Almost semi -strongly θ -continuous function on Bitopological spaces

Yiezi K.M. Al-Talkany and zahir Dobeas AL-nafie Dept.of Math. College of education, Babylon university

Abstract:

[Abd El-monsef and Hanafy] and [Takashi Noiri , 1994] studied several of almost semi strongly θ -continuous in topological space , in this paper it is shown that results similar to these in bitopological space.

الخلاصة:

هذا البحث يتناول موضوع almost semi strongly θ-continuous function في الفضاءات ثنائية التبولوجي بعض النظريات والخصائص لهذه الدالمةفي الفضاء التبولوجي تمت دراستها في هذا الفضاء

1- Introduction

[noiri and Yang , 1984] introduced the concept of almost strongly θ -continuous function in topological space (X,t_1) and [Abd El-Monsef , 1990] gave the concept of semi strongly θ -continuous function .[Takashi Noiri , Esref Hatir and Saziye Yuksel , 1994] introduced the notion of almost semi-strongly θ -continuity which is generalized of both almost strongly θ -continuous function and semi-strongly θ -continuous function. the concept of semi strongly θ -continuous function and almost-semi strongly θ -continuous function all these concepts will be define in this paper and also we shall investigate all these concepts and relation ship between them but in bitopological space (X,t_1,t_2) .

let (X,t_1,t_2) and let A be a subset of X the *closure* and the *interior* of A are relative to t_i , i=1or2 is denoted by $cl_{ti}(A)$ and $int_{ti}(A)$ respectively. A subset A of X is said to be regular-open set(resp. regular closed set) if $int_{ti}(cl_{ti}(A))=A$ (resp. $cl_{ti}(int_{ti}(A))=A$) and it is said to be semi open set (resp. semi closed set) if $A \subseteq cl_{ti}(int_{ti}(A))$ (resp. $int_{ti}(cl_{ti}(A))\subseteq A$). the family of all semi open set of X is denoted by SO(X). the family of all semi-open set of X containing apoint X is denoted by SO(X,X), appoint X of X is said to be in the θ -semi-clouser of X if $X \subseteq cl_{ti}(X)$ for each $X \subseteq cl_{ti}(X)$ and it is denoted by $X \subseteq cl_{ti}(X)$, $X \subseteq cl_{ti}(X)$ and it is denoted by $X \subseteq cl_{ti}(X)$, $X \subseteq cl_{ti}(X)$ and the complement of $X \subseteq cl_{ti}(X)$ semi closed set is called $X \subseteq cl_{ti}(X)$ open set .

 θ -semi interior of A is defined by the union of all θ -semi open sets contained in A and it is denoted by θ -sint_{ti}(A) and for all these definitions i=1or2.

Definition(1-1): A subset A of a bitopological space (X,t_1,t_2) is said o be:

- 1- semi regular set if it is both semi open set and semi closed set.
- 2-θ-g-closed set if $cl_{\theta}(A) \subseteq U$, U is t_i -open set ,i=1or2.

Definition(1-2): The bitopological space (X,t_1,t_2) is said to be :

- 1- extremely disconnected if the closure of every ti-open set of X is open set in X.
- 2- S*-regular space if for each $U \in SO(X)$ and each $x \in X$ there exist regular closed set F such that $x \in F \subset U$.
- 3- $(\theta$ -s)Hausdorff space if for each $x,y \in X$ there exist $U,V \in SO(X)$ such that $x \in U$, $y \in V$ and $cl_{ti}(U) \cap cl_{ti}(V) = \emptyset$, i=1 or 2.
- 4- almost regular space if for any regular closed set F of X and $x \in X$ -F there exist ti-open set U,V of X such that $x \in U$.F $\cap V = \emptyset$ and $U \cap V = \emptyset$.

Remark(1-3): If the bitopological space (X,t_1,t_2) is regular space then a subset A of X is θ -g-closed set if and only if A is g-closed set.

The following diagram give us the relation between these sets:

Jornal of Kerbala University, Vol. 5 No.4 Scientific .Decembar 2007

 θ - closed set $\longrightarrow \longrightarrow \theta$ -generalized closed set $\downarrow \qquad \qquad \downarrow$ Regular closed set \longrightarrow closed set \longrightarrow generalized closed set \downarrow Semi closed set \longrightarrow semi generalized closed set \downarrow Generalized semi closed set

Definition(1-4): A function f from a bitopological space (X,t_1,t_2) into a bitopological space (Y,p_1,p_2) is said to be

1- weakly continuous function if for each $x \in X$ and each pi-open set V of f(x) there exist ti-open se U containing x in X such that $f(U) \subseteq cl_{ti}(V)$, i=1or2.

