Eng. & Tech. Journal, Vol. 30, No. 9,2012

Kernel Level Anti-Spyware Using Device Stack L ock Strategy

Computer Science Department, University of Technol ogy/Baghdad

Mohammed Gheni Alwan
Email: mgaz _ mgaz @yahoo.com

Received on: 26/10/2011 & Accepted on: 1/3/2012

ABSTRACT

This paper is devoted to design and implement an Anti spyware software package.
The targeted type is the kernd level spyware which is the most dangerous threat due to
the capabilities granted to the spyware code injected in this level. Kernd leve is the
most trusted level and the code executed at this level will have accessibility to all
system resources. This paper will introduce a methodology to lock device stack for any
attaching of malicious filter driver, spyware is using filter driver as the main weapon to
intercept data exchanged by system devices (physical, logical or virtual) and the 1/0
manager.

The paper interduces also, a locking methodology for the device stack is presented
and all kernd level APIs are explained. The ‘keyboard’ is the target stack to be locked
against famous attack of keyboard logger.

Keywords: device driver stack, windows kernel, IRP, spyware, computer security.

ouiSall (3E AT aladiuly

dadal)

GV g A e Al Slaal pal) AndlSal dane j dpis 2805 apenall (S Gl 12a
Jery 4358 Cunnill Cllmal o gl laal e iing £ il 138 o el ol (g gise B ony
Jand A Gl ) apan fiaudall jslias apen aladiud 8 dillall dadlal) L] il b
(AY) Gl ) G e oY) AED dala b (58 Jeediil) s (5 S b

303 (sl Joda aadd 3 3eaY) (ke dahaie (DY Al 5 45 yla analy o 58 Cose Ginil) 13
Gliaal y laaaias Al ASU8) Jila gl as) joiey 5 jea¥) (uSe ddhaia Jgdo of ¢ du e Aa suiia
58 a5 5 eaY) sda e Al Laaldl il Sbiud 5 ol il e Ll dlld g el
Adbid) 38 ) Jsaal e aal el gzl

e Lgiaunyy Lebualdl JS oda (DI L i oy Cagu Cnll 138 (e ol e DA
oalall (uaSal 5 mlial) da gl s L ) Jlae ¢ sSaus s ol 1] Al 2aSall ) sal
A
Aial ez ) JAY) 5 JAaY) Gliby Glas o028 53 calial ¢aUatll ) g uaSe 1Bk yall cilalsl)

Alald)
1582

hitps://doi.org/10.30684/e1,.30.9.11
2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license hitp:/creativecommons.org/licenses/by/4.0



mailto:@yahoo.com
http://www.pdffactory.com
http://www.pdffactory.com
https://doi.org/10.30684/etj.30.9.11

. & Tech. Journal, Vol. 30, No. 9, 201 Kernel level Anti-Spyware Using Device
Stack lock Strategy

INTRODUCTION
pyware refers to programs that steal the user information stored in the user’s
computer and transmit this information via the Internet to a designated home
server without the user being aware of this transmission. Existing anti-spyware
solutions are not generic and flexible. These solutions either check for the existence of
known spyware or try to block the transmission of the private information at the packet
level. [1,2 ]

Themost common methods used to construct keylogging software are as follows:

- A system hook which intercepts notification that a key has been pressed (installed
using WinAPI SetWindowsHook for messages sent by the window procedure. It is
most often written in C);

- A cyclical information keyboard request from the keyboard (using WinAPI
GetAsyncKeyState or GetKeyboardState — most often written in Visual Basic,
sometimes in Borland Delphi);

- Using a filter driver (requires specialized knowledge and is written in C).[2] The most
effected one is that which uses filter driver due to most anti-spyware dose not reaches
that area without a special privileged authorization, this is in a hand and it is not easy
to tel if thefilter driver is malicious or normal in a second hand.

WINDOWSARCHITECTURE AND DEVICE STACK

Windows NT allows several driver layers to exist between an application and a
piece of hardware. Thus drivers are grouped together in stacks that work together to
completely process a request targeted at a particular device object.[3,4,5]

Windows NT uses a layered driver modd to process I/O reguests. In this modd,
drivers are organized into stacks. Each driver in a stack is responsible for processing
the part of the request that it can handle, if any. If the request cannot be completed,
information for the lower driver in the stack is set up and the request is passed along to
that driver.[3,4]

This layered driver mode allows functionality to be dynamically added to a driver
stack. It also allows each driver to specialize in a particular type of function and
decouples it from having to know about other drivers.[3,4,5]

In the windows Driver Modd, each hardware device has at |east two device drivers.
One of these drivers, which is the function driver, is which it appears to be thought as
the device driver; it understands all the details about how to make the hardware work.
It’s responsible for initiating 1/0O operations, for handling the interrupts what occur
when those operations finish, and for providing a way for the end user to exercise any
control over the device that might be appropriate. [1,3,5]

