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Abstract

A model reference adaptive control of condenser and deaerator of steam power plant is
presented. A fuzzy-neural identification is constructed as an integral part of the fuzzy-neural
controller. Both forward and inverse identification is presented.

In the controller implementation, the indirect controller with propagating the error through the
fuzzy-neural identifier based on Back Propagating Through Time (BPTT) learning algorithm
as well as inverse control structure are proposed.

Simulation results are achieved using Multi Input-Multi output (MIMO) type of fuzzy-neural
network. Robustness of the plant is detected by including several tests and observations.

Keywords: Power plant control, Fuzzy neural, Condenser control, Dearator control, MIMO
control.
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I — Introduction

Because of the impertinence of the
fundamental parts (condenser and deaerator)
in completing the heat cycle and power
generation in steam power plants, model
reference adaptive control have been
developed and implemented for controlling
the condenser and the deaerator levels.

A simple control scheme such as PID
controller can be used for such control.
However, such controller is poor to
overcome the disturbances that may occur on
the plant working conditions.

Several types of controllers were
presented to control the different parts of
steam power plant, such as the twin turbine-
generator system, including its associated
control systems, performs satisfactorily in a
variety of normal and energy operation
modes [1]. In [2] a systematic method of
choosing the frequency bias parameter and
the integrator gain of the sampled data
supplementary control using the discrete
version of the Lyaponov's technique. Also
the study presents data and control schemes
for small and medium size boiler models [3].

Recently neurofuzzy model reference
controller is adopted based boiler drum
controller for power stations [4] Deaerator
and condenser control have not been given
the same attention..

IT — Flow Diagram of the system under
control

Figure (1) shows the flow diagram of
the system under control. The circulating
water (cooling water) is passing through the
tubes of the condenser and receives energy
from the steam that is coming from the Low
Pressure Cylinder (LPC) of the turbine to the
condenser by convection and conduction
through the tube walls. The cooling water
temperature is increased from its initial value
(t1) to a final value (t2). The steam enters the
condenser in a moist state, and its
temperature remains constant through the
condenser, but its latent energy is removed.
Condensed steam, called (condensate), is
collected in the hotwell, whose capacity
should be equal to the maximum value of
condensate produced.
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Fig. (1) Flow diagram of the system
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Then condensate leaves the condenser by
condensate pump and reaches the first stage
of heating which is closed or surface type
feed water heaters (Low Pressure Heaters
LPHs). The water (condensate) passing
through Low Pressure Heater tubes are
surrounded by a steam coming from the Low
Pressure Cylinder (LPC) of turbine. This
steam is condensed in the heater tubes and
then falls to the bottom of the heaters as a rain
of drops. The heater drains then returned to
the condenser through drain lines. The
temperature of the condensate is raised and
leaves the (LPHs) to the deaerator.

In the deaerator, the steam taken from
(LPC) of the turbine and the condensate arrive
from (LPHs) are mixed and all the non-
condensable gases present in the mixture such

as (oxygen, carbon dioxide and ammonia) are
removed. The feed water leaving the
deaerator are forced to the Boiler Feed Pump
(BFP) after passing through second stage of
heating called High Pressure Heaters (HPHs).

Finally, the make-up tank are used to
compensate the grow less of water
(condensate) in the hotwell of the condenser.

More  information  about  the
parameters and dimensions of steam power
plant that is listed in appendix.

III — Fuzzy-Neural Network Structure

The structure of a fuzzy-neural
network with Multi Input and Multi Out- puts
are represented in Fig. (2). This representation
is a type of a feed forward neural network.

Fuzzification

Fig. (2) Fuzzy-Neural network structure

T norm Deffuzification
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The first layer performs a fuzzification
for each linguistic rule using Gaussian
membership function, which is given in the
following relation:

_l(xf_aij )2

b..

M (x)=e 2h ..(D)

where x;is the jth input variable,

a;jand b;are the center and width of the
Gaussian membership function.

The outputs from this layer are fed to
the next layer, which performs a T-norm
operation (product operation) given by:

m
Ui =] 14y
=1

where
variables.

