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Abstract 
Using Keller–Kolodner equation which includes the important physical 

properties, an equation of the natural frequency of a gas-field bubble oscillating in 
a liquid is derived. The components of the damping (the liquid compressibility, 
viscosity and surface tension) are included in this solution. But the gas diffusion 
and thermal conduction are neglected. The solution of Minneart is shown to be 
special case of this solution. The effects of the damping components of a bubble in 
water are examined. The effect of the ratio of specific heats of gas in the bubble is 
also examined. Comparisons with Minneart's solution are also presented and give 
good agreement. 
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  العوامل المؤثرة على التردد الطبيعي لفقاعة متذبذبة في السوائلبعض 

  
  عباس زكي الأسدي

   العراق- جامعة البصرة - كلية الهندسة -قسم الهندسة الميكانيكية 
  

  الخلاصة
 التي تتضمن الخواص الفيزياوية المهمـة، تـم أشـتقاق           Keller-Kolodnerبأستخدام معادلة   

يتضـمن هـذا الحـل مركبـات المخمـد          . فقاعة مملؤة بالغاز ومتذبذة في سائل     معادلة التردد الطبيعي ل   

نلاحـظ  . لكن تم أهمال أنتشارية الغاز والتوصيل الحراري      , )أنضغاطية السائل واللزوجة والشد السطحي    (

تم اختبار تأثيرات مركبات المخمد لفقاعة . كحالة خاصة لهذا الحليمكن استنتاجه  (Minneart) أن  حل 

 حيـث أظهـرت     (Minneart)قورنت النتائج مع طريقه     . ائل ونسبة الحرارات النوعية في الفقاعة     في س 

  .تطابقآ جيدآ
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 Introduction 
Studies on the natural frequency of a bubble in a liquid have been 

regarded by many investigators as a problem related to the behavior of 
cavitation bubbles, such as can commonly occur in a water turbine, pump, 
or other piece of hydraulic machinery, and many papers on these problems 
have been published [1-5]. 

An accurate theory of the natural frequency of bubbles that are as 
small (may be called minute bubbles) should take into account the effect of 
the surface tension, the viscosity, and in addition, the compressibility of the 
liquid. Among the existing theories of the natural frequency of a bubble, 
some consider the effect of surface tension [1, 6] alone, others the effects of 
surface tension and viscosity [7, 8]. In that papers, the effects of liquids 
compressibility were neglected. 

In this paper, the natural frequency of a bubble vibrating in a viscous 
compressible liquid is derived, including the effect of surface tension but 
neglecting the effect of heat conduction. Therefore, the effects of 
compressibility, surface tension, viscosity, and ratio of specific heats of gas 
on the natural frequency are determined as a function of the static radius. 
 

Theoretical Analysis 
As shown in Fig. A, it is assumed that there is a spherical bubble 

whose static radius is Ro, at point O in a viscous compressible liquid, and 
that the bubble vibrates radially as shown by the dotted line. The effects of 
gas diffusion, gravity, heat conduction and evaporation-condensation are 
neglected. It is also assumed that the gas inside the bubble is adiabatic. In 
this section, the standard approach to the analysis of the pulsations a gas 
bubble is to assume that the pressure within the bubble follows a polytropic 
relation.  

The main approximation contained in the present article is: the 
bubble contains only gas (i.e. the effect of the vapour contained in the 
bubble is negligible). 
 



Basrah Journal of Scienec (A)                                    Vol.25(1),33-46, 2007  
 

 35

 
 
 
 
 
 
 

Fig. A Vibration of a bubble 
For the motion of a spherical bubble, the following equation of 

Keller-Kolodner is used [9]: 
 
 
 
 
where 

( )ow
1H Ρ−Ρ
ρ

=                                    …(2) 
Assuming that the gas inside the bubble behaves adiabatically as the bubble 
oscillates; the pressure in the liquid at the bubble wall, Pw is given as 
follows [10]. 
 
