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Abstract 
The nonlinear oscillation of a bubble in compressible refrigerants subject to 

a periodic pulsating pressure is theoretically analyzed. For nonlinear oscillations of 
the gas bubble, the approximation that the pressure within the bubble follows a 
polytropic relation. It has several limitations and needs to be reconsidered. A new 
formulation of the dynamics of bubble oscillations in refrigerants is presented in 
which the internal pressure of the bubble is calculated numerically. Our results are 
compared with that obtained from polytropic formulation.  

Several comparisons are given for results of the two formulations, which 
describe in some detail limitations of the polytropic formulation. The good 
agreement is found between the results of the polytropic formulation and the 
numerical method only when the oscillation amplitude is small. 
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 التصرف المعتمد على الضغط الداخلي لفقاعة التفقع في موائع التثليج

  
  عباس زكي الأسدي

   العراق- جامعة البصرة - كلية الهندسة -قسم الهندسة الميكانيكية 
  

  الخلاصة
لفقاعة في موائع التثليج الانضغاطية المعرضة لضـغط        تم أجراء تحليل نظري للتذبذب اللاخطي       

 اللاخطية لفقاعة غازية، فأن تقريب الضغط داخل الفقاعة يتبـع علاقـة             تبالنسبة للتذبذبا . نبضي متكرر 

تم تقديم صيغة جديدة لحركـة تذبـذب        . تمتلك هذه العلاقة عدة محددات وتحتاج إلى مراجعة       . بولتوربية
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باسـتعمال الصـيغة    , الأولـى . ، اذ يحسب الضغط الداخلي للفقاعة بطـريقتين       الفقاعة في موائع التثليج   

  .بينما في الثانية فيحسب الضغط عددياً. البولتروبية

 الصـيغة   تتم أعطاء عدة مقارنات بين نتائج الصيغتين، توضح هذه المقارنات بعـض محـددا             

  .قط عندما تكون سعة التذبذب صغيرة نتائج الصيغة البولتروبية والعددية فنوجد تطابق بي. البولتروبية

 
Introduction 

The dynamics of a gas bubble in a liquid is strongly dependent on the 
pressure of the gas contained in it. In principle, this quantity must be 
determined from the solution of the conservation equations of continuum 
mechanics inside and outside the bubble joined together by suitable 
boundary conditions at the bubble interface. This task is very complicated 
and can only be carried out analytically for small- amplitude motion in 
which the equation can be linearized (see, for example, Refs. [1-3]). For 
large–amplitude motion, it is customary in the literature to make use of a 
polytropic relation of the form:  
                                                      …(1) 
              
Where P is the pressure of the gas in bubble, R is the bubble radius, K is the 
polytropic index, and the subscript zero indicates equilibrium values. This 
relation, with K=1, entered bubble-dynamics literature explicitly with the 
pioneering numerical studies of forced large-amplitude oscillations carried 
out by Noltingk and Neppiras [4] in the early 1950s. After that, it has been 
used by virtually every writer on the subject such as Flynn [5], Apfel [6], 
Lauterborn [7], and many authors [8, 9].  

In spite of its appealing simplicity, the use of eq.(1) posses many 
problems. In the first place, the polytropic index can range in the interval 
from 1 (isothermal) to the ratio of specific heats γ (adiabatic), and 
appropriate criteria for the proper choice are available only for the small-
amplitude linear case. Further, it is present unknown how realistic this 
relation is when the linear value of K is used in the nonlinear regime. 
Second, if P is given by eq.(1), Pdv (where, v is the volume of the bubble) is 
a perfect differential, and its integral over a cycle vanishes. As a 
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consequence, using eq.(1) yields no energy loss associated with the heating 
and cooling of the gas. This fact is very unfortunate since it is known from 
the linear studies that this thermal damping is, in fact, the dominant form of 
energy absorption over a wide range of physical conditions. As a partial 
remedy, it was suggested in ref. [10] that the liquid viscosity could be 
artificially augmented by an amount in such a way that the correct damping 
would result in the linear case. This prescription has recently been put to an 
experimental test [11] and has been found to result in a large overestimate 
of the damping affecting the nonlinear oscillations in the region of the first 
nonlinear resonance. On the basis of these considerations, it must be 
concluded eq.(1) is not adequate for a precise theoretical analysis of bubble 
dynamics. Of particular concern is the application of eq.(1) to the study of 
the chaotic regime of forced oscillations [12], which is known to be strongly 
influenced by the details of energy dissipation.  

