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ABSTRACT. In this paper, we study some direct results in simultaneous
approximation for a new sequence of linear positive operators M, (f(t);x) of

Szasz - Beta type operators. First, we establish the basic pointwise convergence
theorem and then proceed to discuss the Voronovaskaja-type asymptotic formula.
Finally, we obtain an error estimate in terms of modulus of continuity of the function
being approximated.
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1. INTRODUCTION

In [3] Gupta and others studied some direct results in simultaneous
approximation for the sequence:

Bn (f(£):X) = D Ani (¥) [ by () f ()t
k=0 0
—nx k
& N7 and by, g (1) = KD dey gtk
k! ’ r(n)r(k +1)
After that, Agrawal and Thamer [1] applied the technique of linear
combination introduced by May [4] and Rathore [5] for the sequence B, (f(t);X).

where X,t €[0,00), g, (X) =

Recently, Gupta and Lupas [2] studied some direct results for a sequence of mixed

Beta-Szasz type operator defined as
Ln(F(;%) = Dby 00 [ Ay O F () dt+ 1+~ £(0).
k=1 0

In this paper, we introduce a new sequence of linear positive operators
M, (f(t);x) of Szasz-Beta type operators to approximate a function f(x) belongs

to the space C,[0,00)={f eC[0,00):|f(t) <C(1+t)* forsome C >0,a >0}, as

follows:

(1) M (F(0:) = 3 Qe (09 [y (O F 1) dt +e7™(0),
k=1 0

We may also write the operator (1) as M, (f(t);X) = J W, (t,x) f (t)dt where
0

W, (t,X) = z Ank () by () + e ™5 (t), o(t) being the Dirac-delta function.
k=1

The space Ca[O,oo) is normed by ||f||C = sup |f(t)|(1 +1)7%.
“ 0<t<oo

Throughout this paper, we assume that C denotes a positive constant not
necessarily the same at all occurrence and [ 4] denotes the integer part of £.

2. PRELIMINARY RESULTS

For f e C[0,0) the Szasz operators is defined as

S, (f;x)= an,k (X) f(hj , Xe[0,0)and for meN 0 (the set of nonnegative
k=1 n
integers), the m-—th order moment of the Szaszoperators is defined as

0 k m
Hnm (X) = Z Onk (X)(H - X) .

k=0

LEMMA 2.1. [3] For me NO, the function g, ,(X) defined above, has the

following properties:
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(1) tno(X) =1, uy,(X) =0, and the recurrence relation is
Netp me1 (X) = X(/Ur'w,m (X) + Mgty my (X)) ,m=1;
(i1) U m(X) is a polynomial in X of degree at most [m/2];
(ifi)  For every X €[0,50), t () = O[n 1™1)/2])
From above lemma, we get
@ Yk =02 (1,00 - (-x0%Te ™)
k=1

=n?) {O(n—i)+0(n—5)} (forany s> 0)
=o(nh) (ifs=j).

For me N, the m—th order moment Tym(x) for the operators (1) is defined as:

Tom (0 = My (€=0™:) = 30 00 [ (D= 0™ dt + (30 ™e ™.
k=1 0

LEMMA 22. For the function T,n(X), we have Tno(x)zl,Tnl(x)zil,
, , 100 ==

2 2
nX~ +2nx+2Xx .
Tho(X) = and there holds the recurrence relation:

(n-1)(n-2)

B3)  (N=M=DTp g (¥) = XT7 i () + (X + DM+ X) T 1y (X)
+MX(X+2)T (X)), n>m+1.
Further, we have the following consequences of Ty, , (X) :
(1) Ty m(X) 1s a polynomial in X of degree exactly m;

(i)  Forevery x€[0,00),T, ,(X) = O(n—[(m+l)/2])‘

Proof: By direct computation, we have T,q(X)=1, Tnl(x)zi1 and
, , n_

2 2
nX~ +2nXx + 2X .
Tha(X) = i * . Next, we prove (3). For x=0 it clearly holds. For

(n=-D(n-2)

X € (0,0), we have

Tim (0= 28k (0 [ by s (D(E =)™ dt = (=)™ ™ =mT, 1y (%),
k=1 0

Using the relations Xqnk (X) = (K =nx) gy« (X) and
t(L+t)by () = (k= (n+1)t) by (1), we get:

XTi (%) = 2 (K =1X) G (3) [ By g O =X)™dt+ (=)™ ™ —mxT, 1 (x)
k=1 0

107



Ali J. Mohammad and Amal K. Hassan SIMULTANEOUS ...