             ...(3) 
 
where, 
                                      …(4) 
 
Substituting eq.(2), eq.(3) and eq.(4) into eq.(1), have 
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                                                                                        …(6) 
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and  
 
                                                                  …(7)  
    
The initial conditions of eq.(5) are at t = 0 

0RR =                                                      ...(8) 
 
                                                                   ...(9) 
 
Here, let us introduce the following dimensionless parameters: 
 
                                               ...(10) 
 
                                           ...(11) 
 
where 
                                           … (12) 
 
Next, for the purpose of nondimensional expression of the basic eq.(5), the 
following quantities are introduced, 
                                             ...(13) 
                                        
                                             …(14) 
and 
                                              ...(15) 
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                                                           ...(17) 
 
and 
 
                                                                                          …(18) 
 
 
 
 

The linear solutions of eq.(16) can be obtained by supposing that a 
bubble oscillates with very small amplitude. Thus, we put 
 
                                                    ... (19) 
where ( )1∈<< . 
 
Substituting eq.(19) into eq.(16), and neglecting the higher order terms of ∈, 
0(∈2), have 
 
 
                                                          …(20) 
 
 
 
 
 
 
 
 
With the aid of the following equation (see ref. [3]).  
                                                                               ...(21) 
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Therefore, eq.(20) becomes: 
                                                                               ...(22) 
 
 
Equation (22) is the equation for the vibration of a bubble in a liquid.  
Then, the circular frequency of the bubble is the imaginary part of the root 
of the quadratic eq.(22). Namely, 
 
 
                                                               ...(23) 
 
 
 
 
If we put as 
                                                              ...(24)  
 
Hence, the bubble natural frequency fn is given by 
  
                                             …(25) 
 
Therefore, 
                                       …(26) 
 
Substituting eq.(23) into eq.(26), have 
 
                                                                               …(27) 
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Here, neglecting the effects of the compressibility ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<<1

c
M , surface 

tension ( )0=σ  and viscosity ( )0=µ , we have 
 
                                                    ... (28) 
 
This equation is identical with the one given by Minneart as is reviewed in 
ref. [11].  

Results 
In this section, as an example of numerical calculations for the 

bubble natural frequency, comparisons of the present solution with 
Minneart's solution are made. The effects of liquid temperature, surface 
tension, viscosity, and ratio of specific heats for gas are also determined.  
The value used for the pressure Po in the liquid at infinity from bubble is 
101.3 kPa. The liquid and gas used in the calculation are water and air 
respectively. The physical properties of water show in Table 1 [12]. 
 
Table 1 Properties of water at 101.3 kPa 

T 
(°C) 

ρ  
(kg/ m3) 

σ  
(mN/m) 

µ  
(mPa.s) 

10 999.7 74.22 1.007 
50 988 67.95 1.008 

 
The effect of water temperature. As the liquid temperature changes, 
various physical values of the bubble, liquid density, surface tension, and 
viscosity will changes as shown in Table 1. So, even if the size of the 
bubble is the same, the value of the natural frequency (fn) changes. Hence 
the calculated values of fn in each case of water temperature 10 and 50 °C is 
shown in Fig. 1 and Fig. 2, respectively. From the figures, it can be seen 
that the value of fn becomes slightly larger as the water temperature rises. 
The effect of surface tension. The comparison of the calculated results 
with and without the effect of surface tension (σ) is shown in Fig. 3 and Fig. 
4 for water temperature 10 and 50 °C, respectively. In these figures the case 
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of considering surface tension is shown by the solid line and the case of 
neglecting it is shown by the dotted line. It can be seen from this figure that 
the effect of the surface tension (σ) appears noticeably at Ro< 0.01mm and 
that the value of fn becomes somewhat larger.  
The effect of viscosity. In Fig. 5, the comparison of the calculated results 
with and without the effect of viscosity is shown. It is evident that the effect 
of viscosity is slightly negligible.  
The effect of specific heat ratio. In Fig. 6, the comparison of calculated 
results in the case that the specific heat ratio of gas (air) in the bubble (γ) is 
1.4 with those in the case that it is 1.2 is shown. It can be seen from this 
figure that the effect of the specific heat ratio is slight. 
Comparison with Minneart's solution. The results of comparisons with 
Minneart's solution are shown in Fig. 7 and Fig. 8 for water temperature 
(T∞) 10 °C and 50 °C, respectively. In these Figures the solid lines are the 
present work and the dotted lines  are Minneart's solutions. Minneart's 
solution doesn't include the consideration of compressibility, viscosity and 
surface tension.  
From these figures, it can be seen that these effects scarcely appear for 
Ro>0.01mm. The present solution shows larger value than those of Minneart 
as Ro becomes smaller. 
 