...(2)
mis the number of input

The last layer computes the overall
outputs as the weighted sum of the incoming
signals, to produce the center of gravity
(COQG) deftuzification operation, which can
be obtained by the following equation:

VNS :Zui'Wsi ...(3)
i=1

where n is the number of rules, Sis
the number of outputs of fuzzy neural
network.

Note that the adopted fuzzy-neural
network here is modified to be unnormalized.
A unnormalized fuzzy-neural network
exhibits the desired performance for the
identification and control of nonlinear
systems. Moreover, there are two advantages
of fuzzy-neural network with out a
normalization process [5]:

1. A faster training rate than the one which is
normalized.

2. A much simpler form of the input-output
sensitivity equation than in a normalized of
fuzzy-neural network.
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Now, putting it all together, the

outputs of fuzzy-neural network
VNS become:
1 Xj—aij 2

n m =)
yns =2 Wi (I ]e 7o)

i=l /=l (4)

IV — Identification
The identification of dynamic

behavior of the simulated model is done based
on series-parallel fuzzy-neural networks.

Forward Identification

In this type, the inputs and outputs of
the identifier network are the same inputs and
outputs of the plant to be identified.

Single Multi Input-Multi  Output
(MIMO) network is implemented to identify
the condenser level and the deaerator level
simultaneously as shown in Fig. (3). This
network has (10) inputs and (2) outputs.

The initial values of the membership
function’s centers are equally separated along
the universe of discourse for all inputs. The
width of all membership functions is equal to
(0.28), and the initial values of weights are
selected in the range between (0 and 3), and
using the number of rules (50 Rules).A
gradient decent based back-propagation
algorithm is employed to adjust the
parameters of the (MIMO) fuzzy-neural
network by using the training pattern.

In this case, the adaptation of weights for
condenser level (wj;) and deaerator level
(wy;) are effected by the errors in each

outputs separately while the adaptation of
centers (a;;) and width (b;;) are effected by

the errors in both outputs, i.e.:

The main goal of supervised learning
algorithm is to minimize the error function:

ET == %Elz +1E22

2 ...(5

E= %(le(k) — v (k) +%(J’N2(k) ~yp2 k)’
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Fig. (3) Construction of single (MIMO ) forward identification network

where yy;(k), vy, (k) are the outputl and the

output2 of fuzzy-neural network respectively
and y,(k),y,,(k) are the desired outputs

(condenser level and deaerator level
respectively) for the jth input pattern.

The gradient descent algorithm gives

the following iterative equations for the
parameter values:

ay<k+1>=ay(k)—;ay% D
by (k +1) = by (k) &), %jf (®)
Wk +1) = wy (K) =,y 2% O
Wtk ) = wa ()=, L L(10)

an-z

where ¢ is the learning rate for each

parameter in the system, i=1,2...n and
j=1,2..m.

Taking the partial derivative of the
error function given by eqn. (6), we can get
the following equations:

8ﬁ:E1%+Ezaﬁ ..(11)

Gaij Gaij 8aij

oF oF oFE

#:El%—lwz%—z .(12)
ij ij ij

Er _ E, oF) +E, 9k, ..(13)

oWy oWy owy)

aET = El aEl + E2 aEz .. (14)

8Wl~2 an'z an'z

Hence, the new value of a; after

adaptation is equal to:

a;;(k+1) = a; (k) = G 0ii[(yn1 — Y)W

(x;—a;
+ (Y2 = V)Wl ——"=
N2~V p2)W2 b)

...(15)

83



Iraq J. Electrical and Electronic Engineering
Vol.3 No.1, 2007

iy I Al g1 il 481 yal) Al
2007 ¢ 1 222l ¢ 3 alas

Similarly, b;; (k +1) ,w;; (k +1)and
Wir(k+1)could be
following equations:

bj(k +1) = b (k) = Cp[(yy1 — yp )W
(x; —ay 2
(by)’

...(16)
..(17)

...(18)

obtained from the

+(n2 = Vp2)Woilu;

wir(k + D) =wy (k) =& (Yn1 = V1)U
Wi (k+ 1) =wip (k) =&, (Y2 = Y p2)u;

According to the information and after
the execution of (10) iterations of learning
algorithm shown in Equations (15) to (18) the
responses of this part are shown in Figs. (4)-
(6). First steps of training of condenser level
and deaerator level of the forward
identification are observed in Fig. (4), where
Fig. (4.a) and Fig. (4.b) represent responses of
both levels respectively and also their
corresponding identifier outputs.