= 3 bk (Ot + Db} O =X) ™ dt+ (1 + 1Ty (X) = ()™ e ™
k=1 0

+ (X + DT () = (X+ D) e ™ = mxT 1 (%)

By using the identity t(1+t)=(t— X)2 +(14+2X)(t = X)+ x(1+ X), we have

XTy () = D G (O[B4 (O (€ =0™ 2 dt+ (14250 D A e () [ B ey (D =)™ dt
k=1 0 k=1 0

X+ X) Y G OO [ By (O =)™ A+ (N 1Ty (X)
k=1 0

+ (L4 X) Ty (%) = MXTy g (0 — (=) e ™.
Integrating by parts, we get
XTom (X) = (M=M= Tp 511 () = (M+ X+ 2mX) Ty 1y (X) = MX(X +2) Ty i1 (X)

from which (3) is immediate.
From the values of T, 5(X) and Tj;(X), it is clear that the consequences (i) and (ii)

hold for m=0 and m=1. By using (3) and the induction on m the proof of
consequences (i) and (ii) follows, hence the details are omitted.
[

From the above lemma, we have
4) an,k (X)J.bn,k—l ®- X)2r dt = Thor— (—x)2r g ™
k=1 0
=0(n"")+0(n"®%) (forany s>0)
=0(n™") (ifs>r).

LEMMA 2.3. Let dand y be any two positive real numbers and [a,b] < (0,).
Then, for any s> 0, we have

jW“LUﬂdt =0(n%).
t-x[=6 Clab]
Making use of Schwarz inequality for integration and then for summation and (4), the
proof of the lemma easily follows.

LEMMA 2.4. [3] There exist polynomials Q; ; . (X) independent of n and k such
that
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- - d
X" D" (@n, () = >.n'(k=m)!Q; jr (X)qpn (X), where D=d—
20 jer X

i,j>

3. MAIN RESULTS

Firstly, we show that the derivative M r(,r)(f(t);x) is an approximation process for

fOx),r=1,2,....

Theorem 3.1. If reN,f €C_[0,0) for some « >0 and (" exists at a point
X € (0,), then
(5) lim M {7 (ft);x)= f O (x).

nN—o0

Further, if f(" exists and is continuous on (@a-n,b+n)c(0,0),n>0, then (5)
holds uniformly in [a,b].

Proof: By Taylor's expansion of f, we have

(l)

where, g(t,X) >0 as t —> X. Hence

t—x) +et,x)t-x)",

M (O (£ (t); x) = Z (X)jwm(t X)(t —x)' dt + jW“)(t X)e(t, x) (t - x)" dt
i=0 !
=1 +1,.
Now, using Lemma 2.2 we get that M, (t™; X) is a polynomial in X of degree exactly

m, for all m e N°. Further , we can write it as:
n—m-1)!n™ n—m-1) n™!
(n-m-Din" o (n-m-1)

(n—=1)! (n=1)!

6 M ("% = m(m—-1) x™ +O(n?).

Therefore,

(1) i i
|l_zf (x) Z( J( X)\~ JjW“)(t x)tidt

io " i
(r)(X)((n—r 1) ]_ f(r)( )((n 1) J_) f(r)(x) as N —> oo
r (n-1! (n-D!

Next, making use of Lemma 2.4 we have

Q0] & 2 ]
[HEN wz%’k(x)w—nxrjbn,k_l(t)|g(t,x)||t—x|rdt+(nx)fe ™0, x)
ZIhJLigl’ X k=1 0
= |3 + |4.
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Since £(t,X) > 0 as t > X, then for a given & > 0, there exists a J >0 such that
|g(t,x)| < &, whenever 0< |t - X| <o . For |t - X| > ¢, there exists a constant C >0

such that ‘g(t, X)(t—x)" < C|t N X|y .
| Qi ) >|
Now, since sup =M (x)=C Vx e (0,0). Hence,
2i+j<r x"
1,]=0

