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Abstract :
Traffic accident data is considered as an efficient tool to identify the degree of hazard at
different locations of highway system. An accurate estimation of underlying true traffic
accident rate may lead to efficient and economic safety improvement program. Accident data
can be considered as random variables that have Poisson or non-Poisson distributions. A
regular variation of accident data may reveal to the appropriateness of the Binomial
distribution. A procedure to estimate underlying true accident rate as well as optimum time-
period of accident counts for Poisson process is available while it is not for non-Poisson
process. This paper proposes a new procedure to estimate the upper & lower limits of
underlying accident rates depending on the observed accident rate of accident data having
Binomial distribution according to different confidence degrees. The procedure includes
testing data for randomness and the appropriate probability distribution that fits the data.The
optimum time-period of traffic accident data provides a relatively precise estimation of
underlying rate of accidents and minimizes cost of data collection as well as the social-
economic losses associated in traffic accidents. A time-period beyond five years shows a
relatively small decrease in the proportional uncertainty of the estimated underlying rates.
Hence, a time-period of five years is sufficient for the purpose of estimation in case of
binomial distributed traffic accident data. The developed procedure is a statistically reliable
for purposes of programs identification of hazardous locations that may depend on the true
underlying rates rather than the observed rates.
Keywords\ Traffic accident data, Binomial distribution, underlying rates, observed rates,
time-period
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Introduction:

Traffic accident represents a worldwide socio-economic problem. A loss of more than 2% of Gross
Domestic Product (GDP) for most of countries in the world is only one aspect of that problem.
Hence, many efforts are warranted to study the consequences and causalities of traffic accidents.
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Identification of hazardous locations is a basic element in the highway-safety improvement system.
For identifying hazardous locations, almost all agencies of highway safety rely principally on traffic
accident data [10]. Hence, traffic accident data is considered as the corner block of traffic accident
studies.Many studies depend on estimating the observed rates to identify the hazardous spots or
sections of highways. Also, highway safety improvement safety programs stated a priority and
economical feasibility according to the observed rates. There are two limits of underlying true rates
embedded in the random occurrence of traffic accidents. Depending on these limits, different
decision may be arisen to identify the most hazardous spot or section than that relied on observed
rate. Traffic accidents are considered as rare and random events. In consequence, Traffic accidents
data represent random variables with a certain probability distribution. Mainly, three probability
distributions are supposed to represent the random occurrence of traffic accidents; Poisson
distribution, Binomial, and negative Binomial distributions [4]. A procedure to estimate the
underlying true accident rates due to Poisson process is available while it is not for non-Poisson
process [5].For non Poisson distributions, the five years recommended, that was found suitable to
estimate a precise underlying rates in case of Poisson, may be used until a similar procedure is
developed [6]. This paper proposes a procedure to estimate the underlying true rates for traffic
accident data having a Binomial distribution. Further, a guide is proposed for the time-period
sufficient to introduce a relatively precise estimation and minimize the data collection as well as the
social-economic losses.

Traffic Accident Count Data:
Thorough studies were accomplished about traffic accident occurrence. Arranged brief conclusions
of these studies can be stated as follows:

. Statistical analysis is necessary to study accident count data due to its stochastic nature of
occurrence [7].

. In general, a random process governs occurrence of traffic accident [5]. However, Runs test
of randomness may be used to ensure randomness before any statistical analysis.

. In many situations related to highway safety, the accident data have a distribution. Analyst
should examine accident data for the goodness of fit of the expected theoretical distribution [10].

. In some situation, a Poisson process governs traffic accident counts. Too regular or too

irregular variation may reveal for doubting the validity of fitting accident count data to a Poisson
distribution [8].

. Accident count data may be examined for the Poisson assumption. A statistical test based
on a combinatorial analysis, and the chi-square test may be used for that purpose [8]. If the accident
data are Poisson distributed, the expected value of the variance- to- mean ratio is unity. However, if
the variance-to-mean ratio lies outside the confidence limits that justify analyzing data according to
Poisson, another distribution may be tried.

