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Abstract : 
Traffic accident data is considered as an efficient tool to identify the degree of hazard at 

different locations of highway system. An accurate estimation of underlying true traffic 

accident rate may lead to efficient and economic safety improvement program. Accident data 

can be considered as random variables that have Poisson or non-Poisson distributions. A 

regular variation of accident data may reveal to the appropriateness of the Binomial 

distribution. A procedure to estimate underlying true accident rate as well as optimum time-

period of accident counts for Poisson process is available while it is not for non-Poisson 

process.This paper proposes a new procedure to estimate the upper & lower limits of 

underlying accident rates depending on the observed accident rate of accident data having 

Binomial distribution according to different confidence degrees. The procedure includes 

testing data for randomness and the appropriate probability distribution that fits the data.The 

optimum time-period of traffic accident data provides a relatively precise estimation of 

underlying rate of accidents and minimizes cost of data collection as well as the social-

economic losses associated in traffic accidents. A time-period beyond five years shows a 

relatively small decrease in the proportional uncertainty of the estimated  underlying rates. 

Hence, a time-period of five years is sufficient for the purpose of estimation in case of 

binomial distributed traffic accident data. The developed procedure is a statistically reliable 

for purposes of programs identification of hazardous locations that may depend on the true 

underlying rates rather than the observed rates.  

Keywords\ Traffic accident data, Binomial distribution, underlying rates, observed rates, 

time-period 

 الخلاصة :
ػلً هىاقغ هختلفت هي هٌظىهت الوشوس. إى التخويُي تؼذ بُاًاث الحىادث الوشوسَت أداة كفىءة فٍ تشخُص دسجت الخطىسة 

الذقُق للوؼذل الأساسٍ الحقُقٍ لحىادث الوشوس َقىد إلً بشاهج تحسُي راث كفاءة وهشدود اقتصيادٌ.َوني اػتبياس بُاًياث 

صَيغ رٌ الحىادث ػلً أًها هتغُشاث ػشىائُت تتىصع بتىصَغ بىاسىى أو غُشٍ. إى التغُيش الوٌيتظن َفظيٍ إليً أى َنيىى التى

الحذَي هى الأًسب. تتىافش طشَقت لتخويُي الوؼيذل الأساسيٍ فيٍ  اليت تىصَيغ َىاسيىى  بٌُويا هيٍ غُيش هتيىافشة للتىصَؼياث 

الأخشي.  َقذم  البحيج طشَقيت جذَيذة لتخويُي  يذود أػليً وأدًيً لوؼيذل الحيىادث الأساسيٍ اػتويادا ػليً الوؼيذل الوؼياَي 

حقت هختلفت. تتضوي الطشَقت فحيص البُاًياث فُويا َخيص الؼشيىائُت و التىصَيغ  لبُاًاث تتىصع بتىصَغ رٌ الحذَي وبذسجاث

الوٌاسب.َىفش الضهي الأهخل لفتشة بُاًاث الحىادث الوشوسَت تخوُي دقُق ًسبُا لوؼذل تلك البُاًاث وكلفت أقل لجوغ البُاًياث 

فتيشة الوسياوٌ لخوين سيٌىاث فييكخش َظهيش وكزلك َقلل فاقذ الاجتواػٍ والاقتصادٌ الزٌ َتؼلق بتلك الحيىادث. إى صهيي ال

ًقص قلُل ًسبُا فٍ ًسبت ػذم التيكذ فٍ تخويُي الوؼيذلاث الأساسيُت للحيىادث.  ًسيتٌتج هيي رليك  أى صهيي الفتيشة الوسياوٌ 

لخويين سييٌىاث هييى الوخييالٍ والوٌاسييب لغييش  التخوييُي فييٍ  الييت بُاًيياث الحييىادث راث التىصَييغ رٌ الحييذَي. إى الطشَقييت 

ث هصييذاقُت إ صييائُا لأغييشا  بييشاهج تشييخُص الوٌيياطق الخطييشة لنىًهييا تؼتوييذ ػلييً الوؼييذلاث الحقُقُييت الوسييتحذحت را

 الأساسُت بذلا هي الوؼذل الوؼاَي لبُاًاث  ىادث الوشوس. 

.  

 

Introduction: 
Traffic accident represents a worldwide socio-economic problem. A loss of more than 2% of Gross 

Domestic Product (GDP) for most of countries in the world is only one aspect of that problem. 

Hence, many efforts are warranted to study the consequences and causalities of traffic accidents. 
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Identification of hazardous locations is a basic element in the highway-safety improvement system. 

