Basrah Journal of Scienec (A) Vol.25(1),17-32, 2007

Unconditionally Stable Fourth Order compact
Finite Difference Scheme for 3D
Microscale Heat Equation.

A.J. Harfash
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Abstract

A fourth order compact difference scheme with a Crank-Nicolson
technique is employed to discretize three dimensions unsteady state microscale
heat transport equation. By introducing an intermediate function for the heat
transport equation, we use the fourth order compact scheme. The general form of
the solution is solved using the Gauss-Seidel method .The stability of this new
scheme is proved unconditionally stable with respect to initial values. We use the
test problem to compare the accuracy of this new scheme. The results show that the
compact fourth order finite difference scheme is more accurate than the second
order finite difference schemes.
Key words: finite difference, fourth order compact, three dimension heat transport equation, Crank-

Nicolson.
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Introduction
Many applications, including from phonon electron interaction
model (Qiu et al. 1993), the single energy equation (Tzou 1995-b, Tzou
1995(c)), the phonon scatting model (Joseph et al. 1989), the phonon
radiative transfer model (Joshi et al. 1993) and the lagging behavior model
(Ozisik et al. 1994, Tzou 1995(a), Tzou 1995(b)), can be modeled by the
microscale heat transport equation.
The three dimension Microscale heat transport equation for describing
the thermal behavior of thin films and other microstructure can be written as
(Zhang et al. 2001(c))

1 oT o’T T o’T T o’T o°’rT o’T o'T o°T

ot e s i T T T Y
(1)
The initial and boundary conditions are
S e )
T(0,y,2,0) =T,(y,2,1), T(L,,y,z,0) = T5(y,2,1),
T(x,0,z,t)=T5(x,z,1), T(x,L,,z,t)=T(x,z,1), 2)
T'(x,y,0,0) =T,(x,y,0), T(x,y,L.,t) =T, (x, y,1),

where T is the temperature, o, Tr and T, g are positive constants. Here « is
the thermal diffusivity. 77 and 7, represent the time lags of heat flux and
temperature gradient, respectively. S is the source (Zhang et al. 2001(c)).
Few authors deal with numerical solution of one dimension
microscale heat transport equation. By using Crank-Nicolson technique (Qiu
et al. 1992) solved the phonon electron interaction model. (Joshi et al. 1993)
used the explicit upstream difference method to solve the phonon radiative
transfer model in one dimensional medium. (Zhang et al. 2001(a)) solve the
one dimension microscale heat transport equation using fourth order
compact scheme and prove this new scheme is unconditionally stable with

initial value.
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(Zhang et al. 2001(b)) and (Zhang et al. 2001(c)) solve the two and
three dimension microscale heat transport equation, respectively, using
second order approxmations for time and space.

In this paper we develop the work of (Zhang et al. 2001(c)), to solve
the microscale heat transport equation in three dimensions for 7p =T, .
(Zhang et al. 2001(c)) drive finite difference scheme with second order
accuracy for space and time. We have a fourth order accuracy for space
(using compact scheme) and second order for time(using Crank-Nicolson
method). In section 3, we prove this new scheme is unconditionally stable
with initial value using the discrete energy method. In section 4, our results

are compared with the results of (Zhang et al. 2001(c)).

Fourth order compact discretization

For convenience, let wus consider a cubic domain
02 =[0,L,]1x[0,L,]x[0,L_]. Here subscripts are obviously not derivatives.
We discretize (2 with uniform mesh sizes Ax , Ay and A4z respectively in
the x , y and z coordinate directions. Define Nx=L,/ Ax , Ny=L,/Ay
and Nz = L_/ Azthe numbers of uniform subintervals along the x , y and z
coordinate directions, respectively. The mesh points are (x;,y;,z;) where
x;=idx , y;=jdy, zp=kAz 0<i<Nx, 0<j<Ny, 0<k<Nz.In
the sequel, we may also use the index pair (i, j,k) to represent the mesh
point(x;,y;,z;). Also, we discretize the time interval with uniform mesh
size At .

If T =T, equation (1) can be written as:

2 3 3 3 2 2 2
L(G—T+Tqaf):T 6T2+T 6T2T 6T2+67;+87;+67;+S.
a ot ot ! 0tox “otoy* ‘oroz?  ox* oy* oz (3)
suppose that the following function

oT 4
O=T+T,—. (4)

ot

Substituting (4) into (3), and after simplification we have

2 2 2
,fzza 8«9+8«9

2 + 2 2
X oy 0z (5)
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f_l%_g

Ca ot

where .