FUNCTIONAL DRIVER

In the windows Driver Modd, each hardware device has at |east two device drivers.
One of these drivers, which is the function driver, is which it appears to be thought as
the device driver ; it understands all the details about how to make the hardware work.
It’s responsible for initiating 1/0O operations, for handling the interrupts what occur

1583

PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 201 Kernel level Anti-Spyware Using Device
Stack lock Strategy

when those operations finish, and for providing a way for the user End to exercise any
control over the device that might be appropriate. [1,5]

FILTER DRIVERS

A Filter Driver is a specia type of layered driver. What sets a filter driver apart
from the layered driver is that it is invisible. They attach themselves to any other driver
and intercept requests directed at the lower driver's Device objects. It is developed
primarily to allow the addition of new functionality beyond what is currently available.
The filter driver may either use the services of the original target of the 1/0O request, or
use the savices of othe kend-mode drivers to provide value-added
functionality.[3,4,5]

Filter drivers are divided into two classes, upper and lower class filters, what is
above the function driver is upper driver while what is below the function driver is
lower driver. Upper filter drivers see IRPs before the function driver, and they have the
chance to support additional features that the function driver doesn’t know about.
Lower filter drivers see IRPs that the function driver is trying to send to the bus driver.
[3.9]

I Applications

wWinzz ARl calls

-

IRP passed to driver

W inE=
subsystem

User Mode

Kernel Mode
¢ Class upper filters |

digpatch routine

e
|———____*_%_—§ nager _ -
Device upper filters I )
¢ Device it
| drivers
HAaL calls
q; Function drivars |
| I Hardware abstraction layd
$ Clasa lower tiltars | l
_/r Hardware
¢ Cressices Lo st filters I ) l

Figure (1): Communication Scheme Between the Application
and the Har dwar €[ 3]

1584

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 2012 Kernel level Anti-Spyware Using Device
Stack lock Strategy

The drivers form the chain with IRP as the data medium. Correspondingly the
simplest way to hook data from the device driver (and keyboard driver in particular)
isto attach own specially developed driver to the stack with the existing ones.[4,5]

Several Sack Locations might exist within an IRP. One for each device
belonging to the chain of layers that follow until the IRP reaches the target driver. In

other words, there is a Stack Location for the target driver and an additional one
for each filter driver installed on it.[3,4]

typedef struct _IRP
{

SHORT Type;
WORD Size;
PMDL MdlAddress;
ULONG Flags,
ULONG Associatedirp;
LIST_ENTRY ThreadListEntry;
IO_STATUS BLOCK loStatus;
CHAR RequestorM ode;
UCHAR PendingReturned;
CHAR StackCount;
CHAR CurrentL ocation;
UCHAR Cancd;
UCHAR Cancdlrdl;
CHAR ApcEnvironment;
UCHAR AllocationFlags;
PIO_STATUS BLOCK Userlosb;
PKEVENT UserEvent;
UINT64 Overlay;
PVOID CancdRoutine
PVOID UserBuffer;
ULONG Tail;

} IRP, *PIRP;

Figure (2) shows IRP (Input/Output Request Packet) structure

1585

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 201

Kernel level Anti-Spyware Using Device
Stack lock Strategy

Building the Device Stack

Each filter and function driver has the responsibility of building up the stack of
device objects, starting from the PDO(Physical Device Object) and working upward.

This can be accomplished with a call to l0AttachDeviceT oDeviceStack:[1,4,5]
NTSTATUS AddDevice(..., PDEVICE_OBJECT pdo)

{
PDEVICE_OBJECT fdo;
loCreateDevice(..., &fdo);
pdx->L ower DeviceObject =
|oAttachDeviceT oDeviceStack(fdo, pdo);
}

The first argument to |oAttachDeviceT oDeviceStack (fdo-filter driver object) is the
address of the created device object. The second argument is the address of the PDO.
The second parameter to AddDevice is this address. The return value is the address of
whatever device object is immediately underneath fdo, which can be the PDO or the
address of some lower filter device object. Figure-3 illustrates the situation when there
are three lower filter drivers for your device By the time AddDevice function
executes, all three of their AddDevice functions have already been called. They have
created ther respective FiDOs (Filter Driver Object) and linked them into the stack
rooted at the PDO. When a call 1o0AttachDeviceT oDeviceStack, the address of the
topmost FiDO will be returned. [1,4]

Being a topmost FIDO is an easy task, al we need to do is to call
loAttachedDeviceReference which it responsibility is to find the previous top most
device object (i.e,, FiDO) and return a pointer to it. The pointer will be used to mount
new FiDO on it. [1, 4]