For identifying hazardous locations, almost all agencies of highway safety rely principally on traffic 

accident data [10]. Hence, traffic accident data is considered as the corner block of traffic accident 

studies.Many studies depend on estimating the observed rates to identify the hazardous spots or 

sections of highways. Also, highway safety improvement safety programs stated a priority and 

economical feasibility according to the observed rates. There are two limits of underlying true rates 

embedded in the random occurrence of traffic accidents. Depending on these limits, different 

decision may be arisen to identify the most hazardous spot or section than that relied on observed 

rate. Traffic accidents are considered as rare and random events. In consequence, Traffic accidents 

data represent random variables with a certain probability distribution. Mainly, three probability 

distributions are supposed to represent the random occurrence of traffic accidents; Poisson 

distribution, Binomial, and negative Binomial distributions [4]. A procedure to estimate the 

underlying true accident rates due to Poisson process is available while it is not for non-Poisson 

process [5].For non Poisson distributions, the five years recommended, that was found suitable to 

estimate  a precise underlying rates in case of Poisson, may be used until a similar procedure is 

developed [6].  This paper proposes a procedure to estimate the underlying true rates for traffic 

accident data having a Binomial distribution. Further, a guide is proposed for the time-period 

sufficient to introduce a relatively precise estimation and minimize the data collection as well as the 

social-economic losses.   

 

Traffic Accident Count Data: 
Thorough studies were accomplished about traffic accident occurrence. Arranged brief conclusions 

of these studies can be stated as follows: 

 Statistical analysis is necessary to study accident count data due to its stochastic nature of 

occurrence [7]. 

 In general, a random process governs occurrence of traffic accident [5]. However, Runs test 

of randomness may be used to ensure randomness before any statistical analysis.  

 In many situations related to highway safety, the accident data have a distribution. Analyst 

should examine accident data for the goodness of fit of   the expected theoretical distribution [10].    

 In some situation, a Poisson process governs traffic accident counts. Too regular or too 

irregular variation may reveal for doubting the validity of fitting accident count data to a Poisson 

distribution [8]. 

  Accident count data may be examined for the Poisson assumption. A statistical test based 

on a combinatorial analysis, and the chi-square test may be used for that purpose [8]. If the accident 

data are Poisson distributed, the expected value of the variance- to- mean ratio is unity. However, if 

the variance-to-mean ratio lies outside the confidence limits that justify analyzing data according to 

Poisson, another distribution may be tried.  

 

Underlying Rates of Poisson Distributed Accident Data 
A procedure was developed to estimate the Underlying True Accident Rates (UTAR). The 

following steps summarize the developed procedure [6]: 

1. The exact distribution of the sample mean ( x =∑xi /n) is governed by: 

P ( x = c/n) = (e
-nm

 (nm)
 c
)/c! -------- (1) 

Where: 

c = ∑xi (x1, x2, x3… xn, observed accidents in n years) 

            x  = observed accident rate. 

m = the underlying true accident rate  corresponding to the mean of the Poisson   

       distribution. 

The relation between the cumulative sum of the Poisson distribution and the function Q (χ
2
 /ν )is 

given by : 

            Q (χ
2
 | ν) = ∑(e

-m 
(m)

j
)
 
/j! ---------- (2) 
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            Where Q (χ
2
 | ν) = 1- P (χ

2
 | ν) 

            m = χ
2
 /2 

            c = ν /2 

 P (χ
2
 /ν) is the probability integral of  χ

2
 with ν degree of freedom (i.e. the cumulative  

             χ
2
 distribution) 

2. The confidence limits for the underlying true accident rate are given by: 

ml = ½ χ
2
 (α | ν=2c)/n ---------------(3) 

m2= ½ χ
2
 (1- α | ν=2c+2)/n--------- (4) 

That is ml ≤ m ≥ m2 

 With level of confidence ≥ (1- 2 α) 

3. Developed graphs can be used to estimate the confidence limits for the underlying true 

accident rates (UTAR) (m) for various values of the observed value rate x. The developed graphs 

are matching with the confidence parabolas illustrated by Kendall & Stuart (1979) according to an 

equation for the 95 percent confidence intervals for the mean of Poisson distribution as follows [1]: 

               

       5
2

n

3.69

n

x3.84

n

1.92
xλ 


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For an illustrated example of nine accidents observed in three years, the lower and upper 95% and 

90% confidence limits due to Nicholson approach [4.5], are (1.35 and 5.7). This range is 

approximately similar to the range (1.58 and 5.7) obtained using equation (5) developed by Kendall 

& Stuart [1].  

 

Derivation of Underlying Rates of Binomial Distributed Accident Data. 
In the case of binomial distributed data, there is no general method to estimate the population mean. 