Underlying Rates of Poisson Distributed Accident Data
A procedure was developed to estimate the Underlying True Accident Rates (UTAR). The
following steps summarize the developed procedure [6]:

1. The exact distribution of the sample mean (i =>'x;j/n) is governed by:
P (x=c/n) = (€™ (nm) °)/c; ---—---- (1)
Where:

¢ = Y Xxj (X1, X2, X3... Xn, Observed accidents in n years)

X = observed accident rate.
m = the underlying true accident rate  corresponding to the mean of the Poisson
distribution.
The relation between the cumulative sum of the Poisson distribution and the function Q (% /v )is
given by : _
Q (7 | v) = 2™ (M)) fjy -=-mmmm- )
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Where Q (;* | v) = 1- P (4" | v)
m=y°/2
c=v/2
P (* Iv) is the probability integral of ¥ with v degree of freedom (i.e. the cumulative
+* distribution)

2. The confidence limits for the underlying true accident rate are given by:
My =% %2 (0 | v=2C)/N ~=mmmmmmmmav ©)

_y 2 _
my=" %" (1- a | v=2c+2)/n--------- 4)

Thatism <m=>m;

With level of confidence > (1- 2 o)

3. Developed graphs can be used to estimate the confidence limits for the underlying true
accident rates (UTAR) (m) for various values of the observed value rate x. The developed graphs
are matching with the confidence parabolas illustrated by Kendall & Stuart (1979) according to an
equation for the 95 percent confidence intervals for the mean of Poisson distribution as follows [1]:

A= {X-l— 1.92 - 3.84x N 3.6;9 }__ (5)

n n n

For an illustrated example of nine accidents observed in three years, the lower and upper 95% and
90% confidence limits due to Nicholson approach [4.5], are (1.35 and 5.7). This range is
approximately similar to the range (1.58 and 5.7) obtained using equation (5) developed by Kendall
& Stuart [1].

Derivation of Underlying Rates of Binomial Distributed Accident Data.
In the case of binomial distributed data, there is no general method to estimate the population mean.

The sample proportion B is used to construct a confidence interval estimate of the population

proportion P, then the task is similar to use x to estimate u [3]. The population proportion P is
considered as the mean of zero-one binomial population [3]. The following steps illustrate the steps
of derivation of underlying rates, which is dependent to the mean of zero-one binomial population
of traffic accident data:
1.Consider the following situation: Xy, Xp, -------- Xn accidents have been observed in n years.
2.Data are examined for randomness and the suitable distribution tested to fit the data is the
binomial distribution.
3.x is random variable can be considered as :
x ~ b (nP)
Where:

P= the mean of zero-one binomial population, (symbol is the capital letter of P).
and the probability function is as follows [2]:

n

f(x)=CP¥A-P)"X ———~(x=0,1.2,.....1)

The Likelihood Function L of a binomial distribution can be stated as:
n

L(le) :g(:PX(l_P)n X____(X:0!112y ---- yn)___(G)

Where C is constant
4. The confidence intervals for P can be determined according two equations stated as follows [1]:

E{[aml_j }_E{az InZL} -
op 0P

where E is the expected values of the specified terms.
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and ¥ = dlnL {E{(alm‘] H ----------------- (8)
oP oP

Where:
¥ is a standardized normal variate corresponding to 1.96 for (1-0,)=0.95.

5.The first derivative of the Likelihood Function is :
olnL n X
= ——P
oP  P@-P)\n

Hence, X" is the minimum variance bound (MVB) estimator of P with variance P(-P)
n n

Letizp
n

Where:
p = the mean of zero-one binomial sample, (symbol is the smaller letter of p).

