Some Factors Affecting the Natural Frequency of a Bubble Oscillating in liquids

A.Z. AL-Asady
Mechanical Engineering Dept., Engineering Col., Basrah Univ.

Abstract

Using Keller-Kolodner equation which includes the important physical properties, an equation of the natural frequency of a gas-field bubble oscillating in a liquid is derived. The components of the damping (the liquid compressibility, viscosity and surface tension) are included in this solution. But the gas diffusion and thermal conduction are neglected. The solution of Minneart is shown to be special case of this solution. The effects of the damping components of a bubble in water are examined. The effect of the ratio of specific heats of gas in the bubble is also examined. Comparisons with Minneart's solution are also presented and give good agreement.

Keywords: Cavitation, Natural Frequency, Bubble dynamics

بهض العولل المؤثرة عل التردد اللمبي لتقاعةمتنبنبة ف اللسولل
 عبلس زكي الأسي

المظلana

 (أنضغططية للسأل واللزوجة وللشد لللطحي), لكن مَ أهمل أنتشارية الغاز والتوصيل الحراري. نلاح ظ أن حل (Minneart) يمكن لستنتلجه كحالة خاصة لهذا الطل. تم لختبار تأثيرات مركبات المخمد القاعة فيسالّ ونسبة الحرارت النوعية في الفقاعة ـ قورنت النتائج معطريقه (Minneart) حي ـث لظٔه -رت طاقآ جيدآ.

Introduction

Studies on the natural frequency of a bubble in a liquid have been regarded by many investigators as a problem related to the behavior of cavitation bubbles, such as can commonly occur in a water turbine, pump, or other piece of hydraulic machinery, and many papers on these problems have been published [1-5].

An accurate theory of the natural frequency of bubbles that are as small (may be called minute bubbles) should take into account the effect of the surface tension, the viscosity, and in addition, the compressibility of the liquid. Among the existing theories of the natural frequency of a bubble, some consider the effect of surface tension [1, 6] alone, others the effects of surface tension and viscosity [7, 8]. In that papers, the effects of liquids compressibility were neglected.

In this paper, the natural frequency of a bubble vibrating in a viscous compressible liquid is derived, including the effect of surface tension but neglecting the effect of heat conduction. Therefore, the effects of compressibility, surface tension, viscosity, and ratio of specific heats of gas on the natural frequency are determined as a function of the static radius.

Theoretical Analysis

As shown in Fig. A, it is assumed that there is a spherical bubble whose static radius is R_{o}, at point O in a viscous compressible liquid, and that the bubble vibrates radially as shown by the dotted line. The effects of gas diffusion, gravity, heat conduction and evaporation-condensation are neglected. It is also assumed that the gas inside the bubble is adiabatic. In this section, the standard approach to the analysis of the pulsations a gas bubble is to assume that the pressure within the bubble follows a polytropic relation.

The main approximation contained in the present article is: the bubble contains only gas (i.e. the effect of the vapour contained in the bubble is negligible).

Fig. A Vibration of a bubble
For the motion of a spherical bubble, the following equation of Keller-Kolodner is used [9]:

$$
\begin{array}{r}
R \frac{d^{2} R}{d t^{2}}\left(1-\frac{1}{c} \frac{d R}{d t}\right)+\frac{3}{2}\left(\frac{d R}{d t}\right)^{2}\left[1-\frac{1}{3 c} \frac{d R}{d t}\right]= \\
\left(1+\frac{1}{c} \frac{d R}{d t}\right) H+\frac{R}{c} \frac{d H}{d t} \tag{1}
\end{array}
$$

where
$\mathrm{H}=\frac{1}{\mathrm{\rho}}\left(\mathrm{P}_{\mathrm{w}}-\mathrm{P}_{\mathrm{o}}\right)$
Assuming that the gas inside the bubble behaves adiabatically as the bubble oscillates; the pressure in the liquid at the bubble wall, P_{w} is given as follows [10].

$$
\mathrm{P}_{\mathrm{w}}=\mathrm{P}_{e}\left(\cdot \frac{R_{\mathrm{f}}}{R}\right)^{3 \gamma}-\frac{2 \sigma}{R}-\frac{4 \mu}{R} \frac{d R}{d t}
$$

where,

$$
\begin{equation*}
\mathrm{P}_{e}=\mathrm{P}_{o}+\frac{2 \sigma}{R_{o}} \tag{4}
\end{equation*}
$$