The sample proportion p  is used to construct a confidence interval estimate of the population 

proportion P, then the task is similar to use  x  to estimate μ  [3]. The population proportion  P is 

considered as the mean of zero-one binomial population [3]. The following steps illustrate the steps 

of derivation of underlying rates, which is dependent to the mean of zero-one binomial population 

of traffic accident data: 

1.Consider the following situation: x1, x2, -------- xn accidents have been observed in n years. 

2.Data are examined for randomness and the suitable distribution tested to fit the data is the 

binomial distribution. 

3.x is random  variable can be considered as : 

 P,nb~x  

Where: 

             P= the mean of zero-one binomial  population,  (symbol is the capital letter of P). 

and the probability function is as follows [2]: 

    n).,0,1,2,....(x
xn

P1xP
n

x
Cxf 


  

The Likelihood Function  L of a binomial distribution can be stated as: 

L(x│P)    6n).,0,1,2,....(x
xn

P1xP
n

x
C 


  

Where C is constant 

4. The confidence intervals for P can be determined according two equations  stated as follows [1]: 
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where E is the expected values of the specified terms. 
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  Where: 

  Ψ  is a standardized normal variate corresponding to 1.96 for (1-α)=0.95. 

 

5.The first derivative of the Likelihood Function is : 
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Hence, 
n

x
is the minimum variance bound (MVB) estimator of P with variance 

 
n

1 PP 
 

 Let p
n

x
  

Where:  

          p = the mean of zero-one binomial sample, (symbol is the smaller letter of p). 

Then: 

 
 Pp

P1P

n

P

Lnl








 ------------------------ (9) 

 

6.The second derivative of the likelihood function is: 
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and the expected value E of the second derivative can be stated as follows: 
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By substitution equations (9) and (10) into (7) and (8) and solving the equation (8) for P , an 

equation can be stated to estimate mean of zero-one binomial population as follows: 
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Fortunately, equation (11) shows the same trend of confidence limits of a binomial parameters and 

the probability of obtaining proportion (p) illustrated by Kendall & Stuart (1979) [1] and also 

similar to the graphs adapted by Mills (1977) for 95% confidence interval of population proportion 

(P).   

7.Taking   
n

μ
p   

Where: 
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  μ =observed traffic accident rate for a binomial distributed traffic accident data and,    

 n 1,2u Pμ
1,2

    --------------- (12) 

Where: 

          
1,2

uμ = underlying rates for a binomial distributed traffic accident data 

1,2P = the upper & lower limit of the mean of zero-one binomial population. 

         By substituting values of p  and 1,2P  in equation (11), the underlying rates (upper and lower 

limits) of binomial distributed traffic accident data can be estimated by the following equation: 
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By no mean, equation (13) can show the variation of underlying rates with time-period. This is 

because there is a sensitive relation between p and n. As time-period increase, a smaller individual 

probability is resulted [9]. Hence, any relation of time-period with underlying rate may be examined 

in relation with the observed rate considering a specified value of p.  

 

Time-Period of Accident Counts 
A compatible procedure to predict the accident potential of a location is necessary to avoid much 

social-economic losses. Authorities of safety in the world used different time-period of traffic 

accident counts ranged between one to five years.  A shorter time-period and relatively precise 

estimation of accident rate are both necessary for such procedure. Nicholson reported that the 

longer the time-period the greater the absolute width of confidence interval (Δ ) and proportional 

uncertainty (Δ / (c/n)) of estimated underlying rates of Poisson distributed data [6]. According to the 

charts developed by Nicholson, a time-period of five years seemed sufficient for accurate estimation 

of the UTAR at different sites [6]. The following equation extracted from equation (11), 

demonstrates the relation between the absolute length of confidence interval of the zero-one 

binomial population mean and time-period of data: 
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Equation (14) reveals that a longer time-period assures a short absolute width of confidence interval 

for estimating the zero-one binomial population mean for a specified zero-one sample mean. In 

addition, the proportional uncertainty in the estimation of zero-one population mean can be 

explained by the following equation: 
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In order to study the variation of estimation of underlying rates with time-period, proportional 

uncertainty is statistically more reliable measure than the absolute width of confidence interval.  In 

reference to equation (12), the following relation shows that, the proportional uncertainty of 

underlying rates equals to that of the zero-one population mean: 

 
p

P

p*n

P*nμ

μ

1,2
u 








 

Hence, equation (15) may explain the variation of the proportional uncertainty of the estimated 

zero-one population mean and the proportional certainty of the underlying rate, with time-period for 

any specified (p). Figure (1) demonstrates that variation and shows that as time-period increase, the 

proportional uncertainty of both estimations, decreases yielding to a relatively constant variation at 
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long time- period of observation. The ranges of p (0.1, 0.2, 0.3, 0.4, 0.5) shown in Figure (1) reveal 

to the same conclusion for ranges of (0.9, 0.8, 0.7, 0.6, 0.5) respectively.     