Parameters update was continued for
(10) iterations, till convergence of the total
square of error Ej(k)towards zero is

satisfied, as illustrated in Fig. (5.a).
Parameters updating progress is presented in
Fig. (5.b) for (3) randomly selected
parameters. Therefore, the end of adaptation
was reached by arriving the parameters to
their steady state values.

Figure (6.a) and Fig. (6.b) shows the actual
outputs and identifier outputs of both
condenser and deaerator respectively after the
end of adaptation.

Two values for the level set-point
(Lref) are employed to test the learned
identifier, these values selected as: one is the
minimum value of levels and the other is a
maximum value of levels, (Lief 1 min =0.5 m
and L 1 max=1.0 m for condenser), (Lier 2
min=1.5 m and Lyef 2 max=2.2 m for deaerator)
and they are applied successively. These
values have been used because it reflects all
the region of interest. Therefore, the curves in
Fig.(6) reveal how the fuzzy-neural identifiers
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learned the dynamic of the condenser and the
deaerator.

Inverse Identification

The structure of a fuzzy-neural
network with Multi Input and Multi Outputs
are similar to that used in the forward
identification the main difference is in the
inputs and outputs of the network. The input
to the fuzzy-neural Network inverse
identifier is the output of the plant, while the
output of the network is the input of the plant.

Single (MIMO) network has (10)
inputs and (2) outputs used to identify the two
inputs of the plant: condensate flow rate
(m,) and  make-up  water  (71,,)

instantaneously as shown in Fig (7). The
number of rules used are 50 rules.

Adaptation of this system has been
continued for (25) iterations  until
convergence of the total squared error
Er(k)towards zero has been reached. Fig.

(8.a) show the first learning period of
condensate flow rate and its coincidence to
the actual input (), while Fig. (8.b)

illustrates the corresponding curves of the
make-up water (1, ) and its identifier for first

learning period. Responses of the squared
error and development of (3) selected
parameters are observed in Figs. (9.a) and
(9.b) respectively, and the curves reveal how
updating is complete when the parameters
reached their steady state values. Figs. (10.a)
and (10.b) represent the condensate flow rate
(m,y) and its identifier and make-up water

(m, ) and its identifier at the end of
adaptation period respectively.

V — Control

The purpose of designing a controller
is to control the condensate valve and make-
up valve, which generate the desired control
inputs (m, and m, ) receptively. The
simulation results depend on the dynamic
model of the condenser and the deaerator is
based on the conservation of mass and energy
balance principal. The final objective is that



condenser level (m)

performance measure

Iraq J. Electrical and Electronic Engineering

Vol.3 No.1, 2007

5 IV 5 A 5 il 481 ) il
2007 ¢ 1 2a2dl ¢ 3 alas

—&— identifier

actual

deaerator level (m)

24

—&— identifier

actual

8000
time (sec.)

(b)

Fig. (4) First steps of plant forward identification [MIMO network]

selected parameters

0.280

0.278

0.276

0.274

0.272
0

12000 16000

40000

80000 120000 160000

time (sec.)
(b)

Fig. (5) Learning progress of the plant forward identification [MIMO network]

04 L . L
0 4000 8000 12000 16000
time (sec.)
(a)
1.2 T T T T T T
08 [ .
0.4 E
0.0 1 e
0 40000 80000 120000 160000
time (sec.)
(a)
1.2 T T T T
—&Q— identified
—— actual
~~
E
N
o)
>
2
—
[
w
=
Q
=)
=
S
Q

4000

8000
time (sec.)
(a)

12000 16000

deaerator level (m)

24

—&— identified

actual

4000

8000
time (sec.)
(b)

Fig. (6) Last steps of plant forward identification [MIMO network]

85

12000 16000




Iraq J. Electrical and Electronic Engineering
Vol.3 No.1, 2007

Ay SV Al o) il 481 al) Al
2007 ¢ 1 222l ¢ 3 alas

mg; (k)

m(k —
() Deaerator La (k: D=y
msl(k)

Myo(K)

L. (k+1)=
Condenser (= )=V

\ A 4

Fig. (7) Construction of single (MIMO) inverse identification network

the condenser level and the deaerator
level must tracks a desired reference model,
such that the performance of plant outputs is
controlled.