The modified initial and boundary conditions

0(x,.0) =T, (x,y,2)+T,T,(x, y,2) 6)
00,,2.0 = (20 + T, T2EE0 o1 yzn =1z 47, 2D,
9(x,0,z,t)=T3(x,z,t)+TqW, H(X,Ly,Z,t)=Tﬁ(X,Z,t)‘FTqW,
e(xayooat):T4(%)’J)"'QW» e(xayaLzat):T7(xayat)+TqW'

(7)
The derivatives of Eq.(5) can be approximated by a second order accuracy

2 2 A4
as 001 _ 529 AX 00, 50axh,

ox~ |, v 12 ox
®)

820 , Ay? 340 \

=00, — + O (A s
ayZ i y 7 ik 12 ay4 ( y )
026 Az? 840

=520, - —— +0(AzY).
0z Ou — T oA

By using these finite difference approximations, Eq.(5) can be discretized
at a given grid point (7, j, k) as

2 2 2
where

Tij/c

Ax® 0'6 Ay? 0'0 Az* 00
= raln ral r )

12 0ox 12 oy 12 0z (10)
We have include both O(hz) term in Eq.(10) because we wish to

approximate all of them in order to construct an O(h4) scheme. To obtain

} +O(Ax*, Ayt AZ*
ijk :

fourth order compact approximation to the O(h2 ) terms in Eq.(10), we
simply take the appropriate derivatives of Eq.(5),

o‘e _a’f o'e  a'e (11)
ox*  ox*  ox’oy? ox?oz’
o' o’y 0% 00

oy* 0y® oy’ox’ - oy?oz*’
o' o' f B 0o B 0'0
oz 0z  o0z'ox* 0z'oyt
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Substituting Egs.(11) into Eq.(10) yields

Ax@f Ayaf Az@f Ax? Ay 0'6

—(
12 ox? 12 oy’ 12 0z° 12 12 " ox’oy?
Ty = * Y z T L oAxt, Ayt AzY).
Ax*  Az* 06 Ay* AzP_ 0%0
= ( + 2 2_( + 242
12 12~ 0x“0z 12 12 " oy“oz

(12)

Substituting the truncation error 7;; (12) into (9) we get the fourth order

ijk
compact scheme for (5) as follows:

(13)
5¥9,j,{ +5}6’Uk +6° S0, + (Ax + Ay’ )5 5’ N (Ax +Az? )5 S5’ 0,
Ax Ay
+—(Ay +Az? )5 5! gyk =fijk +F£ffijk 12 5 fk D 5 fyk

+O(Ax* + Ayt + AzY)

We use the fourth order compact scheme (13) with Crank-Nicolson

technique in (5) by considering f = 2o S, we have
a

oy vy

)+52(t9”+1 +6;

ijk ijk

Y+ (O + 8!

ijk ijk

1 7+ n
g (7 + 575 +07)

n
)+2i<Ay2+Az2>6262(a7;1 v = [l%—sz
100 o 100 =\, A22 100 =

(E SRR 5y(a ot AT (___

ijk ijk

+%(sz +AZ*)552 (0 + 0!

)jes

(14)
00| _ 0, -0

with Ot |yk At
where At is the time step, (14) becomes

1 n+ n 1 n+ n
A ,/k)+—5 (Hyk1+¢9,/k)+—5 (6’[/,{1+¢9,jk

1 n+ n 1 n+
$000;" +0 )+ oy (A7 Ay)oTs] (0

+0[;’,{)+—(Ax +Az*)5252(0

ijk

n+ n 1 n+
"0+ E(Ay2 +Az%)562(0, +6;,) =

0n+1 671 1 9n+1 0}1 1 0n+1 671
L 2y sy A L e Oy gy A L (O
a At 12 At ’ 12 At

1 2 n+l n 1
n+— Az 1 6’.. —9[. n+—
(15) “Su ) G T S,
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where

YT (AXAN) | 40, 40, + O k

525°6,, = 1 |:49ijk =200 15 O T O+ 0000)
 + 0,

}O(AxiAyz),

i—-1j-1 i+1j-1 i+1j+1 i—1j+1

49 _2 g +9+ k 01 +9i"+
5 522€,k _ 1 _ ( i—1 jk i+1 jk ijk -1 ijk l) +0(Ax2,A22)’
Y (AxAz)* | +80, ,, ,+6 +0 + 6

i+1 jk -1 l+1]k+1 i-1jk+1

6 529 — 1 |:46ijk _2(61jk 1+0yk+1+0,j 1k +0ij+1k)
ij—1k—

_— +O0(Ay?*,AzZ?).
T (AyAz) |+ 0, + 0, +0 +6 } (Ay=.Az7)

ij—1k+1 j+lk+1 ij+1lk-1

Equation (15) used to evaluate 9,7,: ! For computing 7y ml we discretize 4)

using Crank-Nlcolson method

1 n+ n n+ n+ n
?(ez/k 1 + 91}]{ ) = (lek 1 + Tyk ) + ?(Ty/c ' lek ) (16)
Simplification equatlon (16) to get U’}: , we have
T At LAt . (17)
Ijk : - (_+ T ) (T - )lek ( 2 T ) ! (ezlk : + g;’f}c)
which can be used to evaluate 7, U"k+1 .
Stability analysis

