “Programming the Microsoft Windows Driver Moderl”, second

edition ,2003
[4]Microsoft Division, “Microsoft Windows 2000 Driver Design Guide”, Microsoft

press,2000
[5]ark E. Russinovich and David A. Solomon, “Windows internals, Fifth Edition”,

Microsoft, 2009
[6]Andrew S. Tanenbaum, “Modern Operating Systems”, second edition , prentice-

Hall 2001.
[7]Nikolay Grebennikov, “Keyloggers: How they work and how to detect them ”, 2007
[8]Charis Cant, “writing Windows WDM device drivers”, Berkeley, 1999

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