The designed reference model has the same
properties of the plant. The model can be
described by the following equations.

(mslr —Ihclr +l’i1mr +n"ld1r +mDr)

YRI = YRO +T
Pelr@hr
...(19)
e. = YR, — Lref; ...(20)
0 if (e, <0.5)
Uper = 1 if(ec > 0)
exp(100*e,) if (-0.5<e, <0)
.21
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(—CW )2 +1
iy, = 85.861 % Rir ..(22)
( vir )2 + 1

2
Cer (u120r )

A _ Vacclr + T(ms3r + mclr - ’hwor + der)/(pwor)

accr
Laccr

.(23)
0 ,=14.0567+262.634,,,, —422.9874,..>

accr accr

+390.4274,,,,° —204.3334,,.,." +64.25164,,,,°

accr

~12.51974,,,,° +1.514154,,..” —0.1097774,,,,°
+0.004324124,,..,° —7.00254E —0.0054,.,'°
...(24)
YR, =2%r,.., *sin2(i0r) ...(25)
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ed = Lref; —YR, ...(26)
0 if (e; >0.7)
Upngr =41 if (eg <0)
exp(—ey ) if(0<e; <0.7)
.27
( v2r )2 +1
1, =16.667 Rar
(Svary2 1
CRrar (u124y)
e (28)
where

YRI vYRz s Mgy sMelys Miygs---slacer and Myor

are the corresponding parameters of the
condenser and the deaerator, Lrefl and Lref2
are the condenser level set point and the

Parameter values of the reference model are
listed in appendix.

Indirect Fuzzy-Neural Control

We used (MIMO) fuzzy-neural
identifier in the (MIMO) indirect controller
method as a path for the output error
propagation to the fuzzy-neural controller as
shown in Fig. (11). In this type of control, two
fuzzy-neural networks, fuzzy-neural network
identifier and controller is employed,
abbreviated by FNNI and FNNC respectively.

The controller network learning is
based on the plant sensitivity (gradient of the
output with respect to its input) which can be
described as follows:

E (k) is the total squared error of the

difference between the reference output
y,(k)and the plant output y,(k)is defined

as:

deaerator level set pint respectively.
Reference model yr(K)
"+Ec(k)
o
L FNNC k Plant k
refs MIMO uk) (Condenser + Deaerator) yrsk)

TDL

E(k)

FNNI
MIMO

TDL

yns(k)

/

Fig. (11) Indirect Fuzzy-neural controller
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s=1

where, o: is the number of plant

outputs.

The gradient decent algorithm used to adjust
arbitrary parameter of the fuzzy-neural
controller as follows:

E
OF, (k) ...(30)

Ok+1)=0(k)-Cy 20

where, ¢ is the learning rate of that

parameter.

Then the gradient of error with respect
to an arbitrary parameter @ is:

PE,(k) 3 B
2000 D s (k) = y s (K)).

s=1

= _Z(yrs(k) _yps(k))'

s=1

Oy ps (k)
06(k)

du(k) 00(k)

.31

Y ps (k)

: is called the plant
ou(k)

where,

sensitivity,

u(k) : is the input vector of the plant

inputs,
uy (k)
uty =| 20,
U (k)
m : is the number of input variables.
Then,
) {aypl(k) Ialk) )
k) | gy LA ant) T (b
...(32)
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and,

i ouy (k) ]
00(k)
Ouy (k)

ou(k
u) _ 06(k)

00(k)

..(33)

ou,, (k)
| 060(k) |

[m1]

...(3.31) )
cannot be obtained

Y ps (k)
ou(k)
unless a complete knowledge about the plant
is required, due to the high nonlinear elements
contained. Therefore the plant sensitivity was
replaced by sensitivity model of the plant
forward identifier based on a novel method
was derived in [6] which is used as a path to
propagate error to the fuzzy-neural controller.