First, | - - -

. “~~.al Next =, Last
fopmost 4 driver driver
driver loCall Driver loCall Driver

IRP Current stack IRP Current stack IRP Current stack
location pointer location pointer location pointer
-

Figure (3) shows Device stack that containsthreedriverg[3]

1586

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 201 Kernel level Anti-Spyware Using Device
Stack lock Strategy

CHALLENGESIN PROTECTING AGAINST SPYWARE

Windows operating has a layered architecture that enable developers to add more
functionality to the system or the application, for example windows grants the
developer the opportunity to add compression layer to a network interface or add
coding to a modem connected to the internet.[6]

This feature is very attractive from developer point of view but it is a night mare for
the security developers due to the vulnerability occurred, windows can't prevent
software from installing layered software due to the privileges the operating system got
from and in the other hand it is not possible to expose the system is this way.[5,6]

Many security software were trying to verify and validate software products before
allowing its kernd to be embedded within the system, many methodologies were
created to make this task accomplished in a way to promote the security of the system
by validating the authenticity of the third party software before grant it the ability to
install its kernel there[7]

Spyware uses different methodologies to embed its sensors within the system (i.e,
embedding key logger filter driver within device stack), all methodologies rely on
compromising the protection of the system. Anti-spy software tries to expose these
methodologies and rgect the embedding, previous efforts count on understanding the
methodology and design software module to fight back this methodol ogy.[7,8]

This paper is presenting a new style of preventing spyware in a way that it does not
matter the type of the spyware or the methodologies used to accomplish the attack. The
proposal in this paper introduces locking mechanism for the device driver stack which
is the most crucial part of the operating system. The locking is done by a maneuver
technique around the sequence that the operating system is designed to install drivers
accordingly.

LOCKING DEVICE DRIVER STACK
This paper is presenting a technique to lock the device driver stack according to the
following scenario; figure-4 shows the standard architecture of device driver stack.

1- Installing uppermost filter driver using ‘loGetAttachedDeviceReference’, make
sure no other filter driver is above by inserting code inside upper filter driver to
drop /O operation if there is other filter above. To be the upper most the IRP
should hold a stack size exactly the same as the location of the trusted upper most
filter in the device driver stack.

2- Installing lowestmost filter driver using the pointer to PDO ( physical Device
Object) , make sure no other filter driver is below , this can be done by using the
registry keys and values.

1587

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Kernel level Anti-Spyware Using Device
Stack lock Strategy

Upper most driver

s ——

FIDD  premeeeeeeseed Lower filter driver
Pl G HTTEEELE, Lower filter driver

T AL TR Lower filter driver

PO e Buis driver

Figure (4) shows the device driver stack after implementing
the locking scenario [5]

Driver and send through the device driver stack. this will insure that even if in a way or
another a malicious filter driver managed to hook itsdf with the device driver stack, it
will get an encrypted traffic.

After implementing this scenario, the device driver stack should be like figure 6,
where lower most and upper most filter drivers are surrounding the whole stack and
make sure that 1/0 traffic are fully encrypted. The following sections will present how
toinstall upper and lower most filter drivers.

INSTALL UPPERMOST FILTER

The key technique used by this proposal is to install two filter drivers; the
uppermost and lowermost filter drivers. Microsoft does not provide direct way to do
that, thus this proposal introduces someway around this limitation.
This section is introducing the technique used by this paper to install uppermost filter
driver:

The following flow chat is presenting the methodology of installing upper most
filter driver, all structures and kernd APIs are declared in ntddk.h within the DDK
package from Microsoft.

1588

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 201 Kernel level Anti-Spyware Using Device
Stack lock Strategy

1- [Initialization] Define place holder of type PDEVICE_OBJECT and let it be
topmost and another one of type PDEVICE_EXTENSION and let it be
devExt.

2- [Move Device Pointer to top most]Get current topmost device driver by using
loGetAttachedDeviceReference( Physical Device Object) method as the
following

topmost = loGetAttachedDeviceReference(kbpdo);
Now topmost points to the head of device stack.

3- [Create device object] Create Device Object to be use by driver, use
loCreateDevice() APl to create that device. Let created object named
mUpperFilter

4- [Get pointer to mUpperFilter extension]

PDEVICE_EXTENSION pDevEXxt
—DeviceExtension;

5-  [Chain all device stack created object]
attach topmost device object to created object in step-3
pDevExt->TopOfStack = loAttachDeviceT oDeviceStack(mUpperMost,
topmost);

6- [end]

mUpperFilter

INSTALLING LOWER MOST FILTER DRIVER

Installing a lower filter driver is a little bit different than installing upper
filter driver, where , some registry vaues have to be added to some specific
registry keys and a re-boot is needed to finish the ingtallation. The adding of
these registry values can be done in two ways, either to write a setup program if
the device is not of PNP type or to install it using inf file.