Then:

olnL  n

o P(1-P

6.The second derivative of the likelihood function is:

o’IlnL _ -n +n(p-P)(1-2P)

oP? PL-P) P2(1-PY

and the expected value E of the second derivative can be stated as follows:

0% InL n
-E = mmmeemmmeemeeeeeeeeee 10
oP’ P(1-P) (10)

By substitution equations (9) and (10) into (7) and (8) and solving the equation (8) for P, an
equation can be stated to estimate mean of zero-one binomial population as follows:

2 2
P: 1 2 p+_\II ilP\/p(l_p).F \II __________________ (11)
1+—lP 2n

n

Fortunately, equation (11) shows the same trend of confidence limits of a binomial parameters and
the probability of obtaining proportion (p) illustrated by Kendall & Stuart (1979) [1] and also
similar to the graphs adapted by Mills (1977) for 95% confidence interval of population proportion

(P).
7.Taking p= Lad
n

Where:
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w.=observed traffic accident rate for a binomial distributed traffic accident data and,

Hu, = Pl,z (n) """""""" (12)
Where:
wu,,= underlying rates for a binomial distributed traffic accident data

P, ,= the upper & lower limit of the mean of zero-one binomial population.

By substituting values of p and P, in equation (11), the underlying rates (upper and lower
limits) of binomial distributed traffic accident data can be estimated by the following equation:

1 P2 i P2
u, = | f, + — ¥ S 13
Hu,, 1”,2/”{% > \/u( n} 4} (13)

By no mean, equation (13) can show the variation of underlying rates with time-period. This is
because there is a sensitive relation between p and n. As time-period increase, a smaller individual
probability is resulted [9]. Hence, any relation of time-period with underlying rate may be examined
in relation with the observed rate considering a specified value of p.

Time-Period of Accident Counts

A compatible procedure to predict the accident potential of a location is necessary to avoid much
social-economic losses. Authorities of safety in the world used different time-period of traffic
accident counts ranged between one to five years. A shorter time-period and relatively precise
estimation of accident rate are both necessary for such procedure. Nicholson reported that the
longer the time-period the greater the absolute width of confidence interval (A) and proportional
uncertainty (A/ (c/n)) of estimated underlying rates of Poisson distributed data [6]. According to the
charts developed by Nicholson, a time-period of five years seemed sufficient for accurate estimation
of the UTAR at different sites [6]. The following equation extracted from equation (11),
demonstrates the relation between the absolute length of confidence interval of the zero-one
binomial population mean and time-period of data:

AP = 2¥ {\/p(l—p)+‘1’2 } (14)

2 2
1+ v n 4n
n
Equation (14) reveals that a longer time-period assures a short absolute width of confidence interval
for estimating the zero-one binomial population mean for a specified zero-one sample mean. In
addition, the proportional uncertainty in the estimation of zero-one population mean can be

explained by the following equation:

AP _ 2 {\/(1—p)+ 2 } a5)

2 2.2

Py +‘L np 4n°p

n

In order to study the variation of estimation of underlying rates with time-period, proportional

uncertainty is statistically more reliable measure than the absolute width of confidence interval. In

reference to equation (12), the following relation shows that, the proportional uncertainty of
underlying rates equals to that of the zero-one population mean:

Apu,, n*AP _ AP

Ho n*p p
Hence, equation (15) may explain the variation of the proportional uncertainty of the estimated
zero-one population mean and the proportional certainty of the underlying rate, with time-period for
any specified (p). Figure (1) demonstrates that variation and shows that as time-period increase, the
proportional uncertainty of both estimations, decreases yielding to a relatively constant variation at
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long time- period of observation. The ranges of p (0.1, 0.2, 0.3, 0.4, 0.5) shown in Figure (1) reveal
to the same conclusion for ranges of (0.9, 0.8, 0.7, 0.6, 0.5) respectively.

Figure (1) shows that the knees of the curves in occur at time-period of approximately five years.
This may assure that a time-period of five years is an optimum time-period of accident counts for
the purpose of the estimation of zero-one population mean as well the underlying rates for Binomial
distributed data.