In an attempt to go beyond eq.(1), Flynn [13] presented a 
mathematical formulation which reduced the exact set of partial differential 
equations expressing the conservation laws in the gas to a system of 
ordinary differential equations. This result was obtained at the price of a 
number of approximations the most notable of which, that of spatially 
uniform pressure distribution in the bubble. Flynn's formulation, however, is 
far from simple and, probably for this reason, has not been widely used.  

The mathematical formulation to be presented here is more precise. 
For a prefect gas with spatially uniform pressure, the continuity and energy 
equations can be combined to obtain an exact expression for the velocity 
field in terms of the temperature gradients. In this way, the problem is 
reduced to a nonlinear partial differential equation for the temperature field 
and to an ordinary differential equation for the internal pressure. A 
numerical technique for the treatment of these equations is used, and several 
numerical results are included for the purpose of illustrating the method and 
demonstrating the limited accuracy of the polytropic approximation.  
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Mathematical Model 
In this paper, we attempt to study the thermomechanical behaviour of 

the gas contained in a bubble in spherically symmetric motion. The 
diffusion of the gas in and out of the bubble has significant dynamical 
effects only at very low ambient pressures, when the small quantity of gas 
diffusing into the liquid is an appreciable fraction of the total amount of gas 
contained in the bubble [14]. This effect, however, can be ignored at higher 
pressures. A further consequence of diffusion manifests itself over time 
scales much longer than that associated with the typical oscillatory period of 
bubble motion. Accordingly, we shall disregard diffusion altogether and 
assume the bubble boundary to be impervious to the gas. The partial 
pressure of the liquid vapour in the bubble is assumed to be much smaller 
than the gas pressure, and the effect of the vapour present in the bubble is 
also disregarded.  

The main approximations contained in the present article are: (a) the 
pressure is spatially uniform in the bubble; (b) the gas is perfect; (c) the 
bubble maintains a spherical shape; (d) the bubble wall temperature remains 
unperturbed; and (e) the effects of the vapour contained in the bubble are 
negligible. The first assumption requires the Mach number of bubble wall 
motion, calculated with respect to the gas speed of sound, to be small. The 
second, third, and fourth assumptions are also likely to break down in the 
conditions of extreme gas temperature and pressure prevailing near the end 
of violent collapses, they caused by large–amplitude acoustic driving or by 
the recovery of the ambient pressure typical of flow cavitation. The last two 
assumptions (d) and (e) enable us to disregard the energy equation in the 
liquid and the gas–vapour diffusion equation in the bubble. In summary, our 
formulations should be of value in a variety of situation involving forced 
motion in a relatively cold liquid, provided that the velocity of the bubble 
interface remains relatively small with respect to the speed of sound in the 
gas. We now assume that the gas can by adequately described by the perfect 
gas laws with constant specific heats. In this case, the following expression 
for the velocity field inside the bubble [15] 
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                                                               …(2) 
                                    
with the aid of the velocity boundary condition 
 

R)t,R(u &=                                          …(3) 
 

Equation (2) can be turned into a differential equation for P by 
evaluating it at r=R: 
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In view, eq.(2) shows the velocity distribution in the bubble is increased 
linearly with distance from the center.  
In this study, we choose to use the energy equation [16]  
 
                                                               …(5) 
 
Where 
                                                             …(6) 
 