We shall prove the unconditionally stability of the compact finite
difference (12) and (14) with respect to the initial values. The technique that
we will use in our proof is the discrete energy method (Dia, 1992, Less
1961). To this end, we denote D to the set of discrete values
{e":{egk},withegjk:e’]’\gk:eﬁ)kzeﬁ\,k ejio = ey =0. 1<ljk<N}
We then make the following norm definitions for any e”, /" € D,
e ae St =)

The following fdskitts can be verified easily [1, 4].
Lemma 1: Foranye”, /" € D, the following equalities hold.

(e, ") =—Asensrm) (8. s)=Hse 0,07} (6. 1")=se"5.17)
(s, /")=-A65,".6.5.1") (@oer.f)=-A6.5e".55.1")
(252, 17)=-8,8".8,8.1"),

e"‘:
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where
5 e = ein+ljk _ezjk S e = e;'ﬂk _e;k 5 e = e;kﬂ -
* Ax ’ g Ay ’ : Az
are the forward difference operators.
Theorem: Suppose that {T;k, ;k} and { l-;jc,g“l;’k} are the solution of the
finite difference scheme (15) and (16) which satisfy the initial and boundary
conditions (5) and (6), and have different initial values {ljk,@ } and
Uk,fljk }, respectively. Let, wyj =05 —&5 and & =T — Vi then
l-jk, ijk satisfy
2 sz
J’_i
12

AZ*
12

ow'

X

s
12

T
+Zq(Ay2 +Azz] ;

)+2’(sz +Ay2] 0,

sz
12

oo+ o+ o o]+

+76;(Ax2+Azz] ' 0.&8"
(Ay oo e

(18)

for any 0<nAtr<ty,, . This implies that the finite difference scheme is

%(Ax +Azz]

76;(Ax2+Ay2} 5, o[

unconditionally stable with respect to the initial values.
Proof: Firstly, we substitute (16) into (15) we get,

1 n+ n 2 n+ ? n+ VI Zz n+ n
E{@jk‘ O+ AY 520 -6 )+ yza(eyk‘ 05+ 02 0 - ,jk)}

ijk

1 n+l n Tq n+l n 1 n+l n Tq n+l n
255 (7, +T;‘/'k)+_5 (TI/k zjk)+55 (Tz/k +Tg/k)+A_t§ (TI/k Tz/k)

v o (Tl,";‘+Tl,k)+ ST T

b (8 4y)8257 (T,;,z“ T+ ;At (A +49")8263 (T ~T5)

b (A AN T 4 T (1 -1
+%(Ay2+Azz)§;§ (T + Ty v =T (19)
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Since {lek %’k} and { ik > fl]k} are both the solutions of (19) with the same

boundary conditions, so (W}, & f€ D, and they also satisfy

1
a At

= (ol a2l e Do 02l e ) e e )
%(52(‘9/;1 gjk))*‘%(éz(g;;l —g;‘k))+i(Ax2 +Ay2)5x 55(352 +‘9;k)+
Tth(sz +AY )5§5y2 (5521 —8;k)+i(Ax2 +Azz)df5f (g;;l +g;k)+

i A+ A2 )55 el — L A + A )52 el + &l )+
ijk 24 y by y

{W Sy 52(“’5? %H—ﬁzwl— ,k>+—52<w,;1— ,;-kJ

- t(Ay + A2 )2l — s ) (20)

From (16), we can see that

wi + Wi _(g",jl + &y +—(g.”.+1 —¢l ) (21)
Using (21) and Lemma 1, we can obtain the follown]lg equalltles
Gl &) 8w 4w )= o7 +em) + U\ég“

(5x(5n+l - 5"); o, (W’H1 +w" )): se! ? T, (

(6,67 427} 8,00t 4w )= 6, (7 + 27 )rﬁi(

[ S}

H5 g"

