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Abstract:

In this paper we improve the accuracy of the numerical approximation used to solve the two
dimensions unsteady Schrddinger equation. Subasi in (Subasi, 2002) present three different finite
difference schemes to solve this equation. In this paper, we use compact finite difference scheme to get
fourth order solution. The computational accuracy is demonstrated by comparing the results of these
schemes. The results appeared that the compact fourth order finite difference scheme is more accurate
than the schemes of Subasi.
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1.INTRODUCTION

The Schrodinger equation is one of the fundamental equations in mathematical physics. It occurs in a
broad range of applications as quantum dynamics calculations (Ixaru 1997, Hajj 1985) and has received
considerable attention because of its usefulness as a model that describes several important physical
and chemical phenomena (Subasi, 2002).

The two dimensions unsteady Schrddinger equation with the potential v(x, y) is written by

2 2
ial//+ay/+al//+v(x,y)w:0 0<x,y<l 0O<Zt<T (1)
With the initial conditions
w(x,¥.0) =yo(X,y) )
and the boundary condition
w(0,y,1) =w,(y1), w(x,0,t) =y;(x1), @)
w(Ly.t) =y, (x1), y(xLt) =ys(x1) .
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Various numerical finite difference schemes have been proposed to solve Schrddinger equation
problems, in the late 1960’s Gldberg,Schey and Schwartz (Goldberg et al , 1967) considered the
solution of the time dependent Schriédinger equation by using explicit and implicit scheme.

Recently, due to the difficulty by introducing a dissipative term in the conventional explicit schemes,
Chen,Lee,and Shen (Chan et al , 1986) obtaining a class of new explicit two- level finite difference
schemes which are

Conditionally stable. The three-level explicit scheme is derived in (Dai 1989, Dai 1992) for solving
Schrédinger equation with constant coefficient and with a variable coefficient which are un
conditionally stable. Subasi solve the Schrodinger equation in three methods. The first is the fully
explicit finite difference method, the second is the Noye-Hayman implicit finite difference method and
he applied the Paceman-Rachford ADI method (Subasi, 2002), all these method are second accurate in
space and time, the second and third scheme is un conditionally stable (Mitchell et al 1980, Noye et al
1993).

2. Fourth order compact scheme

Let us consider a rectangular domain Q =[0,1] x [0,1]. We discretize Q with uniform mesh sizes
Ax and Ay respectively in the x and y coordinate directions. denote N, =1/Ax and Ny =1/Ay be the
numbers of uniform intervals along the x and y coordinate directions, respectively. The mesh point are
(X, y;) with x; =iAx and y; = JAy,0<i<Nx, 0< j<Ny.
In the sequel, we may also use the index pair (i, j) to represent the mesh point (x;,y;). In this paper we
take Ax=Ay=h .and N, =N, =N . Also, we discretize the time interval with uniform mesh sizesAt.

Let Ny =T/ At the numbers of uniform intervals along the time T.
The derivatives in Eq.(1) can be approximated as

n r n

o’y 2 h? 84'//_ 4
=0 —— +0O(h

o], [0 e ), O

2 " T 2 A4 " )
a‘f = 5;V/—h—a—"4’ +0(h*)

Y R P IYE
oyl Aty ] )
W s -2 +0(At 5
ot |, {”’/ 2atzl (A1) (5)

The finite difference formula described in this section and to be applied at interior grid points in the
solution domain using the standard second order central difference operators (Mitchell et al, 1980) and
the approximation given in equation (4) and (5).

Substituting the the standard second order central difference operators and equation (4) and (5) in
equation (1) yields the following finite difference equation:

. 2 2
|5y yij + S + Sy + Vi —7i) =0 (6)
where the truncation error is

+0(h*,(A1)?) (7

2 2 A4 2 A4 n
Ty = i£81/2/+h—al/:+h—al/4j
2 ot 12 ox* 12 oy

ij
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We have include both O(hz) and O(4t) term in Eq.(7) because we wish to approximate all of
them in order to construct an O(h4) and O(At)*scheme.

To obtain compact approximation toO(hZ)and O(4t) terms in EQ.(7), we simply take the
appropriate derivatives of Eq.(1),
Oy _ Py vy Py oy %

= %
ox* oxZot  oxloy?  ox®? Oox x 0 ox?
641//:_i o’y oy _V821// Zay/av 2% @
oy* oylot oy®ox®  oy? oy oy ay
Oy __ &y %y v
ot>  atox? otey? ot
Substituting Egs.(8) into Eq.(7) yields

i 3 3 2 3 4 2 m
iﬂ_@t//_&t//_&l//) h GW 61//_\/81//_281//@
2 otox?  otoy? 12" oot oxPoy? o ox ox
T = X" oy § x“oy X +0(h*, At%)
o%v .%oty d%w _owov o
vt _(_' o a2 V2 2o Vo)
i ox? oy2ot  oyZox oy oy oy "yt