This choice was suggested by the fact that the thermal conductivity k 
will be allowed to depend on the temperature. At the bubble wall, the 
correct boundary condition on the temperature field is continuity of 
temperature. When the effect of the vapour is not significant, we can use the 
condition 
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This approximation simplifies the problem considerably since it asserts that 
a consideration of the temperature field in the liquid in unnecessary.  
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During the motion of the bubble wall, the bas can undergo large 
variations in temperature, and the dependence of its thermal conductivity on 
this quantity cannot be neglected. A convenient way to account for this 
variation is to introduce a new variable  

 

∫
∞

θθ=β
T

T

d)(k                                        …(8)  
              

Furthermore, for numerical analysis, it is convenient to have a fixed rather 
than a moving boundary and we, therefore, let 

 
                                              ... (9) 
 
With eqs. (2), (8) and (9), the energy equation (eq. (5)) takes the from 
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Where 

                    …(11)  
                                     
is the appropriate form of the thermal diffusivity for a perfect gas. The 
boundary conditions, eq.(7), can be written, in term of β, 

0)t,1( ==τβ                                     …(12) 
When the compressibility of the liquid is not neglected, the motion of 

the bubble boundary (wall) is governed by the following equation [17]. 
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∈

 
Where          …(14) 
 
and PLR is the liquid pressure on the external side of the bubble wall, which 
is related to the internal bubble pressure P by [18].  

 
                      …(15) 

   
       The total liquid pressure (PL∞) is the sum of the static liquid pressure 
(P∞ ) and a non constant ambient pressure such as sound field (Ps); it is 
given by [19]. 
 
 )tf2sin(PPs π=∈ ∞                          …(16) 
 
         Here,   is the dimensionless sound amplitude.  

In this study, we have approximated the dependence of k upon T by a 
linear function[20]:  

 
k(T) = A T  + B                        … (17) 
 
In this case, inversion of eq.(8) leads to the following relation between T 
and �: 
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The numerical values of A and B in ref. [20] give a good fit to the thermal 
conductivity of air.  

In this study, the natural frequency of a bubble can be expressed as 
follows [21]: 
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  …(20) 

 
and 
    

                                       …(21) 
             The maximum of the oscillation amplitude is defined by: 
 

                                    …(22) 
 

where Rm is the maximum value attained by the radius during a steady 
oscillation. The dimensionless time is defined by: 

tf2π=ψ                                    …(23) 
 

Results 
 Equation (13) must be solved simultaneously with the energy 

equation in the bubble, eq.(10), and the equation of the internal pressure, 
eq.(4).   

We proceed now to discuss some numerical results for large-
amplitude oscillations with the predictions based upon the polytropic 
approximation. These results are far from exhaustive and are presented here 
primarily to demonstrate the usefulness and range of applicability of the 
present formulation.  

In this paper, we interested with a kind of refrigerants, R-134a, and air 
as the gas in the bubble. In the calculations, the following values of the 
physical parameters are used [22]  
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from eq.(4). The words polytropic model, on the other hand, will indicate 
use of the polytropic relation for the internal pressure (eq. (1)). 

By showing in Figs. 1 and 2 a comparison between the frequency 
response curves calculated with the present work and the polytropic 
formulation for a sound–pressure amplitude ∈= 0.6 and equilibrium bubble 
radii  of 50 and 10 �m, respectively. These graphs display for each value 
f/fo of the ratio of the sound frequency. The dotted line is the polytropic 
model, and the solid line dentes results obtained from the present technique. 
The most striking difference between the two formulations consists in the 
location and the height of the peaks to the fundamental and higher 
resonances. The relative shift between these peaks in some cases results in 
considerable differences between the two oscillations, amplitudes at a given 
frequency.  