[SS]

o
[\
iﬂ
[
Qf;
" (‘0
3 =
o
» . ) ) iy > »

o

X

(8n+l _ gn

n
— Hé’xg

S

n
Hé'yg

(6,7 =&") &, (W +w"))=]5,¢

y

Qf)
i
|
CO
]
~—
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Bole ve) ool vw)=lssle +& | +%q(”5x525n+1 ’ —Héxazg"uzj,

Eole—e) 88w +w)=lo.e | |65 +2A—Tj[H5x@ (e-eT)

(Bole ek sl o )=l oo ver [+ 2e(Jo e [ |, o)

(.0l =) 6.6, +w ) =[s,6.6 [ ~J5,5.°[ +ﬂ(”5y52 (e —g"}f).
o) At

By multiplying both sides of (20) by (w;}-“ + W) )AxAyAz and sum over i ,
j and k we can get

L = )+ 2 (s Y AR (1 )
EMW [ )25 (oo ~for )+ (e -l )
o oo 5o serb o)

+—(5y2(5 ) w l+w)+% Se™ + ") W+ w)
#(32(e —an) w2 (53 o) )
+%(5z(g o) W)

- - -
+(Ay2 +A22 _(52522(8n+1 +gn)’wn+l +Wn)+ 2th (52522(517+1 —En))W’H—l +Wn) A
@)

We can find each term on the right-hand side of (23). Using lemmal and

(22), we can get
T PR (P ) e (e oy
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)

38}

S (S

%( f(g —& l w' +w Z‘;[H&g i

%(55(3”“+3”), w””+w”): —%( ) (5 +e 1‘2+2—(H5 g™ H5y8" 2) )
T

gler o) wow)=— 2o - 22 ol o) )}

%(522(€n+1+8nl Wn+1+wn):_%( 5z(gn+1+gn1‘2+%(”(szgn+l 2_“52‘9"‘2] ’

%(53(5"”—3"1 Wn+1+wq):_§qt .7 2—”528””2+%[H5z(8"”—8 2] ’

i(Ax2+Ayzx5xz§yz(g”” +& ),w +w”)

- —i (Ax2 +AY° {Hd‘é‘y (5"” +&" 1‘2 + Z—TZ (H@é'yg”“

et

NN P ER0

12A¢
e+ 2 fo e ) ]}

i(Ay +Az Xé‘yé‘z(g +¢& )7w +w)

- 1§A (A + 4y {Hadg &

:—i(Ay2+Azz{H5yé'z(g"” re" )\2 2, (Hs 5. ~[s,6.¢"| ﬂ
lZTA (A + Az Jo782 (e = oy b +w")
N [ e )

Lo st o)

_ _%(sz +A221:H5x§z(8n+1 e 1‘2 2T (H& 5 " H _H§ 5 & H \J:|’
12TA (Ax AR X5 5 ( _gn)’wn+l+wn) (24)
S [ e T |
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Substituting (24) into (23), yield
(25)

2l ““—wﬂ?+Af(5wwz—aw"1+“*(awﬂz
a At 12 ! g !

A 1 . 27,
P22 (o o)==l e+ e

2
n
y )

(U R (2

n+l
‘5_; -

_214(Ax2+Ay2{5x5 (e +e)
12TA (a5 + 4y {
_i(sz + Azz{éxé‘z (g"ﬂ + g"]r +&(H5X528n+1
T, (ax® + a2 o, (“55( o
12At

_i(Ay +AZ? {5},52(&""” +5n}‘2 +7q(H5y528"” 2 ) 2)}

T
(e ){5 .67 5,6 + 2,0, ))}

[Ha 5,

after dropping the twelve negative terms from the right-hand side of (25) we
have
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! P LA (s e YL (s e .
B (e (R I (X ey
A2 oo o) <=2 (Joe -l )-(foe o)
(Jo.e o] j} 6At[(Ax2+Ay (o8 [ ~Js.5.07)

-ae s oo [ -foae )l o oo -laaa)|

+1
Wn

This implies the following

1
— [
a

125,61

n+l

R

: Ay s }qu .

2
| n+l 2
z
12

+%(Ax2 + A221|5x528n+1 ’

+ % (Ax2 +AY ]|§x5 &l ’

2 5.6

e A Ay
< Ll oA e+ o+ o

+27, |5,¢” || +2T [5,¢” || +2T 56" || 49 (Ax2+Ay ]|553 || +

+ % (Ay2 +AZ* 1|5y528”“

warafose] oo ra o oef 26)
(18) follows from (26) by recursion with respect to 7.
Numerical Results

Numerical experiments are conducted to validate the proposed
discretization scheme. A model problem is constructed by
setting?, =1, « =1/3, § =0.0. The boundary and initial conditions are set
to satisfy the exact solution as

T(x,y,t) =" 0<t<1, 0<x,y,z<1. The absolute error

evaluated by using the following equation

-1 N,-IN_-1

Z ZZ::|T/k

(N, =D(N, =1)(N.-1)

Error =

where T represents the approximate value and 7,;; represents the exact

value. The errors of the fourth order and the second schemes are compared
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in Fig. 1 and Fig. 2 for 0.001< 4¢<0.02 and two choices Ax =0.1 and
Ax =0.05. The errors of the fourth order scheme are shown to be smaller

than those of the second order scheme in both cases.