Conclusions 
The results obtained in the present study may be summarized as 

follows:  
1- The theoretical equation of the natural frequency in a viscous 
compressible liquid (including the effect of surface tension) is given by 
eq.(25). But, gas diffusion and heat conduction are neglected.  
2- Minneart's equation can be obtained as a special case from our equation, 
i.e., eq.(28).  
3- As an example of calculated value, fn-Ro curves are drawn in both cases 
of considering the effects of compressibility, viscosity and surface tension 
(partly or all) and the case of neglecting them. From this, the following facts 
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can be concluded: (a) the effects of compressibility, viscosity, and water 
temperature scarcely appeared for Ro>0.01mm. (b) The effect of surface 
tension appears remarkable within the range of Ro<0.01mm. (c) The effects 
of water viscosity and ratio of specific heats of gas (air) in the bubble are 
slight. 

Nomenclature 
c: Sound speed in the liquid (m/s).  
fn: Bubble natural frequency (Hz)  
H: Enthalpy at bubble wall (J/kg) 
Pe: Static pressure in the bubble (Pa)  
Po: Pressure in the liquid at infinity (Pa) 
Pw: Pressure at bubble wall (Pa) 
R: Bubble radius (m) 
Ro: Equilibrium bubble radius (m) 
t: Time (s) 
To: Static liquid temperature (K) 
γ: Ratio of specific heats of gas 
µ: Liquid viscosity (N.s/m2)  
ρ: Liquid density (kg/m3) 
σ: Liquid surface tension (N/m) 
ω : Angular frequency (rad/s) 

nω : Normalized angular frequency (1/s) 
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Fig. 1 The natural frequency as a function of the bubble static radius

Po= 101.3 kPa
To= 10  C   o
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Fig. 2 The natural frequency as a function of the bubble static radius

Po= 101.3 kPa
To= 50  C   o



A.J. Harfash                                                         Unconditionally Stable….. 
 

  43

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

0.00 0.01 0.10 1.00
Ro  (mm)

0.00

0.01

0.10

1.00

10.00

f n
  (

M
H

z)
 

Fig. 3 Effect of surface tension on th relation between the natural 
           frequency and the bubble static radius

Po= 101.3 kPa
To= 10  C   o

with surface tension

without surface tension
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Fig. 4 Effect of surface tension on th relation between the natural 
           frequency and the bubble static radius

Po= 101.3 kPa
To= 50  C   o

with surface tension

without surface tension
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Fig. 5 Effect of viscosity on th relation between the natural 
           frequency and the bubble static radius

Po= 101.3 kPa
To= 10  C   o

with viscosity

without viscosity
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Fig. 6 Effect of specific heat ratio on th relation between the natural 
           frequency and the bubble static radius

Po= 101.3 kPa
To= 10  C   o
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Fig. 7 Relation between the natural frequency and the bubble static 
           radius comparison with an existing model
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Fig. 8 Relation between the natural frequency and the bubble static 
           radius comparison with an existing model

Po= 101.3 kPa
To= 50  C   o

Present model

Minneart model
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