2-generalized –continuous function if for $x \in X$ each $x \in X$ and each pi-generalized -open set V of f(x) there exist ti-open set U containing x in X such that $f(U) \subseteq V$, i=1or2.

3- θ -generalized continuous function if each $x \in X$ and each pi-open set V of f(x) there exist ti- θ -generalized-open set U containing x in X such that $f(U) \subseteq V$, i=1 or 2.

Definition(1-5): A function $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ is said to be

strongly θ -continuous (resp. almost strongly θ -continuous, almost continuous,

 $\theta\text{-}continuous$) if for each $x\!\in\! X$ and each pi-open set V in Y containing f(x) there exist ti-open set U in X containing x such that $f(cl_{ti}(U))\subseteq V$ [resp. $f(cl_{ti}(U))\subseteq int_{pi}(cl_{pi}(V))$, $f(U)\subseteq int_{pi}(cl_{pi}(V)))$, $f(U)\subseteq int_{pi}(cl_{pi}(V)))$, $f(U)\subseteq int_{pi}(cl_{pi}(V))$, $f(U)\subseteq int_{pi}(cl_{pi}(V))$, $f(U)\subseteq int_{pi}(cl_{pi}(V))$, $f(U)\subseteq int_{pi}(cl_{pi}(V))$, $f(U)\subseteq int_{pi}(cl_{pi}(V))$

Theorem(1-6): let $f: (X,t_1,t_2) \to (Y,p_1,p_2)$ be onto strongly θ -continuous and let $g:(Y,p_1,p_2) \to (Z,w_1,w_2)$ be θ -continuous such that Z is extremely disconnected then gof is is strongly θ -continuous.

Proof: let $x \in X$ and V is wi-open set in Z containing y = f(x), since g is θ -continuous there exist piopen set U in Y containing y such that $g(cl_{pi}(U)) \subseteq cl_{wi}(V)$. now since f is strongly θ -continuous there exist ti-open set H containing x such that $f(cl_{ti}(H)) \subseteq U$ then $g(f(cl_{ti}(H)) \subseteq g(U) \subseteq g(cl_{pi}(U)) \subseteq cl_{wi}(V) = V$ from that gof is strongly θ -continuous.

2- the main results

Theorem(2-1): : let $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be onto θ -continuous and let $g: (Y,p_1,p_2) \rightarrow (Z,w_1,w_2)$ be strongly θ -continuous then gof is strongly θ -continuous.

Proof: let $x \in X$ and V is wi-open set in Z containing y = f(x), since g is strongly θ -continuous there exist pi-open set U in Y containing y such that $g(cl_{pi}(U)) \subseteq V$. now since f is θ -continuous there exist ti-open set H containing x such that $f(cl_{ti}(H)) \subseteq cl_{pi}(U)$ then $g(f(cl_{ti}(H)) \subseteq g(cl_{pi}(U)) \subseteq V)$ from that we get gof is strongly θ -continuous.

Theorem (2-2): let $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be onto θ -continuous and let $g:(Y,p_1,p_2) \rightarrow (Z,w_1,w_2)$ be θ -continuous then gof is is θ -continuous.

Proof: let $x \in X$ and V be wi-open set in Z containing y=f(x), since g is θ -continuous there exist piopen set U in Y containing y such that $g(cl_{pi}(U)) \subseteq cl_{wi}(V)$. now since f is θ -continuous there exists ti-open set H containing x such that $f(cl_{ti}(H)) \subseteq cl_{pi}(U)$ then $g(f(cl_{ti}(H)) \subseteq g(cl_{pi}(U)) \subseteq cl_{wi}(V))$ from that gof is θ -continuous.

Definition(2-3): A function $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ is said to be *semi-strongly \theta-continuous*(*resp. almost quasi-continuous*) if for each $x \in X$ and each pi-open set V in Y containing f(x) there exist ti-semi open set U in X containing X such that $f(cl_{ti}(U)) \subseteq V$ (resp. $f(U) \subseteq int_{pi}(cl_{pi}(V))$), i=1 or i=1 or

Jornal of Kerbala University, Vol. 5 No.4 Scientific .Decembar 2007

Definition(2-4): A function $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ is said to be almost semi-strongly θ -continuous if for each $x \in X$ and each pi-open set V in Y containing f(x) there exist ti-semi open set Y in Y containing Y such that $f(cl_{ti}(U)) \subseteq int_{pi}(cl_{pi}(V))$, i=1 or Y.