Fig. 3 shows a comparison of the R (t) curves according to the present 
theory and to the polytropic formulation for Ro = 50 �m. The polytropic 
model predicts a larger maximum radius. The collapse point is approached 
with a large velocity, and the minimum radius is correspondingly smaller. In 
turn, the large velocity and small radius give rise to an excessive energy 
dissipation presumably concentrated in a large burst near the point of 
minimum radius. The pressure history, shown in Fig. 4, is correspondingly 
much more peak for the polytropic case. The collapse point is approached 
with the minimum radius. At this point, the maximum pressure in the 
bubble is occurred.  

In the case of smaller bubble, Ro = 10 �m, the behaviour of which at 
∈= 0.6 is illustrated in Figs. 5 and 6. Now, R(t) curves are remarkably 
dissimilar with a large phase shift and a significant difference in the 
oscillation amplitude is occured. A comparison of the two curves shows that 
this is not due to a smaller overall damping coefficient, but to smaller 
oscillation amplitude and velocity. The internal pressure for the case with 
∈= 0.6 is shown in Fig. 6. Since no energy loss associated with the pressure 
in the bubble calculated by polytropic formulation, it is the polytropic peak 
that is higher.  
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∞P

The good agreement of Figs. 7 and 8 is found because the oscillation 
amplitude is relatively small, but also, very importantly, because the bubble 
is driven far from resonances.  
 

Conclusions 
It has been that a new technique of bubble dynamic based upon an 

evaluation of the internal pressure within the bubble can give considerably 
different predictions of behaviour when compared with the standard 
treatment in which the internal pressure is approximated by polytropic 
relation. The radius–time curves predicted by the two models can differ very 
markedly. The differences are especially in the higher frequency regions.  
A general conclusion that may be drawn from the above comparison is that 
the polytropic model is unreliable especially at large pulsation amplitude. 

The good agreement is found between the polytropic model and the present 
model only when the oscillation amplitude is relatively small. 

 
Nomenclature 

c: Sound speed in the liquid (m/s).  
D: Thermal diffusivity (m2/s)  
f: Sound field frequency (Hz) 
fo: Bubble natural frequency (Hz)  
k: Thermal conductivity (W/m.k)  
P: Gas pressure in the bubble (Pa)  
P& : Derivative of the bubble pressure (

dt
dP )   

PLR: Liquid pressure at bubble wall (Pa)  
Po: Static pressure in the bubble (Pa) 
Ps: Sound field pressure (Pa) 
    : Static liquid pressure (Pa)  
PL∞: Sum of the static liquid pressure and    
         the sound field pressure (Pa)   
r: Radial distance (m) 
R: Bubble radius (m) 
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R& : Bubble wall velocity (
dt
dR ) (m/s) 

Ro: Equilibrium bubble radius (m) 
Rm: Maximum bubble radius (m) 
t: Time (s) 
T: Temperature (K) 
T∞: Static liquid temperature (K) 
X: Maximum oscillation amplitude 
γ: Ratio of specific heats of gas 
µ: Liquid viscosity (N.s/m2)  
ρ∞: Liquid density (kg/m3) 
σ: Liquid surface tension (N/m) 
∈: Dimensionless acoustic pressure amplitude 
ψ: Dimensionless time 
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Fig. 1 The normalized amplitude of the radial oscillations as 
     a function of the driving sound frequency (dimensionless)
               

present model
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Fig. 3 The normalized radius-time curves for the steady oscillations
               

Ro =50   m
      =0.6
f/fo=0.8

present model

polytropic model

0.4 0.5 0.6 0.7 0.8 0.9

f / fo

0.3

0.4

0.5

0.6

X

Fig. 2 The normalized amplitude of the radial oscillations as 
     a function of the driving sound frequency (dimensionless)
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Fig. 8 The normalized pressure-time curves for the steady oscillations
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Fig. 5 The normalized radius-time curves for the steady oscillations
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Fig. 4 The normalized pressure-time curves for the steady oscillations
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Fig. 7 The normalized radius-time curves for the steady oscillations
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Fig. 6 The normalized pressure-time curves for the steady oscillations
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