(9)
Note that all term on the right hand side of Eqg.(9) have compact O(hz, At, Athz) approximations at
noted ijn, and the approximation of these terms has the following forms:

6_‘//n _5 n l//|+lj y/in—lj
X | 2h
a_!//n_5 _l//i?+1_l//irj1—1
o |; Vi 2h
a“ L e
8y =86,y = h* [4‘//; =20yl Wiy Wi H ) AW W Vi +'//in+1,-+1],
8 l// ' 5 [ n+1 2 n+1 n+l n 2 n n ]
ox2et th At h2 Viaj — ¥y tVWigj — (l//i—lj = 2Yii +‘//i+1j) )
ij
63l// ! n n+ n+ n+ n n n
oy2et = 0,5y = At h2 [Wu—ll 2pi" i — (i - 2p + ‘//ij+1)] ,
ij

(10)

We can easily get an O(h*,(At)?) method by substituting difference expressions for the

O(h2, At, Athz) term in EQ.(9) and including these in the finite difference approximation (6). The
resulting higher-order scheme is as follows
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[ n+1 2 n+1 1 n+1 [ 2 n+l _ [ n [ 1 h2 2
+—(Jy +62 +—V; o = i ¥ ——=——V; Oy +62
At'// ( )V/ 5 ij¥ij S( X y)V/ Tt —Vij (125 > 12 )( )V/u
1 4 h? 5., h? 2
_EvijWij 6 5 o '//U (5xW|J§ Vij +5yW|J u) ‘//u (5 +5 )V

(11)
Equation (11) is called a high order compact difference scheme of order 4 (HOC-4).

3. Numerical Results

We now consider two test problems to compare the accuracy of fourth order compact scheme
with other schemes.
Test problem 1(see[4]): The exact solution of this test problem is w(x,y,t) = x%y%" . The

initial and boundary conditions are directly taken from this solution. The potential

v(x,y) = 1—%—% . The test problem were set the same as this in [4].
y

X

The results, obtained for Wi? at T =1.0, computed for h =0.1, s =0.005 using the fully explicit

method, the Noye-Hayman (5, 5) implicit method, the Paceman-Rachford (3, 3) ADI method and the
new fourth order compact finite difference scheme, are listed in Table | and Table 1l for real and
imaginary  parts of  w(x,y,t) respectively. The same problem is solved with

valuesh = 0.1, s =0.007 and the results are given in Table 11l and Table IV.

TABLE I: The real part results for y(X, Y,1) with h=0.1, s=0.005 for test-1

Error
(1,5) (33) PR
X |y | exact Explicit (555 N-H | ADI HOC-4

0.1 0.1 ]|540E-05 | 3.08E-05 | 4.80E-05 6.50E-05 6.25E-10
0.2 | 0.2 | 8.64E-04 | 8.25E-06 | 9.70E-05 9.00E-05 5.80E-09
0.3]0.3 ]| 438E-03 | 1.19E-06 | 7.30E-05 3.70E-04 1.20E-08
04104 | 1.38E-02 | 1.59E-05 | 3.90E-04 9.70E-04 7.17E-09
0.5] 0.5 | 3.38E-02 | 6.52E-05 | 4.20E-04 2.70E-03 7.55E-09
06|06 | 7.00E-02 | 1.18E-04 | 1.70E-03 4.60E-03 2.36E-09
0.7]0.7|130E-01 |111E-04 | 2.60E-03 4.40E-03 6.02E-09
08|08 | 221E-01 | 5.81E-05 | 8.10E-04 3.60E-03 2.38E-08
0.9 0.9 | 3.54E-01 | 1.44E-05 | 7.00E-04 1.50E-03 1.72E-08
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TABLE II: The imaginary part results for (X, Y,1) with h=0.1, s=0.005 for

test-1
Error
(1,5 (3,3) P-R
X |y | exact Explicit (55 N-H | ADI HOC-4

0.1 01]|841E-05 |1.03E-05 | 1.30E-05 1.30E-05 1.98E-11
0.2 |02]|135E-03 |1.87E-06 | 3.10E-05 4.40E-05 4.58E-11
0.3 |0.3 | 6.82E-08 | 3.21E-06 | 1.10E-04 2.90E-04 1.50E-09
04|04 | 215E-02 | 1.22E-05 | 5.40E-04 8.00E-04 6.95E-09
05|05 |526E-02 | 3.49E-07 | 6.30E-05 1.60E-03 8.86E-09
06|06 |1.09E-01 |4.16E-05 | 4.40E-04 4.00E-03 9.17E-09
0.7 0.7 | 2.02E-01 | 6.96E-05 | 5.40E-04 6.20E-03 1.22E-08
0.8 | 0.8 | 3.45E-01 | 5.44E-05 | 5.20E-04 4.90E-03 2.54E-08
0.9 |09 | 552E-01 | 1.77E-05 | 4.10E-04 2.20E-03 2.49E-08