But

The sensitivity model is:
Y ps (k) 3y, (k)
ou(k) ou(k)

...(34)
In this paper, the plant consists of two

. . mcl
inputs (i.e., u(k) ={ } }), and two outputs

(e, v, (k) = |y 1 (K)y 2 (K)]). And (MIMO)

fuzzy-neural controller has (12) inputs and (2)
output and 60 Rules.

The initial values of the membership
function’s centers are equally separated along
the universe of discourse of all inputs. The
width of all membership functions is equal to
(0.28), and the initial values of weights are
selected in the range between (0 and 3).

After using the above information and
all learning algorithms shown in eqns. (29 to
34) with two step- reference levels, which are
(Lref 1 min=0.5m, Lief | max=1.0m for condenser
level) and (Lyef 2 min=1.5m, Lief2 max= 2.2m for
deaerator level), the first steps of the learning
period of the fuzzy-neural controller action
are illustrated in Fig. (12). Figure (12.a)
represents the condenser level (the actual and
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Fig.(15) The Inverse Controller

the reference). Deaerator level is observed in
Fig. (12.b). Training was continued for (15)
step inputs till convergence of the squared
error E_ (k)towards zero is satisfied. Fig.

(13.a) illustrates the error convergence, while
Fig. (13.b) represents the development of (3)
selected parameters of the proposed fuzzy-
neural controller until they reach their steady-
state values. After learning is complete the
responses of levels of the condenser and the
deaerator are shown in Fig. (14), and this
figure represent a good performance for the
fuzzy-neural control proposed.

Inverse Control

In this work, we use the (MIMO)
inverse identifier network that discussed in
sec. (IV) as a controller, because this method
is simpler in generating the desired input for
the plant (7., and m1,,) and does not requires

further training.

After the learning period completes,
the inverse identifier has the inverse dynamics
of the condenser and deacrator. Therefore, the
outputs of the controller are utilized as inputs
to the plant, where the levels of condenser and
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deaerator are to track to the reference model
outputs. The outputs of the reference model
are utilized as inputs to the controller (inverse
identifier) as shown in Fig (14).

This type of controller can be
understood easily if we assume that if the
plant is linear. In which is this case, the
identifier identifies the inverse transfer

function G ™! (5).

If the identified model is placed before
the plant, and its input is generated for the
reference model M (s)then the resulting

transfer function:

Y(s)
ref

=M(s)-G 7' (s)-G(s) = M(s)

..(12)

Therefore the output of the plant is
guaranteed to track the reference model
output as shown in Fig. (16).

VI- Disturbance Effects
To check robustness of the proposed

controller, several disturbances are applied to
the plant, as shown in Figs. (17 to 19):
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Fig.(16) Response of the Inverse Controller

1. Steam flow from (LPC) of the turbine to
the condenser (1,;) is changed from (100%
load) to (40% load) at time (2200 sec.). As
shown from Fig. (16) ( for indirect fuzzy
neural, inverse fuzzy neural and PI
controllers) the deaerator level and its valve
opening (0,) which are decreased too for a
period of time a bout (150 sec.) and there
return back to their reference values.

2. Figure. (17) shows responses of the
condenser level and its valve opening when
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fault occurs in the (LPH;) and hence, removed
from the system.

3. Finally, feed water flow rate (m1,,,)

extracted from the deaerator was changed to
(70%), and Fig. (18) illustrate the effect of
disturbance on the deaerator level and its
valve opening for the two types of controllers.

For the purpose of comparison the
following disturbances results that are
applied to the plant using the fuzzy-neural
controller and the results when using the
conventional controller, we observed that
fuzzy-neural controller is less effected by
there  disturbances than  conventional
controller; so, the fuzzy-neural controllers are
more robust than conventional controllers.

VII- Conclusions

A fuzzy-neural model reference
adaptive control structure is presented and
used for controlling the condenser level and
the deaerator level of steam power plant. A
fuzzy-neural network is constructed for both
the identifier and the controller. A simulation
results shows good performance for proposed
scheme.
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(19) Effect of decreasing the (m,,,) to (70 % load), at t=2200sec.



