On the non-existence of Complete (k,n)-arcs in PG(2,q)

Mohammed A. Ibrahem
Department of Mathematics, College of Science, Basrah University, Basrah, Iraq Mohna-l@yahoo.com

Abstract

In this paper we discuss the non-existence of complete (k, n)-arcs in the projective plane of order q , and we find the largest value of k produces according to theorem (3.1), for which $\mathrm{a}(\mathrm{k}, \mathrm{n})$-arc dose not complete in the projective plane of order $\mathrm{q} \operatorname{~} \operatorname{PG}(2, \mathrm{q})$ " for $k \geq n, n \neq q+1$, which is denoted by $t_{q}^{*}(n)$.

Introduction
A (k, n)-arc K in $\operatorname{PG}(2, q)$ is a set of k points such that there is some n but no $\mathrm{n}+1$ of them are collinear. A (k, n)-arc K is complete if there is no $(k+1, n)$-arc containing it. A line ℓ of $\operatorname{PG}(2, q)$ is an i secant of a (k,n)-arc K, if $|\ell \cap K|=i$.The maximum value for which a (k,n)-arc K exist in $\operatorname{PG}(2, q)$ will be denoted by $m(n)_{2, q}$. A (k,2)-arc generally called a k-arc.

Some results on the (\mathbf{k}, \mathbf{n})-arcs

Lemma 2.1. [4]

$$
\begin{array}{llll}
\text { For } \begin{array}{llll}
\text { a } & (\mathrm{k}, \mathrm{n}) \text {-arc } & \mathrm{K} \text { in } \operatorname{PG}(2, \mathrm{q}), \text { the following } \\
\text { equations are true : }
\end{array} & \sum_{j=1}^{k} b_{j} R_{i j}=i_{i} \\
\sum_{i=1}^{n} R_{i} \quad=q+1 & \ldots . & (2.1) & \sum_{j=1}^{k} b_{j}=k \\
\sum_{i=2}^{n}(i-1) R_{i}=k-1 & \ldots . & (2.2) & 23
\end{array}
$$

where $R_{i}=R_{i}(P)$ denote the number of i secants to K through a point P of K .

Assume the equations (2.1) and (2.2) in lemma (2.1) have k distinct solutions B_{j} $=\left(R_{1 j}, \ldots, R_{n j}\right) ; j=1, \ldots, k$.Suppose there are b_{j} points on the (k, n)-arc K, with solution B_{j} then:

Lemma 2.2 [6]

For a (k,n)-arc K in $\operatorname{PG}(2, q)$, the following equations are true :
where t_{i} is the total number of i-secants to K .

Lemma 2.3 [10]

If K is a complete $(\mathrm{k}, \mathrm{n})-\operatorname{arc}$ in $\operatorname{PG}(2, q)$, then :
where $S_{i}=S_{i}(Q)$ denote the number of $i-$ secants to K through a point Q of $\mathrm{PG}(2, q) \backslash K$.
3. Non-existence of coplete (k,n)-arcs in $\operatorname{PG}(2, q)$ Suppose $[X]$ denote the smallest positive integer less than or equal to X,
and $\theta(m)=\frac{\left(q^{m+1}-1\right)}{(q-1)}, \alpha=\theta(1)-n, \beta=\theta(1)-n^{2}, \gamma=\left(n^{2}-n\right) \theta(2)$. then we have the following theorem:

Theorem 3.1

In $\operatorname{PG}(2, \mathrm{q})$, a complete (k, n)-arc, with $n \leq k \leq \bar{n}, \quad n \neq q+1$ dose not exist, where $\bar{n}=\left[\left(\beta+\sqrt{\beta^{2}+4 \alpha \gamma}\right) / 2 \alpha\right]$.

Proof:

when $n \leq k \leq \bar{n}$ equations (2.1) and (2.2) of lemma (2.1) become

$$
\begin{array}{r}
R_{1}+R_{2}+R_{3}+R_{4} \ldots+\quad R_{n}=\theta(1) \ldots \\
R_{2}+2 R_{3}+3 R_{4} \ldots+(n-1) R_{n}=k-1 . \tag{3.2}
\end{array}
$$