8.E-04 A

7.E-04 1

5.E-04 A

second order scheme

4.E-04 1
— — — — fourth order scheme

absolute error

3.E-04 A

1.E-04 A -

1.E-06 ———— . . . . .
0.001 0.004 0.006 0.009 0.011 0.014 0.016 0.019

At

Fig. 1: Absolute error comparison of second and fourth order schemes at T g = 1,

a=1/3, §=00, Ax=4y=4z=0.1 and t=1.0.

3.E-04

2504 second order scheme

— — — — fourth order scheme

2.E-04 A

absolute error
N

1E-04 L7

6.E-05 - e

1.E-07 = T T T T T T
0.001 0.004 0.006 0.009 0.011 0.014 0.016 0.019

At

Fig. 1: Absolute error comparison of second and fourth order schemes at

andt=1.0. Ax =Ay =4 =0.05, §=00 T, =1, 2 =1/3
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Note that the truncation error is of order O(At?, Ax*, Ay*, Az*) for
the fourth order scheme and of order O(At2 ,sz,Ay2 , Az’ ) for the second
order scheme. Thus, if Ar is large and the temporal error component
dominates, the difference in error magnitude between the fourth order
scheme and the second order scheme will decrease.

The results of errors for TU" at t =1.0, computed for Ax = Ay = Az =0.05
and two choices 4f =0.002 and At =0.001 using the both the fourth order
and second order finite difference schemes are listed in Table 1. Also, we
note that the errors of the fourth order scheme are to be smaller than those of
the second order scheme in both cases.

Tablel: The absolute error computed by second order and fourth order

scheme with Ax = Ay = Az = 0.05.

At=0.002 At=0.001
second fourth

X y second order | fourth order | order order

0.05 ]0.05 |4.02E-06 4.62E-07 3.67E-06 | 1.16E-07
0.1 0.1 1.69E-05 5.60E-07 1.65E-05 | 1.44E-07
0.15 [0.15 |3.97E-05 6.89E-07 3.92E-05 | 1.81E-07
0.2 0.2 7.17E-05 8.49E-07 7.11E-05 | 2.28E-07
025 [0.25 | 1.12E-04 1.04E-06 1.11E-04 | 2.84E-07
0.3 0.3 1.57E-04 1.26E-06 1.56E-04 | 3.49E-07
0.35 [0.35 |2.05E-04 1.51E-06 2.04E-04 | 4.21E-07
0.4 0.4 2.53E-04 1.78E-06 2.52E-04 | 5.00E-07
045 [0.45 |297E-04 2.07E-06 2.96E-04 | 5.83E-07

0.5 0.5 3.34E-04 2.39E-06 3.32E-04 | 6.69E-07
0.55 [0.55 |3.61E-04 2.72E-06 3.59E-04 | 7.59E-07

0.6 0.6 3.75E-04 3.08E-06 3.72E-04 | 8.51E-07
0.65 [0.65 |3.73E-04 3.46E-06 3.70E-04 | 9.45E-07
0.7 0.7 3.54E-04 3.86E-06 3.51E-04 | 1.04E-06

0.75 [0.75 | 3.16E-04 4.31E-06 3.13E-04 | 1.15E-06
0.8 0.8 2.61E-04 4.81E-06 2.58E-04 | 1.26E-06

0.85 [0.85 |[1.91E-04 5.37E-06 1.87E-04 | 1.38E-06
0.9 0.9 1.13E-04 6.04E-06 1.09E-04 | 1.53E-06
095 (095 |4.14E-05 6.84E-06 3.63E-05 | 1.72E-06
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Conclusions

We devised some numerical techniques for solving a three
dimensional governing microscale heat transport equation. We proposed a
fourth order accurate finite difference scheme to discretize the governing
equation.. The system resulting from this scheme is solved by using Gauss-
Seidel iterative method. The finite difference scheme has been proved to be
unconditionally stable with respect to the initial values. Our Numerical
results showed that the fourth order compact scheme is computationally

more efficient and more accurate than the second order scheme.
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