TABLE I11: The real part results for (X, Y,1) with h=0.1, s=0.007 for test-1

Error
(1,5) (3,3) P-R
X |y | exact Explicit (5,5) N-H ADI HOC-4

0.1 0.1 ]| 540E-05 | 1.36E-01 5.90E-02 1.10E-02 5.55E-10
0.2 | 0.2 | 8.64E-04 | 5.41E-02 5.40E-03 4.30E-03 5.75E-09
0.3 | 0.3 | 4.38E-03 | 2.04E-02 7.60E-04 7.90E-04 1.23E-08
04|04 | 138E-02 | 2.11E-02 9.30E-04 7.00E-04 | 7.65E-09
05|05 | 3.38E-02 | 3.79E-02 4.50E-04 2.70E-03 6.86E-09
0.6 | 0.6 | 7.00E-02 | 5.44E-02 5.70E-03 4.60E-03 1.75E-09
0.7 0.7 | 1.30E-01 | 5.36E-02 6.60E-03 4.20E-03 | 4.67E-09
0.8 |0.8 | 2.21E-01 | 3.38E-02 6.20E-03 3.70E-03 1.74E-08
0.9 0.9 | 3.54E-01 | 1.02E-02 3.90E-03 1.50E-03 1.29E-08

TABLE IV: The imaginary part results for (X, y,1) with h=0.1, s=0.007 for

test-1
Error
(1,5) (3.3) PR
X |y | exact Explicit (5,5) N-H ADI HOC-4

01|01 ]| 841E-05 | 7.41E-02 | 2.30E-03 5.40E-03 | 3.51E-11
0.2 | 0.2 | 1.35E-03 | 4.06E-02 | 3.50E-04 1.80E-03 | 9.67E-11
0.3 |03 | 6.82E-03 | 2.61E-02 | 2.60E-04 1.90E-04 | 1.45E-09
04104 | 215E-02 | 2.44E-02 | 8.70E-03 7.20E-04 | 6.51E-09
0.5]0.5 | 5.26E-02 | 2.31E-02 | 6.90E-03 1.50E-03 | 9.53E-09
0.6 |06 | 1.09E-01 | 1.60E-02 | 4.40E-04 4.10E-03 | 9.36E-09
0.7 | 0.7 | 2.02E-01 | 5.95E-03 | 5.90E-04 6.40E-03 | 1.13E-08
0.8 | 0.8 | 3.45E-01 | 2.06E-04 | 5.20E-03 5.00E-03 | 1.89E-08
09|09 | 552E-01 | 7.69E-04 | 4.50E-03 2.20E-03 | 2.02E-08
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Test problem 2: The exact solution of this test problem is y(x,y,t) =e™*Y . The initial and

boundary conditions are directly taken from this solution. The potential v(x,y)=-1.

For this test problem the results, obtained for z//i? at T =1.0, computed for h=0.1, s =0.005

using the both the fully explicit method, the Noye-Hayman (5, 5) implicit method, the Paceman-
Rachford (3, 3) ADI method and the new fourth order compact finite difference scheme are listed in
Table V and TableVI for real and imaginary parts of y(x,y,t) respectively The same problem is

solved with valuesh = 0.1, s = 0.007 and the results are given in Table VIl and Table VIII.

TABLE V: The real part results for (X, y,1) with h=0.1, s=0.005 for test-2

Error

(1,5) (33) PR
X |y | exact Explicit (5,5 N-H ADI HOC-4
0.1 0.1 | 6.60E-01 | 1.98E-03 6.36E-07 2.30E-05 8.62E-09
0.2 | 0.2 | 8.06E-01 | 6.98E-03 2.58E-06 7.21E-05 2.91E-08
0.3 ]0.3|984E-01 | 1.15E-02 4.68E-06 1.38E-04 2.13E-08
04|04 | 1202465 | 1.19E-02 6.12E-06 2.23E-04 9.76E-09
05| 05| 1468694 | 1.01E-02 7.09E-06 2.67E-04 7.18E-08
0.6 | 0.6 | 1.7938669 | 8.67E-03 7.52E-06 2.28E-04 8.24E-08
0.7 | 0.7 | 2.191034 | 3.72E-03 6.64E-06 1.64E-04 3.51E-08
0.8 | 0.8 | 2676135 | 2.29E-04 4.58E-06 1.18E-04 9.81E-09
0.9 | 0.9 | 3.2686387 | 7.39E-05 1.75E-06 5.12E-05 3.16E-08