Let $m=[(k-1) /(n-1)]$, so the largest value of R_{n} can accure is m.
Assume that $r_{n-i}\left(s_{1}, s_{2}, \ldots, s_{i}\right)=\left[(k-1)-\sum_{l=1}^{i}(n-l) s_{l}\right] /[n-(i+1)]$ where

$$
\begin{aligned}
& i=1,2, \ldots, n-2, s_{1}=0,1, \ldots, m \text { and } s_{j}=0,1,2, \ldots,\left.r_{(n+1)-j}\left(s_{1}, s_{2}, \ldots, s_{j-1}\right)\right|_{s_{1}=0, s_{2}=0, \ldots, s_{j-1}=0} \\
& j=2,3, \ldots, n-2
\end{aligned}
$$

Suppose that
$\left.r_{(n+1)-j}\left(s_{1}, s_{2}, \ldots, s_{j-1}\right)\right|_{s_{1}=0, s_{2}=0, \ldots, s_{j-1}=0}$ denoted by $r_{(n+1)-j}(\tilde{0})$ where $j=2,3, \ldots, n-2$.

It is clearly that m is positive for $k \geq n$. Now, suppose that $\psi\left(j, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{1}, s_{2}\right), \ldots, r_{2}\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)\right)$ denote the number of points of $\operatorname{PG}(2, q)$ of type $\left(j, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{2}\right), \ldots, r_{2}\left(s_{n-2}\right)\right)$ denote the number of points of $\operatorname{PG}(2, q)$ of type $\left(j, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{1}, s_{2}\right), \ldots, r_{2}\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)\right)$.

According to equations (2.3) of lemma (2.2) we have

$$
\begin{equation*}
\sum_{\xi=0}^{m} \xi\left[\sum_{s_{1}=0}^{m} \sum_{s_{2}=0}^{r_{n-1}(\widetilde{\sigma})} \ldots \sum_{s_{n-2}=0}^{r_{2}(\widetilde{\sigma})} \psi\left(j, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{1}, s_{2}\right), \ldots, r_{2}\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)\right)\right]=n t_{n} . \tag{3.3}
\end{equation*}
$$

where t_{n} is the total number of n-secants of (k, n)-arc in $\operatorname{PG}(2, q)$, with $n \leq k \leq \bar{n}$.
Since $m>0$ for $k \geq n$ we obtain the expression

$$
\begin{equation*}
m\left[\sum_{\xi=0}^{m} \sum_{s_{1}=0}^{m} \sum_{s_{2}=0}^{r_{n-1}(\tilde{O})} \ldots \sum_{s_{n-2}=0}^{r_{1}(\tilde{O})} \psi\left(\xi, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{1}, s_{2}\right), \ldots, r_{2}\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)\right)\right] . \tag{3.4}
\end{equation*}
$$

is bigger than the expression

$$
\begin{equation*}
\sum_{\xi=0}^{m} \xi\left[\sum_{s_{1}=0}^{m} \sum_{s_{2}=0}^{r_{n-1}(\widetilde{\rho})} \ldots \sum_{s_{n-2}=0}^{r_{r}(\tilde{\sigma})} \psi\left(j, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{1}, s_{2}\right), \ldots, r_{2}\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)\right)\right] \ldots \ldots \tag{3.5}
\end{equation*}
$$

but by using the equation (2.4) of lemma (2.2) we have

$$
\begin{equation*}
m\left[\sum_{\xi=0}^{m} \sum_{s_{1}=0}^{m} \sum_{s_{2}=0}^{r_{n-1}(\tilde{\rho})} \ldots \sum_{s_{n-2}=0}^{r_{2}(\tilde{\sigma})} \psi\left(\xi, r_{n-1}\left(s_{1}\right), r_{n-2}\left(s_{1}, s_{2}\right), \ldots, r_{2}\left(s_{1}, s_{2}, \ldots, s_{n-2}\right)\right)\right]=m k . \tag{3.6}
\end{equation*}
$$

This implies $m k>n t_{2}$ or $t_{n}<m k / n$.
Furthermore, $t_{n}<\frac{k(k-1)}{n(n-1)} \ldots . .$. .(3.7) since $m=\left[\frac{k-1}{n-1}\right] \leq \frac{k-1}{n-1}$.

On the other hand, if the (k, n)-arc is complete for $n \leq k \leq \bar{n}$, then lemma (2.3) predicated that $(q+1-n) t_{n} \geq \theta(2)-k$ or $t_{n} \geq \frac{\theta(2)-k}{q+1-n} \ldots$.(3.8)
Finally, the solution of the two inequalities (3.7) and (3.8) gives the smallest possible value of k for which a (k, n)-arc can be complete which is
$\bar{n}=\left[\frac{\beta+\sqrt{\beta^{2}+4 \alpha \gamma}}{2 \alpha}\right]$.
4. Non-existence of a complete (k, n)-arcs in Small planes

In this subsection we give two examples of non-existence of a complete (k, n)-arcs in small planes and comparable the results with the theorem (3.1) in this paper.