Substituting eq.(2), eq.(3) and eq.(4) into eq.(1), have

$$
\begin{array}{r}
R \frac{d^{2} R}{d t^{2}}\left[1-\frac{1}{c} \frac{d R}{d t}\right]+\frac{3}{2}\left(\frac{d R}{d t}\right)^{2}\left[1-\frac{1}{3 c} \frac{d R}{d t}\right]= \\
\frac{\mathrm{P}_{o}}{P}(\mathrm{X}-1)\left[1+\frac{1}{c} \frac{d R}{d t}\right]+\frac{1}{\rho c} \mathrm{Z} \ldots(5)
\end{array}
$$

where,

$$
\begin{equation*}
\mathrm{X}=\frac{\mathrm{P}_{e}}{\mathrm{P}_{o}}\left(\frac{R_{o}}{R}\right)^{3 \gamma}-\frac{2 \sigma}{\mathrm{P}_{o} R}-\frac{4 \mu}{\mathrm{P}_{o} R} \frac{d R}{d t} \tag{6}
\end{equation*}
$$

$$
\begin{array}{r}
\text { and }=-3 \gamma \frac{\mathrm{P}_{e}}{\mathrm{P}_{o}}\left(\frac{R_{o}}{R}\right)^{3 \gamma} \frac{d R}{d t}+\frac{2 \sigma}{\mathrm{P}_{o} R} \frac{d R}{d t}- \\
\frac{4 \mu}{\mathrm{P}_{o}}\left[\frac{d^{2} R}{d t^{2}}-\frac{1}{R}\left(\frac{d R}{d t}\right)^{2}\right]
\end{array}
$$

The initial conditions of eq.(5) are at $\mathrm{t}=0$
$\mathrm{R}=\mathrm{R}_{0}$
$\frac{d R}{d t}=0$
Here, let us introduce the following dimensionless parameters:
$y=\frac{R}{R_{o}}$
$\tau=\frac{t \sqrt{M}}{R_{o}}$
where

$$
\begin{equation*}
M=\frac{\mathrm{P}_{o}}{\rho} \tag{12}
\end{equation*}
$$

Next, for the purpose of nondimensional expression of the basic eq.(5), the following quantities are introduced,
$m=\frac{\mathrm{P}_{e}}{\mathrm{P}_{o}}$
$S=\frac{2 \sigma}{\mathrm{P}_{o} R_{o}}$
and
$Q=\frac{4 \mu}{R_{o} \sqrt{\rho \mathrm{P}_{o}}}$
Then, eq.(5) can be reduced to:
$y \frac{d^{2} y}{d \tau^{2}}\left[1-\frac{\sqrt{M}}{c}\right]+\frac{3}{2}\left(\frac{d y}{d \tau}\right)^{2}\left[1-\frac{\sqrt{M}}{3 c} \frac{d y}{d \tau}\right]=$

$$
\left(\mathrm{X}_{o}-1\right)\left[1+\frac{\sqrt{M}}{c} \frac{d y}{d \tau}\right]+\frac{\mathrm{Z}_{o}}{c} \ldots(16)
$$

where,
$\mathrm{X}_{o}=m\left(\frac{1}{y}\right)^{3 \gamma}-\frac{S}{y}-\frac{Q}{y} \frac{d y}{d \tau}$
and
$\mathrm{Z}_{o}=\sqrt{M}\left[\begin{array}{r}-3 \gamma m\left(\frac{1}{y}\right)^{3 \gamma}+\frac{S}{y}- \\ Q \frac{\frac{d^{2} y}{d \tau^{2}}}{\frac{d y}{d \tau}}+\frac{Q}{y} \frac{d y}{d \tau}\end{array}\right] \frac{d y}{d \tau}$
The linear solutions of eq.(16) can be obtained by supposing that a bubble oscillates with very small amplitude. Thus, we put
$y=1+\epsilon$
where $(\epsilon \ll 1)$.

Substituting eq.(19) into eq.(16), and neglecting the higher order terms of \in, $0\left(\epsilon^{2}\right)$, have
$\frac{d^{2} \epsilon}{d \tau^{2}}+\left[\frac{S}{1+\epsilon}-\frac{m}{(1+\epsilon)^{3 \gamma}}+1+\frac{Q}{1+\epsilon} \frac{d \epsilon}{d \tau}\right]$
$\left(1+\frac{\sqrt{M}}{c} \frac{d \in}{d \tau}\right)-\frac{\sqrt{M}}{c}$
$\left[\begin{array}{l}\frac{S}{1+\epsilon}-\frac{3 \gamma m}{(1+\epsilon)^{3 \gamma}}+1-Q \frac{\frac{d^{2} \epsilon}{d \tau^{2}}}{\frac{d \epsilon}{d \tau}}+ \\ \frac{Q}{1+\epsilon} \frac{d \epsilon}{d \tau}-1\end{array}\right] \frac{d \epsilon}{d \tau}=0$

