Numerical study of nonlinear Fabry- Perot cavity filled with a selffocusing medium

H. A. Sultan
Department of Physics, College of Education, University of Basrah, Basrah, Iraq
ISSN -1817-2695

((Accepted 1997))

Abstract

: In this paper a numerical study of a nonlinear Fabry- Perot cavity filled with a self- elf focusing are solved numerically using finite differences method with iterative approach. The results are in agreement with experimental data available by other workers.

Key words: numerical analysis, Fabry- Perot, self- focusing

1. Introduction:

The effect of transverse profile of laser beam on a fabry- perot cavity was included by McCall [1], Marburger and Felber [2] and Ballagh etal [3]. Then this subject was studied more generally by Rosanov and Semenov [4] and by Monoly and Gibbs [5]. Recently there are many studies dealing with this problem, for example Weaire etal [6] and Reinisch and Vitrant [7], but
their studies are dealing with self- focusing in two dimensions which may not hold for three dimensional problem. In this work a numerical study of Fabry-Perot cavity contains a selffocusing three dimensional medium is presented. A computer program was written for the numerical solution algorithm.

If we assume the solution of eq (2) is of the form:

$$
\begin{equation*}
E(r, z)=E_{f}(r, z) \exp (i k z)+E_{b}(r, z) \exp (-i k z) \tag{3}
\end{equation*}
$$

where E_{f}, E_{b} are the forward and backward waves in the cavity respectively (see figure 1).

Then for slowly varying fields, it can be shown that:

$$
\begin{aligned}
& \nabla_{T}^{2} E_{f}+2 i k \frac{E_{f}}{\partial z}+\frac{n_{2}}{n_{0}} k^{2}\left(\left|E_{f}\right|^{2}+\left|E_{b}\right|^{2}\right) E_{f}=0 \\
& \nabla_{T}^{2} E_{b}-2 i k \frac{E_{f}}{\partial z}+\frac{n_{2}}{n_{o}} k^{2}\left(\left|E_{f}\right|^{2}+\left|E_{b}\right|^{2}\right) E_{b}=0 \\
& \text { where } \nabla_{T}^{2}=\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}
\end{aligned}
$$

with the boundary conditions:
$E_{f}(r, 0)=(1-R) E_{\text {in }}(r)+R E_{b}(r, 0) \quad B=\frac{1}{k a}\left(\frac{n_{2}}{n_{o}}\right) E_{b}$
$E_{b}(r, L)=\operatorname{Rexp}\left(i k L E_{f}(r) \quad Z=\frac{1}{k a^{2}} z\right.$
where R is the reflectivity of the mirrors.
The quantity $k L$ is the linear phase shift in the cavity which assumed to be equal $2 n \pi$, where n is an integer, and
$E_{\text {in }}(r)=E_{0} \exp \left(-r^{2} / \rho^{2}\right) \quad$ where
ρ is the incident beam radius.
The treatment becomes simple with dimensionless quantities, so it is convincement to introduce the following definitions: gives:

Substituting these definitions into eqs. $(4,5)$

$$
\begin{equation*}
\nabla_{T}^{2} F+i \frac{\partial F}{\partial z}+\left(|F|^{2}+|B|^{2}\right) F=0 \tag{7}
\end{equation*}
$$

$F=\frac{1}{k a}\left(\frac{n_{2}}{n_{o}}\right) E_{f}$

Fig(1) A nonlinear Fabry- Perot cavity

3. Results and discussion:

The coupled equations (7) and (8) are solved numerically using finite differences method involve iterative approach. A computer program for this method has been written to serve the solution. The numerical solution is applied for the following experimental data, which are used by Firth etal [8], and Abraham etal [9]. They use a cw laser with wavelength $5.5 \mu \mathrm{~m}$ has a Gaussian beam of diameter $200 \mu \mathrm{~m}$ incident on Fabry- Perot cavity of length $200 \mu \mathrm{~m}$ contains a nonlinear medium (INSb) where its refractive indices are $n_{o}=4$ and $n_{2}=10^{-5} \mathrm{~cm}^{2} / W$. The surfaces of the cavity are used as mirrors of reflectivity 90%.

Figure (2) shows the transmitted power versus the input power. It is seen that there is an optical bistability region switching up to 25 mW input power. The profile of the transmitted beam at switch up point and the input beam are shown in figure (3). It is seen that profile at the switch up point exhibits dramatic changes. These results are in agreement with experimental results of $[8,9]$. The solution is repeated for different input beam radius ρ, it is found that the optical bistability loop is expanded as ρ decrease, and the switch up and switch down point are enhance when is decrease, these results are in agreement with those of [7].

Fig (2) The transmitted power versus the input one $\lambda=5.5 \mu \mathrm{~m}$,

$$
\rho=200 \mu m, L=200 \mu m, n_{2}=10^{-5} \mathrm{~cm}^{2} / W .
$$

Fig (3) The normalized intensity profile : A)at the input, B) the transmitted at the switch up point.

4. References:

1. S. L. McCall, Phys. Rev. A,9, 1515 (1974).
2. I. H. Marbarger and F. S. Felber, Phys. Rev. A, 17, 335 (1978).
3. R. G. Ballagh, J. Cooper, M. Hamilton, W. J. Sandle and D. Warrigton, Opt. Comm., 27, 143 (1982).
4. N. Rosanov, V. Semenov, Opt. Comm., 38, 435 (1981).
5. J. Monoly and H. M. Gibbs, Phys. Rev. Lett, 48, 1607 (1982).
6. D. Weaire, J. Kermode and V. M. Dwyer, Opt. Comm. 55, 223 (1985).
7. R. Reinisch and G. Vitrant, J. Appl. Phys., 67, 6671 (1990).
8. W. J. Firth, C. T. Seaton, E. M. Wright and D. Smith, J. Appl. Phys. B28, 131 (1982).
9. E. Abraham, C. T. Seaton and smith, Science Am., 248, 85 (1983).

در اسة عددية لتجويف فابري - بيرو مملوء بوسط للتبؤز الذاتي

> قسم (الفيزياء/ كلية التربية/ جامعة الله سلطان

الملخص:

```
هذا البحث دراسة عددية لتجويف فابري - بيرو لاخطي مملوء بوسط للتبؤر الذاتي. تم حل معادلات النبؤر الذاني باستخدام
    طريقة الفروقات المنتهية ذات التقارب المنتالي. النتائج المحصلة من الحل متو افقة مع النتائج العملية المتوفرة لباحثين أخرين. 
```