Example 4.1.

In projective plane of order two "PG(2,2)", a smallest complete (k,2)-arc
accures when $k=4$,this means there is no complete ($k, 2$)-arc for $2 \leq k \leq 3$ which is exactly the same interval produced by theorem (3.1) .

Example 4.2.

The smallest value of k for which a $(k, 4)$-arc is complete in projective plane of order five " $\operatorname{PG}(2,5)$ " is $k=13$,which represented by the following set of points $\{(1,0,0),(0,1,0)$, $(0,0,1),(1,0,1),(1,1,1),(1,2,4),(1,4,4)$, $(1,4,2),(1,3,3),(1,2,0),(0,1,2),(1,0,4)$, $(1,4,1)\}$,so there is no complete ($\mathrm{k}, 4$)-arc in $\operatorname{PG}(2,5)$ for $4 \leq k \leq 12$, which is also the same interval produced by theorem (3.1) .

In general, if $t_{q}^{*}(n)$ denote the largest value of k produces according to theorem (3.1), for which a (k,n)-arc dose not complete in projective plane of order q " $\operatorname{PG}(2, \mathrm{q})$ " and $k \geq n$, then we have the following useful table:

q	2	3	4	5	7	8	9	11	13	16	17	19	23
$t_{q}^{*}(2)$	3	3	3	4	4	4	5	5	5	6	6	6	7
$t_{q}^{*}(3)$		6	6	7	8	8	8	9	10	11	11	11	12
$t_{q}^{*}(4)$			11	11	12	12	12	13	14	15	16	17	18
$t_{q}^{*}(5)$				17	16	17	17	18	19	20	21	22	24
$t_{q}^{*}(6)$					23	22	23	23	24	26	26	28	30
$t_{q}^{*}(7)$					56	30	29	29	30	32	32	33	36
$t_{q}^{*}(8)$						72	38	37	37	38	39	40	42
$t_{q}^{*}(9)$							90	46	45	45	46	47	49
$t_{a}^{*}(10)$								132	54	53	53	54	56

If $t_{q}(n)$ denote the exact largest value of k for which a (k, n)-arc dose not complete in projective plane of order q " $\mathrm{PG}(2, \mathrm{q})$ ", then the following table give the exact value of $t_{q}(n)$ for some value of q and n , we can see the references [1], [2], [3],[5], ,[7] , [8], [9] and [10] for these results :

q	2	3	4	5	7	8	9	11	13	16	17	19	23
$t_{a}(2)$	3	3	5	5	5	5	5	6	7	8	9	9	9
$t_{a}(3)$	6	6	6	8	8	10	11	13	14				
$t_{a}(4)$		12	11	12									

References:

Abdul-Hussain,M.A., Classification of $(k, 4)$-arcs in the Projective Plane of order five'", M.Sc. Thesis, (University of Basrah; Iraq, 1997).

Abood.H.M., "Classification of (k,4)-arcs in $\operatorname{PG}(2,3), k \geq 4$ "; J.Basrah research , Vol.B ,Part $1,1997$.

Aziz .S.M., "On Lower Bound for Complete (k,n)arcs in $\operatorname{PG}(2, q) "$ M.Sc. Thesis, (University of Mosul; Iraq, 2000).

Barlotti A., "Some Topics in Finite Geometrical Stractures', (University of North Carolina, Italy,1965) .

Hamilton,N., "Maximal Arcs in Finite Projective Planes and Associated Structures in Projective

Spaces ${ }^{\prime} ;$ Ph.D.Thesis, (University of Western
Australia Australia, 1995) .
Hirschfield,J.W.P., "Projective Geometries Over Finite Fields'’,Oxford University Press.

Oxford,(1979) .
J., "Classification of (k,3)-arcs and .Mohammed,M
(k,4)-arcs in Projective Plane Over Galois Field
M.Sc.Thesis, (University of ،"

Mosul;Iraq,1988).
Raymond Hill, "Some Problems conserning (k,n)1982 arcs in Finite Projective Planes", Singer,J., "A theory in Finite Projective Geometry and some applications to Number theory'",Trans.Amer.Math.Soc. 43,(1938),

377-385.
Yasin,A.L., "Cubic Arcs in the Projective Plane of D.ph.Thesis, (University of order eight", Sussex,England,1986).