With the aid of the following equation (see ref. [3]).
$\frac{\mathrm{A}}{1+\epsilon}-\frac{\mathrm{B}}{(1+\epsilon)^{3 \gamma}}+1=[(3 \gamma-1) \mathrm{A}+3 \gamma] \in$

Therefore, eq.(20) becomes:

$$
\begin{array}{r}
{\left[1+\frac{\sqrt{M}}{c} Q\right] \frac{d^{2} \epsilon}{d \tau^{2}}+\left[Q+\frac{\sqrt{M}}{c}\right] \frac{d \in}{d \tau}+} \tag{22}\\
{[(3 \gamma-1) S+3 \gamma] \epsilon=0}
\end{array}
$$

Equation (22) is the equation for the vibration of a bubble in a liquid.
Then, the circular frequency of the bubble is the imaginary part of the root of the quadratic eq.(22). Namely,
$\omega=\frac{\sqrt{\left[\left[1+\frac{\sqrt{M}}{c} Q\right][(3 \gamma-1) S+3 \gamma]-\right.}}{2\left[1+\frac{\sqrt{M}}{c} Q\right]}$

$$
\begin{align*}
& \text { If we put as } \\
& \qquad \omega=\omega_{n} R_{o} \sqrt{\frac{\rho}{\mathrm{P}_{o}}}=\frac{\omega_{n} R_{o}}{\sqrt{M}} \tag{24}
\end{align*}
$$

Hence, the bubble natural frequency f_{n} is given by

$$
\begin{equation*}
f_{n}=\frac{\omega_{n}}{2 \pi} \tag{25}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f_{n}=\frac{\omega}{\frac{2 \pi R_{o}}{\sqrt{M}}} \tag{26}
\end{equation*}
$$

Substituting eq.(23) into eq.(26), have

$$
\begin{equation*}
f_{n}=\frac{\sqrt{4\left[1+\frac{\sqrt{M}}{c} Q\right][(3 \gamma-1) S+3 \gamma]-}}{4 \pi R_{o}\left[\frac{1}{\sqrt{M}}+\frac{Q}{c}\right]} \tag{27}
\end{equation*}
$$

Here, neglecting the effects of the compressibility $\left(\frac{\sqrt{M}}{c} \ll 1\right)$, surface
tension $(\sigma=0)$ and viscosity $(\mu=0)$, we have

$$
\begin{equation*}
f_{n}=\frac{1}{2 \pi R_{o}} \sqrt{\frac{3 \gamma \mathrm{P}_{o}}{\rho}} \tag{28}
\end{equation*}
$$

This equation is identical with the one given by Minneart as is reviewed in ref. [11].

Results

In this section, as an example of numerical calculations for the bubble natural frequency, comparisons of the present solution with Minneart's solution are made. The effects of liquid temperature, surface tension, viscosity, and ratio of specific heats for gas are also determined.
The value used for the pressure P_{o} in the liquid at infinity from bubble is 101.3 kPa . The liquid and gas used in the calculation are water and air respectively. The physical properties of water show in Table 1 [12].

Table 1 Properties of water at 101.3 kPa

T $\left({ }^{\circ} \mathrm{C}\right)$	ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	σ $(\mathrm{mN} / \mathrm{m})$	μ $(\mathrm{mPa.s})$
10	999.7	74.22	1.007
50	988	67.95	1.008

The effect of water temperature. As the liquid temperature changes, various physical values of the bubble, liquid density, surface tension, and viscosity will changes as shown in Table 1 . So, even if the size of the bubble is the same, the value of the natural frequency (f_{n}) changes. Hence the calculated values of f_{n} in each case of water temperature 10 and $50^{\circ} \mathrm{C}$ is shown in Fig. 1 and Fig. 2, respectively. From the figures, it can be seen that the value of f_{n} becomes slightly larger as the water temperature rises.
The effect of surface tension. The comparison of the calculated results with and without the effect of surface tension (σ) is shown in Fig. 3 and Fig. 4 for water temperature 10 and $50^{\circ} \mathrm{C}$, respectively. In these figures the case
of considering surface tension is shown by the solid line and the case of neglecting it is shown by the dotted line. It can be seen from this figure that the effect of the surface tension (σ) appears noticeably at $R_{0}<0.01 \mathrm{~mm}$ and that the value of f_{n} becomes somewhat larger.
The effect of viscosity. In Fig. 5, the comparison of the calculated results with and without the effect of viscosity is shown. It is evident that the effect of viscosity is slightly negligible.
The effect of specific heat ratio. In Fig. 6, the comparison of calculated results in the case that the specific heat ratio of gas (air) in the bubble (γ) is 1.4 with those in the case that it is 1.2 is shown. It can be seen from this figure that the effect of the specific heat ratio is slight.
Comparison with Minneart's solution. The results of comparisons with Minneart's solution are shown in Fig. 7 and Fig. 8 for water temperature ($\left.\mathrm{T}_{\infty}\right) 10{ }^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, respectively. In these Figures the solid lines are the present work and the dotted lines are Minneart's solutions. Minneart's solution doesn't include the consideration of compressibility, viscosity and surface tension.
From these figures, it can be seen that these effects scarcely appear for $\mathrm{R}_{0}>0.01 \mathrm{~mm}$. The present solution shows larger value than those of Minneart as R_{0} becomes smaller.