<C Zniiqn,k(x)|k—nx|j [ boxa®eft—x"dt+ by @®ft—x"dt

2i+j<r k=1 t-x|<o t-x/>8
1,j>0

Now, applying Schwartz inequality for integration and then for summation, (2) and
(4) we led to

1/2
s<eC dnl ank(x)|k nx? [jbnk l(t)dtJ [an,k_l(t)(t—x)zrdtJ
0

2I+j<l’ k=1
i,j20

1/2
(since Ibn,k—l (tHydt=1)
0

2i+j<r \k=l k=1
i,j>0

1/2 1/2
<&C Zn‘(an,ux)(k—nx)”J Lank(xﬂ bk 1<t)<t—x>2fdt]

<eCO(n™?) S nlomi?)=¢0().
2i+j<r
i,j=0

Again using Schwarz inequality for integration and then for summation, in view of (2)
and Lemma 2.3, we have

) .
<C Y'Y aneok=nx’ [y ft-x"dt
disj<r k=l t-x25
1,20
1/2

1/2
<c ¥n Z% ()[k —nx]’ [Ibnk 1(t)dtJ J‘bn,kfl(t)(t_x)zydt

2i+j<r k=l \t—x\zé
i,j=0

1/2

1/2
<C Zni(an,kuXk—nx)”J D nk (0 [ by (O(E—x) dt

2i+j<r \k=l k=1 \t—x\z&
i,j>0

<0(n™*) Y n'o(n!’?)(forany s >0)

2i+j<r
i,j>0
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0" )= o() (for s > r/2).
Now, since ¢ > 0 is arbitrary, it follows that 15 =0(1). Also, I, -0 as n —c and
hence |, =0(1), combining the estimates of |, and 1,, we obtain (5).
To prove the uniformity assertion, it sufficient to remark that 6(¢) in above proof can
be chosen to be independent of X e[a,b] and also that the other estimates holds
uniformly in [a,b].

|

Our next theorem is a Voronovaskaja-type asymptotic formula for the operators
MO f):x), r=1,2,... .

THEOREM 3.2. Let f €C_,[0,0) for some a>0. If ) exists at a point
X € (0,00) , then

f O +(r+Dx+r)f ™D (x)

@ tima(MO R0 10 0)="CD
n—0 2

+ % x(x+2) f 2 (x).

Further, if f"*?) exists and is continuous on the interval (@a-n,b+n)c(0,0),n>0,
then (7) holds uniformly on [a,b].

Proof: By the Taylor's expansion of f (1), we get

r+2 ¢ (i)
MO (f (t);%) = Zf (x)

i=0
.—I1+I2,
where ¢(t,x) >0 as t—>X.

M " ((t —x)'; x)+ M (" (g(t, X)(t —x)"2; x)

By Lemma 2.2 and (6), we have

r+2

(M - :
|1—zf I(X)z( ) X)I—ergr)(tj;X)
i=r " jer

f(l’+1)( )
(r+D!

(r+2)
(r+2)! 2

(n (n 1)'nr
- 10| Cr j

f (D (x) (n—r—N)In"
*W{““’“’(W”

(r+DEOMP A0+ MO a1 x)

(r)
_f r(X) M (Dt x) +
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r+1 r
+(w(r+l)!x+w(r +1)rr!}}

(n-1)! (n-1)!
. f(r+2)(x){(r+1)(r+2) X2£(n—r—l)!nr ”J
(r +2)! 2 (n-1)!
[[(n=r=2)in"™! (n—r—2)In"
+(r+2)( X)[[—(n—l)! j(r+l)!x+[—(n_l)! J(r+1)!r}
r+2 r+l1
+((n —(rn—_31))!'n r ;2)! x2 + {0 —(rn—_3l))!‘n (r+2)(r+1)(r +1)!x]}+0(n_2).

Hence in order to prove (7) it suffices to show that nl, -0 as n— oo, which
follows on proceeding along the lines of proof of |, — 0 as n— c in Theorem 3.1.

The uniformity assertion follows as in the proof of Theorem 3.1.
|

Finally, we present a theorem which gives as an estimate of the degree of

approximation by M r(]r) (-;X) for smooth functions.