The key point in installing lower most filter driver is the following registry
keys device and lowerfilter, where windows instaler will first search for all
devices registered in the registry, and then looks for other keys within that
device such as lowerfilter key and load drivers in the order it appears in that
registry key, figure-5 shows the procedure of installing filter drivers

1589

PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol. 30, No. 9, 2012 Kernel level Anti-Spyware Using Device
Stack lock Strategy

Manufacturer

Yolower driver provider®o = LowerFilter

LowerFiter - |

YeFilter Desc% = LowetTnstall

Ll winies [E—
DisplayName = device sys CopyFiles = lower.sys,,.
ServiceType= 1 T
Sy AddReg=lower addreg
ErrorControl="l
ServiceBinary= %1 0% System32 Drrverstlower.sys

Y

loweraddreg

HKLM, CurreniControlSetiservices 18042, LowerFilters, 0x00010000 , lower

Figur e (5) shows the main components of INF file used to
install lower most filter driver

1590

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 201 Kernel level Anti-Spyware Using Device
Stack lock Strategy

After installing the filter driver, a new value will be added to direct the system to
load lower drivers in the sequence appeared in LowerFilters value. The following
screen shot shows how registry keys have been added to the registry.

ﬁﬂegistr}r Editor E\E@
File Edit View Favorttes Help
- hidev 4 || Name Tyse B
- ) Defaut REG 52 (e not et
e E:E -’P} DisplayName  REG_SZ 8042 Keyboard and PS/2 Mouse Port Driver
Eﬁs 0| Becowl  RSOHORD oa0momeL )
omp \a.-b:EGm”P REGSZ Keyboard Port
B2pn ’_'.’\.:Imegepeth REG EXPAND S system32\DRIVERS\8042prt sys
L iStory 1o/ Start REG_DWORD (k00000001 (1)
L Evevony | T REGOWORD 000000005 (5
| BMPMSVC 4] Type REG_DWORD (k00000001 1)
' idsve - | b LowerFilters REG_MULTL 52
{ (1] b { | I :

Computer\ HKEY_LOCAL MACHINE\SYSTEM! ControlSet001' Services\i84Zprt

Figure (6) shows a screen shot for theregistry after installing
lower most filter driver

When the installation is completed the upper filter driver can talk to the lower filter
driver and an enumeration to stack size and layers can be accomplished, this way any
third party software tries to install a spyware within this stack will be detected and
prevented, this will lock the device stack against any spyware or malicious third party
modules.

CONCLUSIONS

As a conclusion from the work presented in this paper, it has been proved that
multi-layer operating system is hard to be secured against embedding malicious
software module, where the nature of the environment is prohibited reecting
automation. The real assistance can come by embedding software and hardware
modules. The hardware modules will play the role the security gate guard before

15901

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

. & Tech. Journal, Vol. 30, No. 9, 201 Kernel level Anti-Spyware Using Device
Stack lock Strategy

accepting new software module that want to inject itsdf into the system, it is not
possible to rely totally on the security presented by the operating system due to the
fact, it adopts the same layering architecture. USB dongles can serve well in this issue
as it could be combined with kernd level drivers.

The stack driver is a very crucial dement in the security schema imposed by
windows operating system, where authorization can be compromised easily if a
malicious software managed to inject a filter driver into a device stack of any type, this
will not just provide the access to the data exchanged as I/O traffic but to compromise
operating system security. User accounts can easily accessed and system resources can
be deployed.

REFERENCES

[1]Art Baker and Jerry Lozano, “The Windows 2000 Device Driver Book”, second
edition , prentice-Hall, 2001

[2)Sherman S.M. Chow and Lucas C.K. Hui , “A generic anti-spyware solution by
access control list at kernd level «, 2004

[3]Walter Oney, “Programming the Microsoft Windows Driver Moderl”, second
edition ,2003

[4]Microsoft Division, “Microsoft Windows 2000 Driver Design Guide’, Microsoft
press,2000

[S]ark E. Russinovich and David A. Solomon, “Windows internals, Fifth Edition”,
Microsoft, 2009

[6]Andrew S. Tanenbaum, “Modern Operating Systems”, second edition , prentice-
Hall 2001.

[7]Nikolay Grebennikov, “Keyloggers: How they work and how to detect them , 2007

[8]Charis Cant, “writing Windows WDM device drivers”, Berkeey, 1999

1592

PDF created with pdfFactory Pro trial version www.pdffactory.com


http://www.pdffactory.com
http://www.pdffactory.com