Conclusions

The results obtained in the present study may be summarized as follows:

1- The theoretical equation of the natural frequency in a viscous compressible liquid (including the effect of surface tension) is given by eq.(25). But, gas diffusion and heat conduction are neglected.
2- Minneart's equation can be obtained as a special case from our equation, i.e., eq.(28).

3- As an example of calculated value, $f_{n}-R_{0}$ curves are drawn in both cases of considering the effects of compressibility, viscosity and surface tension (partly or all) and the case of neglecting them. From this, the following facts
can be concluded: (a) the effects of compressibility, viscosity, and water temperature scarcely appeared for $\mathrm{R}_{0}>0.01 \mathrm{~mm}$. (b) The effect of surface tension appears remarkable within the range of $\mathrm{R}_{0}<0.01 \mathrm{~mm}$. (c) The effects of water viscosity and ratio of specific heats of gas (air) in the bubble are slight.

Nomenclature

c : Sound speed in the liquid $(\mathrm{m} / \mathrm{s})$.
f_{n} : Bubble natural frequency (Hz)
H: Enthalpy at bubble wall (J / kg)
P_{e} : Static pressure in the bubble (Pa)
P_{0} : Pressure in the liquid at infinity (Pa)
P_{w} : Pressure at bubble wall (Pa)
R: Bubble radius (m)
R_{0} : Equilibrium bubble radius (m)
t : Time (s)
T_{0} : Static liquid temperature (K)
γ : Ratio of specific heats of gas
μ : Liquid viscosity ($\mathrm{N} . \mathrm{s} / \mathrm{m}^{2}$)
ρ : Liquid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
σ : Liquid surface tension (N / m)
ω : Angular frequency (rad/s)
ω_{n} : Normalized angular frequency ($1 / \mathrm{s}$)

Fig. 1 The natural frequency as a function of the bubble static radius

Fig. 2 The natural frequency as a function of the bubble static radius

Fig. 3 Effect of surface tension on th relation between the natural frequency and the bubble static radius

Fig. 4 Effect of surface tension on th relation between the natural frequency and the bubble static radius

Fig. 5 Effect of viscosity on th relation between the natural frequency and the bubble static radius

Fig. 6 Effect of specific heat ratio on th relation between the natural frequency and the bubble static radius

Fig. 7 Relation between the natural frequency and the bubble static radius comparison with an existing model

Fig. 8 Relation between the natural frequency and the bubble static radius comparison with an existing model

References

A. Prosperetti, L. A. Crum and K. W. Commander, Nonlinear bubble dynamics. Vol. 83, No. 2, 1988.
A. Shima, T. Tsujino and H. Nanjo, Nonlinear oscillations of gas bubble in viscoelastic fluids. Ultrasonics, Vol. 24, 1986.
A. Shima, The natural frequencies of two spherical bubble oscillating in water. J. of Basic Engineering, Sep. , 1971.
E. A. Neppiras and B. E. Noltingk, Cavitation produced by ultrasonics, Theoretical conditions for the onset of cavitation. Proceedings of the physical society, Vol. 64, 1951.
F. D. Smith, On the destructive mechanical effects of the gas bubble liberated by the passage of intense sound through a liquid. Philosophical Magazine, Vol. 19, 1935.
G. Houghton, Theory of bubble pulsation and cavitation. J. Acoust. Soc. Am., Vol. 35, 1963.
M. Strasberg, The pulsation frequency of nonspherical gas bubble in liquids. J. of Acoust. Soc. of Am., Vol. 25, 1953.
S. Sochard, A. M. Wilhelm and H. Delmas, Gas-vapour bubble dynamics and homogeneous sonochemistry. Chem. Eng. , 51, 1997.
T. Fujiwara A. Shima, Nonlinear oscillations of bubbles in compressible hydraulic oils. J. Acoust. Soc. Am. 68 (5), 1980.
T. G. Leighton, The acoustic bubble. Academic Press, N. Y., 1994.
T. Hirose and M. Okuyama, Mechanics on the cavitation produced by ultrasonics (II) conditions for cavitation and stationary cavitation. J. Acoust Soc. of Japan, Vol. 13, 1957.
T. Niederdrank and B. Wiesand, The temperature dependent behavior of a cavitation bubble field. Acoustica, 84, 1998.