TABLE VI: The imaginary results for (X, Y,1) with h=0.1, s=0.005 for

test-2

Error

(1,5) (3,3) P-R
X |y |exact Explicit (5,5) N-H ADI HOC-4
0.1]0.1|1.027775 | 3.11E-03 | 1.08E-06 6.61E-05 1.13E-08
0.2 | 0.2 | 1.2553272 | 1.36E-02 | 3.37E-06 2.26E-04 4.87E-08
0.3 0.3 | 15332601 | 3.17E-02 | 5.71E-06 4.27E-04 1.03E-07
04|04 | 18727281 | 4.84E-02 | 7.36E-06 5.92E-04 1.43E-07
0.5 | 0.5 | 2.2873553 | 4.65E-02 | 7.36E-06 6.43E-04 1.05E-07
0.6 | 0.6 | 2.7937821 | 2.51E-02 | 5.37E-06 5.86E-04 8.97E-08
0.7 | 0.7 | 3.4123331 | 5.36E-03 | 3.32E-06 4.16E-04 8.07E-08
0.8 0.8 | 4.1678331 | 1.32E-03 | 1.76E-06 2.44E-04 3.93E-08
0.9 | 0.9 | 5.0906029 | 1.04E-03 | 5.70E-07 9.47E-05 3.97E-08
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TABLE VII: The real part results for y (X, y,1) with h=0.1, s=0.007 for test-2

Error

(1,5 (33) P-R
X |y | exact Explicit (5,5) N-H ADI HOC-4
0.1 | 0.1 | 6.60E-01 3.04E-02 9.19E-07 2.30E-05 9.63E-09
0.2 | 0.2 | 8.06E-01 2.86E-01 3.69E-06 7.20E-05 2.85E-08
0.3 | 0.3 | 9.84E-01 9.37E-01 6.72E-06 1.38E-04 2.10E-08
0.4 | 0.4 | 1.202465 1.57356104 | 8.87E-06 2.22E-04 9.31E-09
0.5 0.5 | 1.468694 1.44039369 | 1.03E-05 2.66E-04 7.19E-08
0.6 | 0.6 | 1.7938669 | 6.18E-01 1.09E-05 2.28E-04 8.28E-08
0.7 | 0.7 | 2191034 1.74E-02 9.61E-06 1.64E-04 3.68E-08
0.8 | 0.8 | 2.676135 7.02E-02 6.56E-06 1.18E-04 5.11E-09
0.9 | 0.9 | 3.2686387 | 1.59E-02 2.47E-06 5.12E-05 3.12E-08

TABLE VIII: The imaginary part results for (X, y,1) with h=0.1, s=0.007 for

test-2

Error

(1,5) (3,3) P-R
X |y | exact Explicit (55)N-H | ADI HOC-4
0.1 0.1 1027775 | 1.8917665 1.27E-06 6.61E-05 1.23E-08
0.2 | 0.2 | 1.2553272 | 6.96802521 | 4.07E-06 2.26E-04 4.82E-08
0.3 | 0.3 | 1.5332601 | 13.1448211 | 7.10E-06 4.27E-04 1.03E-07
0.4 | 0.4 | 18727281 | 16.9793478 | 9.43E-06 5.93E-04 1.41E-07
0.5 | 0.5 | 2.2873553 | 15.7596525 | 9.72E-06 6.43E-04 1.06E-07
0.6 | 0.6 | 2.7937821 | 10.3494604 | 7.26E-06 5.86E-04 8.98E-08
0.7 | 0.7 | 3.4123331 | 4.64818651 | 4.53E-06 4.16E-04 8.22E-08
0.8 | 0.8 | 41678331 | 1.41092889 | 2.45E-06 2.44E-04 4.25E-08
0.9 | 0.9 | 5.0906029 | 2.59E-01 8.31E-07 9.47E-05 | 3.79E-08

The errors in the tables are all absolute errors between the numerical and exact solution. As can be
seen in the tables, the method developed by Subasi[4] achieves second order and much less accurate
than using the method of the fourth order for real and imaginary parts.

We note that for two test problem the error of the three methods described by Subasi[4] increases when
s decreases (5=0.007).

Also we note that the HOC-4 gives the best and highest accuracy, converges for any values of s.

4. Conclusions

In this paper, the fourth order compact finite difference schemes are derived to solve the two
dimensions unsteady Schrddinger equation subject to initial and boundary conditions. We use two
problems to test the accuracy of this method with others. The computational is simple and easy to
implement, the HOC-4 is presented, analyzed, and successfully applied in the approximation of
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Schrédinger equation . The linear system resulted from this scheme is solved iteratively by using the
Gauss-Seidel iterative method. We note that the fourth order scheme is much better and very high
accuracy of compare with the lower order existing schemes. The fourth order compact finite difference
schemes offers compromise between the computed accuracy of the solution and the cost of computing
the solution.
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