For easy we show the diagram:

θ-generalized continuous→generalized continuous→generalized semi continuous

Strongly θ -continuous \rightarrow almost strongly θ -continuous \rightarrow almost continuous

Semi-strongly θ-continuous—almost-semi-strongly θ-continuous—almost-quasi

continuous

Remark(2-5): Non of implication in the diagram is revisable as we show in the following examples:

Example(2-6): let $X=\{1,2,3,4\}$ and $t_1=\{X,\{3\},\{1,2\},\{1,2,3\}\}$, $t_2=\{X,\{1\}\}$ and $Y=\{k,l,m\}$ $p_1=\{Y,\{m\},\{1\},\{m,l\}\}$, $p_2=\{Y,\{l\}\}$, define $f:(X,t_1,t_2)\to (Y,p_1,p_2)$ as follow f(1)=f(2)=k, f(3)=f(4)=m then f is almost semi strongly θ -continuous but it is not almost strongly θ -continuous.

Example(2-7): let X be the set of real number and t be the co-countable topology for X, let $Y=\{a,b\}$ and $p=\{Y,\{a\}\}$ define $f:(X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ as follow f(x)=a if x is rational number and f(x)=b if x is irrational number then f is almost strongly θ -continuous but it is not semi strongly θ -continuous.

Example(2-8): let $X=\{a,b,c,d\}$ and $t_1=\{X,\varnothing\}$, $t_2=\{X,\{c\},\{a,b\},\{a,b,c\}\}$ and $Y=\{x,y,z\}$ $p_1=\{Y,\{x\},\{y\},\{x,y\}\}=p_2$, define $f:(X,t_1,t_2)\to (Y,p_1,p_2)$ as follow f(a)=f(b)=y, f(c)=f(d)=z then f is almost continuous but it is not almost semi strongly θ -continuous.

Theorem(2-9): if $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ is weakly continuous function and Y is almost regular space then f is almost strongly θ -continuous.

Proof: let $x \in X$ and is pi-regular open set containing f(x).there exists pi-regular open set Wof Y such that $f(x) \in W \subset cl_{pi}(W) \subset V$.since f is weakly continuous function , there exist ti-open set G containing x such that $f(G) \subset cl_{pi}(W) \subset V$. there for f is almost continuous .now let $U = f^{-1}(W)$ then U is ti-open set containing x and

 $cl_{ti}(U) \subset f^{-1}(cl_{pi}(W)) \subset V$ and then f is almost strongly θ -continuous.

Theorem(2-10): let (X,t_1,t_2) and (Y,p_1,p_2) are two bitopological spaces and

f: $(X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be a function then the following are equivalent:

- 1- f is almost semi strongly θ -continuous
- 2- $f^{1}(W)$ is θ -semi open set in X for every pi-regular open set W of Y.
- 3- $f^{-1}(G)$ is θ -semi closed set in X for every pi-regular closed set G of Y.
- 4- for each $x \in X$ and regular open set W containing f(x) there exist pi-semi open set U in X containing x such that $f(cl_{ti}(U)) \subseteq W$.

Proof: (1) \rightarrow (2), let W is pi- regular open set, since f is almost semi strongly θ -continuous then there exist ti-semi open set U in X such that $f(cl_{ti}(U))\subseteq W$ then f is semi strongly θ -continuous and then $f^{-1}(W)$ is θ -semi open set in X.

- $(2)\rightarrow(3)$, let G be pi-regular closed set in Y then Y-G is regular open set and by (2)
- $f^{-1}(Y-G)=X-f^{-1}(G)$ is θ -semi open set in X and then $f^{-1}(G)$ is θ -semi closed set in X.
- (3) \rightarrow (4), let $x \in X$ and W is regular open set containing f(x) then Y-W is regular closed set and by (3) $f^1(Y-W) = X-f^1(W)$ is θ -semi closed set and $f^1(W)$ is θ -semi open set containing x. let $f^1(W)=U$ then $f(U)\subseteq W$ and there for $f(cl_{ti}(U))\subseteq W$.
- $(4)\rightarrow(1)$, by (4) and since every regular open set is pi-open set the result exist.

Theorem(2-11): let $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be a function then the following properties hold:

- 1- if X is extremely disconnected and f is almost semi strongly θ -continuous then f is almost strongly θ -continuous.
- 2- if Y is semi regular space and f is almost semi strongly θ -continuous then f is semi strongly θ -continuous.

Jornal of Kerbala University, Vol. 5 No.4 Scientific .Decembar 2007

3- if X is s*-regular space and f is almost quasi continuous then f is almost semi strongly θ -continuous.