This finding gives a further support to the conclusion drawn by Nicholson [6] that five years is
sufficient for the estimation of Poisson distributed accident data. A study of negative-Binomial
distributed accident data is appreciated to make a universal vision about the optimum time-period of
accident counts.

Illustrative Example of Accident Data Analysis
The procedure of analysis and estimation of underlying rates for traffic accident counts that are
expected to be binomial distributed is illustrated for counts of 10 observations at a specified
hazardous section of a highway in the following sequence:
7,4,53,7,6,6,8,5,6

Step 1: Test for randomness
In reference to the accident counts of the example, a median of (6), is used as specified value to
obtain (4) runs as follows [2,9]:

[+/---1+00,+/-0/
The range of critical limits using 0.05 degree of significance is 2 to 10. Hence, one cannot reject the
null hypothesis and may conclude that the sequence is very probably random.
Step 2: Check for Binomial distribution
Although the accident counts in this example seem to be regular and the ratio of mean to variance is
less than unity (0.353), it is intended to check the appropriateness of binomial distribution.
Goodness-of- fit test reveals that one cannot reject the binomial assumption for that set of data ()
tabulated = 14.67, % calculated =2.02).
The test of chi-square was found suitable to test the data for Poisson distribution [8]. As an
alternative to the goodness-of-test and for simplicity, it is intended to accomplish chi-square test in
the case of binomial distributed data. If the test shows that one may reject the appropriateness of
Poisson distribution and the ratio of variance to mean is less than one, it can be concluded that the
binomial distribution is the appropriate one. For the case of 57 accidents in 10 years, 90% confident
that the variance-to- mean ratio will lies outside the critical range (0.369 to 1.880) due to the y? test.
Hence, one may reject the use of the Poisson distribution for analyzing the accident data for that
that location and conclude that the binomial distribution is the appropriate alternative one.
Step 3: Estimation of underlying rates
The observed rate of accident data in the example is 5.7 accidents per year. The time-period is more
than 5 years. Hence, a precise estimation may result from such set of data. According to the
equation (13), the underlying rates for the accident data are 2.89 to 8.12. These rates are
approximated to 3 to 8 accidents per year. These limits give a confident vision about the true
occurrence traffic accidents at the studied location. Any safety improvement at that location should
be studied according the same analysis to ensure the effectiveness of the used countermeasure. If
there is no overlap between the confidence intervals of before and after underlying rates, one may
assure that the countermeasure is effective.

Conclusions

Estimation of underlying rates of binomial distributed traffic accident data is developed according
to a mathematical statistics. The paper proposes an equation to estimate the upper and lower limits
of underlying rates due to different degrees of confidence. Estimation of underlying rates is based
on finding confidence limits of zero-one population mean of Binomial distribution. The paper
demonstrates a typical procedure for estimation of underlying rates of accident counts that is
expected to be a binomial distributed.
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The optimum time-period of traffic accident data that maximizes the precision of estimation and
minimizes cost of data collection as well as the social-economic losses associated in traffic
accidents. In view of the research, it can be concluded that:

. The proportional uncertainty of underlying rates equals to that of the zero-one population
mean.

. As time-period of accident counts (n) increases, the proportional uncertainty of the

estimated; zero-one population mean AP and underlying rates e for any specified p are
p Ho

decreased yielding to a relatively constant variation at long time- period of observation.

. The knees of the curves of proportional uncertainty occur at time-period of approximately

five years. This may assure that a time-period a time-period of five years is an optimum time-

period of accident counts for the purpose of the estimation of zero-one population mean as well as

the underlying rates for Binomial distributed data.

This paper introduces a procedure of a statistical reliability for the authorities of road safety to

identify the true underlying rates rather than the observed rates. The decision makers may make use

of that procedure to identify the significance of a proposed countermeasure for safety

improvements. No overlap between before and after confidence interval of underlying rates may

assure the effectiveness of safety improvement. A procedure for estimation of underlying rates of

accident counts that may have a trend of negative-binomial distribution is highly appreciated.
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