THEOREM 3.3. Let f €C_[0,00) for some @ >0 and r<q<r+2.If f@ exists
and is continuous on (a—7,b+7)c (0,0),7 > 0, then for sufficiently large n,

”M () x)— f (r)(x)"C[a,b] < Cln_lﬁr:"f (i)”c:[a,b]

-1/2 -1/2 -2
+C,n a)f(q)(n )+O(n)

where C,,C, are constants independent of f and n, @;(6) is the modulus of

continuity of f on (a—7,b+7), and || . ||C[a b] denotes the sup-norm on [a,b] .

Proof. By Taylor's expansion of f , we have

0] : @ gy §(@
(= T 0W i, FO- 10

i a (t—x)% 2O +h(t, )1 - (1)),

i=0

where & lies between t,x, and y(t) is the characteristic function of the interval
(a—n,b+7). Now,

() ()% )
M7 (f ;%) £ (0 = [i# fwiP 0t —x)"dt - f “kx)}
’ 0

i=0

A @ (gy_ §©@ e
+| Wn(r)(t,x){f q (§)q|f q (X)(t—x)q ;((t)}dt+ Wi @, 0h(t, )1 - (1)) dt
0 ’ 0
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By using Lemma 2.2 and (6), we get

f D (x) [ ) i d" ((n=j-ninl
I, = j ]
! Z 02 o T

—ji=1)nit
+(n J=D!In

TR ~Dx i +O(n‘2)]— £ (x).

Consequently,

q .
Nl ggas; < cln—l[z” f ('>||C[a b]J +0(n"2), uniformly on [a,b].
i=r i

To estimate |, we proceed as follows:
|f (Q)(é:) —f (Q)(X)|

" [t—x? z(0) pdt

IIZIST|Wn(”<t,x)|
0

f(q)( ) =
q!

f(Q)( )
ol

+(=n) e ™ (x4 + 57 1xI } ,6>0.

|w(”(t x)|(1+ |J|t x|9dt

qr(]rz (X)Ubn’k% (t)(|t — X|q + 5—1 |t _ X|q+1 )dt
0

Now, for s =0,1, 2, ... , using Schwartz inequality for integration and then for
summation, (2) and (4), we have

1/2
®) Yk =X [byy Oft =X dt <Y g (0 — X "{ [ [brg (t)dt}
k=1 0 k=1 0

o 1/2
x [ [y (t)(t—x)”dt}
0

k=1 k=1

1/2 1/2
S(an,ux)(k—nx)”] Lanka br - 1<t><t—x>25dt}

=0(nY=9'2) uniformly on [a,b].

Therefore, by Lemma 2.4 and (8), we get

|j |Qi,j,r (X)|
X"

©  Yasoolf J Doyt Ot ot< Y nifk-nx Gnk (X)
k=1 k=1 2i+j<r
i,j>0

x [ b () [t=xdt
0
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Qi,jr (¥)
<| sup sup M > n [ank(x)|k nx|? Ibnk 1Oft- X| dt
2i+j<r xe[a,h] X 2i+jsr k=l
i,j=0 i,j=0

=C Y.n'o(n9"2) =0on"*"?) uniformly on [a,b] .
2i+j<r
i,j>0

| Q1. ) )\
(since sup sup = M (X) but fixed )
ditj<r xefap] X
i,j>0
/2

Choosing & =n~'"? and applying (9), we are led to

12
D¢ (@ (n )[

(LPY P~ i o972y 1 nl2Q(n(r-a-H/2y O(n‘m)], (forany m>0)

<C, n*(r*Q)/za)f(q) (nfl/Z).

Since t €[0,0)\(a—7n,b+7), we can choose & > 0 in such a way that |t - X| > ¢ for
all x e[a,b]. Thus, by Lemmas 2.3 and 2.4 , we obtain

()
||3|<Z > nilk- n|" ": | Uk () [ b (e, x)|dt +(=m) e ™ [h(0,)|.
k= 12.'?!? t-x=5

For |t — X| >0, we can find a constant C such that |h(t, X)| < C|t - X|a . Hence, using
Schwarz inequality for integration and then for summation ,(2), (4), it easily follows
that I; =0(n"®) forany s> 0, uniformly on [a,b].

Combining the estimates of |, 1, I,, the required result is immediate.
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