Proof: (1), since f is almost semi strongly θ -continuous then for each $x \in X$ and each pi-open set C containing f(x) there exist ti-semi open set U containing x such that $f(cl_{ti}(U) \subseteq int_{pi}(cl_{pi}(C)))$.

- (2) . the proof exist by the condition of the space Y is semi regular space where V is semi open and semi closed.
- (3) since f is almost quasi continuous then foe each $x \in X$ and pi-open set V containing f(x) there exist ti-open set U containing x such that $f(U) \subseteq \inf_{pi}(cl_{pi}(V))$, since X is S*regular space $f(cl_{ti}(U)) \subseteq \inf_{pi}(cl_{pi}(V))$ and then f is almost semi strongly θ -continuous.

Theorem(2-12): If $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ is semi strongly θ -continuous and $g: (Y,p_1,p_2) \rightarrow (Z,w_1,w_2)$ is almost-continuous function then gof is almost-semi strongly θ -continuous.

Proof: the proof is omitted

Theorem(2-13): if f: $(X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ is onto semi strongly θ -continuous and g: $(Y,p_1,p_2) \rightarrow (Z,w_1,w_2)$ is continuous then gof is semi strongly θ -continuous.

Proof: let V be wi-open set and $y \in Y$, $g(y) \in V$ then there exist pi-open set U in Y containing y such that $g(U) \subseteq V$, since f is semi strongly θ -continuous and U is pi-open set in Y and y=f(x), there exist semi open set H such hat $f(cl_{ti}(H)) \subseteq U$ then $g(f(cl_{ti}(H)) \subseteq g(U) \subseteq V)$, i=1 or 2 hence gof is semi strongly θ -continuous.

Theorem(2-14): let $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be an almost θ -continuous such that X is extremely disconnected and Y is semi regular space then f is generalized continuous function.

Proof: let V is pi-open set , since Y is semi regular space then V is semi open set and semi closed set and since f is almost θ -continuous there exist ti-open set U in X such that f $\inf_{i}(\operatorname{cl}_{pi}(V))\subseteq\operatorname{cl}_{ti}(U)=U$ and also $\inf_{pi}(\operatorname{cl}_{pi}(V))=V$ since X is extremely disconnected and V is regular closed set then $f^1(V)$ is ti-closed set in X and then f is generalized closed set.

Theorem(2-15): let $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be an almost continuous such that Y is semi regular space then f is generalized continuous function.

Proof: let V is pi-close set in Y since Y is semi regular space then V is both semi open and semi closed set then $V = int_{pi}(cl_{pi}(V))$ and since f is almost continuous then $f^{-1}(V)$ is ti-closed set in X and then it is generalized closed set .

Theorem(2-16): let $f: (X,t_1,t_2) \rightarrow (Y,p_1,p_2)$ be an semi strongly θ -continuous such that X is semi regular space and extremely disconnected space then f is generalized continuous function.

Proof: let V is pi-closed set in Y and $x \in X$ such that $f(x) \in V$ then Y-V is pi-open set such that $f(x) \notin Y$ -V since f is semi strongly θ -continuous and X is regular space—there exist ti-open set U such that $f(U) \subseteq \operatorname{int}_{ti}(\operatorname{cl}_{ti}(Y - V)) = Y$ - $\operatorname{int}_{ti}(\operatorname{cl}_{ti}(V))$ then

 $f^{1}(Y-V)=X-f^{1}(V)$ is ti-open set and then $f^{1}(V)$ is ti-closed set therefore $f^{1}(V)$ is generalized closed set

Theorem(2-17):a mapping $f:(X,t_1,t_2) \to (Y,p_1,p_2)$ is generalized continuous function such that X is regular space if and only if f is θ -generalized continuous .Proof: since X is regular space then V is pi-closed set in Y if and only if it is θ -generalized closed set then the result exist.

References:

- 1- M.E. Abd El-monsef and I.M. Hanafy "semi strongly θ-continuous functions" Indian Appl.Math. 21 (1990), 721-728.
- 2-Singal M., Singal A. "almost continuous mappings", Yokohama Math.J., 16(1968), 63-73.
- 3-T.Noiri and Sin Min Kang " on almost strongly θ -continuous function", Indian J.Pure.Appl. Mth.15 (1984) , 1-8.
- 4- Takashi Noiri and Esref Hatir and Saziye Yuksel "almost semi-strongly θ -continuous functions" Turky ,Appl.Math.26(1994) , 51-55.