Figure (1) shows that the knees of the curves in occur at time-period of approximately five years.  

This may assure that a time-period of five years is an optimum time-period of accident counts for 

the purpose of the estimation of zero-one population mean as well the underlying rates for Binomial 

distributed data.  

This finding gives a further support to the conclusion drawn by Nicholson [6] that five years is 

sufficient for the estimation of Poisson distributed accident data. A study of negative-Binomial 

distributed accident data is appreciated to make a universal vision about the optimum time-period of 

accident counts.    

 

Illustrative Example of Accident Data Analysis 
The procedure of analysis and estimation of underlying rates for traffic accident counts that are 

expected to be binomial distributed is illustrated for counts of 10 observations at a specified  

hazardous section of a highway  in the following sequence: 

                       7 , 4, 5, 3, 7, 6, 6, 8, 5, 6 

Step 1: Test for randomness 

In reference to the accident counts of the example, a median of (6), is used as specified value to 

obtain (4) runs as follows [2,9]: 

                / + / -, -, - / +, 0, 0, + / -, 0 / 

The range of critical limits using 0.05 degree of significance is 2 to 10. Hence, one cannot reject the 

null hypothesis and may conclude that the sequence is very probably random. 

Step 2: Check for Binomial distribution  

Although the accident counts in this example seem to be regular and the ratio of mean to variance is 

less than unity (0.353), it is intended to check the appropriateness of binomial distribution.   

Goodness-of- fit test reveals that one cannot reject the binomial assumption for that set of data (χ
2
 

tabulated = 14.67, χ
2
 calculated =2.02).  

The test of chi-square was found suitable to test the data for Poisson distribution [8]. As an 

alternative to the goodness-of-test and for simplicity, it is intended to accomplish chi-square test in 

the case of binomial distributed data. If the test shows that one may reject the appropriateness of 

Poisson distribution and the ratio of variance to mean is less than one, it can be concluded that the 

binomial distribution is the appropriate one. For the case of 57 accidents in 10 years, 90% confident 

that the variance-to- mean ratio will lies outside the critical range (0.369 to 1.880) due to the χ
2
 test. 

Hence, one may reject the use of the Poisson distribution for analyzing the accident data for that 

that location and conclude that the binomial distribution is the appropriate alternative one. 

Step 3: Estimation of underlying rates 

The observed rate of accident data in the example is 5.7 accidents per year. The time-period is more 

than 5 years. Hence, a precise estimation may result from such set of data. According to the 

equation (13), the underlying rates for the accident data are 2.89 to 8.12. These rates are 

approximated to 3 to 8 accidents per year.  These limits give a confident vision about the true 

occurrence traffic accidents at the studied location.  Any safety improvement at that location should 

be studied according the same analysis to ensure the effectiveness of the used countermeasure. If 

there is no overlap between the confidence intervals of before and after underlying rates, one may 

assure that the countermeasure is effective.  

 

Conclusions 
Estimation of underlying rates of binomial distributed traffic accident data is developed according 

to a mathematical statistics.  The paper proposes an equation to estimate the upper and lower limits 

of underlying rates due to different degrees of confidence. Estimation of underlying rates is based 

on finding confidence limits of zero-one population mean of Binomial distribution. The paper 

demonstrates a typical procedure for estimation of underlying rates of accident counts that is 

expected to be a binomial distributed.  
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The optimum time-period of traffic accident data that maximizes the precision of estimation and 

minimizes cost of data collection as well as the social-economic losses associated in traffic 

accidents.  In view of the research, it can be concluded that: 

 The proportional uncertainty of underlying rates equals to that of the zero-one population 

mean.  

 As time-period of accident counts (n) increases, the  proportional uncertainty of the 

estimated;  zero-one population mean 
p

P
 and underlying rates 





μ

μ 1,2u

 for any specified p are 

decreased yielding to a relatively constant variation at long time- period of observation. 

 The knees of the curves of proportional uncertainty occur at time-period of approximately 

five years.  This may assure that a time-period a time-period of five years is an optimum time-

period of accident counts for the purpose of the estimation of zero-one population mean as well as 

the underlying rates for Binomial distributed data.  

This paper introduces a procedure of a statistical reliability for the authorities of road safety to 

identify the true underlying rates rather than the observed rates. The decision makers may make use 

of that procedure to identify the significance of a proposed countermeasure for safety 

improvements. No overlap between before and after confidence interval of underlying rates may 

assure the effectiveness of safety improvement. A procedure for estimation of underlying rates of 

accident counts that may have a trend of negative-binomial distribution is highly appreciated.  
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