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Abstract 

 A new model of bubble dynamics in acoustic field is constructed, including effect of 

heat transfer at bubble wall. The temperature inside the bubble is calculated by solving the 

energy equation of the gas inside the bubble (using finite difference method). The liquid 

temperature at bubble wall is numerically calculated by assuming an exponential profile of 

liquid temperature. It is including effect of thermal conduction at bubble wall. Calculations 

are performed for adiabatic model. 

 The results reveal that the effect of heat transfer is considerable on bubble dynamics. 

The calculated results fit with the experimental data of radius-time curve much more 

satisfactorily than those by the adiabatic model (without heat transfer). It is clarified that the 

effect of heat transfer stabilizes bubble oscillations.   

 

  حرآة و انتقال الحرارة لفقاعات غازية في وسط صوتي
 الأسدي زكي عباس 

   العراق- جامعة البصرة - كلية الهندسة -قسم الهندسة الميكانيكية 

  

 الخلاصة

احتسـبت  . تم بناء نموذج جديد لحركة فقاعة في وسط صوتي متضمناً تأثير انتقال الحرارة عند جدار الفقاعـة                

باسـتخدام طريقـة الفروقـات      (اعة بواسطة حل معادلة الطاقة للغاز الموجود داخل الفقاعـة           درجة الحرارة داخل الفق   

كانت متضـمنة تـأثير     . احتسبت درجة حرارة السائل عند جدار الفقاعة عددياً بواسطة فرض شكل أسي لها            ). المحددة

  .أجريت الحسابات للنموذج الأديباتيكي. التوصيل الحراري عند جدار الفقاعة

تطابق النتائج المحسوبة مع البيانات التجريبية . النتائج أن تأثير انتقال الحرارة مهم في حركة الفقاعةتبوح 

وضحت ). بدون انتقال حرارة( الزمن أكثر مرضي من تلك النتائج المحسوبة للنموذج الأديباتيكي -لمنحني القطر 

 .النتائج أن تأثير انتقال الحرارة يجعل تذبذب الفقاعة مستقراً
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1. Introduction 

The study of oscillations of gas bubbles in a liquid is of considerable practical interest 

specifically in regard to the question of the possible use of bubble screens for damping shock 

waves and the use of acoustic disturbances for intensification of technological processes. 

In gas-liquid flows, the mass, force and energy interactions between phases originate on 

the interface surface. These interactions can be significantly altering the flow velocity, 

pressure and temperature fields. A correct specification of the inter-phase heat and mass 

requires the knowledge of interaction of single inclusions with the carrier phase [1]. 

At present a number of publications are available in which different aspects of the 

problem of oscillations of gas bubbles in a liquid are studied. It has been revealed that the gas 

bubbles in a liquid are studies. It has been revealed [2] that in the case of small oscillations of 

a bubble within a wide range of the equilibrium values of its radius the heat transfer 

dominates over other dissipation mechanisms, i.e. velocity and compressibility of the liquid. 

The problem of heat transfer in the course of nonlinear oscillations of a gas bubble was 

studied experimentally [3]. The results of numerical solution for the nonlinear problem of 

thermal and dynamic interactions of a gas bubble with the liquid induced by a sudden 

pressure change in the liquid are presented in ref. [4]. A number of studies deal with the study 

of growth and collapse of vapor bubbles in a liquid (see ref. [5]). The assumptions of the 

temperature uniformity in the bubbles and of the thinness of a thermal boundary layer in the 

liquid, adopted in the majority of these studies, considerably simplify the problem but hold 

under certain restrictions only. The heat transfer effects on the vapour bubble dynamics with 

account for the temperature nonuniformity in it is considered in ref. [6]. 

In this paper, we construct a mathematical formulation that enables us to study the 

motion of a bubble in a liquid and the effects of heat conduction, shear viscosity, 

compressibility, surface tension, temperature non-uniformity in the bubble, and variation of 

liquid temperature at bubble wall on their dynamical behavior. The formulation is specifically 

designed to describe the motion of a bubble that expands to some maximum radius and then 

contracts violently. This formulation consists of a set of nonlinear equations that can be 

solved numerically. 

In section (2), the adiabatic case is described, which is frequently employed in the study 

of bubble dynamics in liquids. Also, the new case is described in which effects of thermal 

conduction inside the bubble and variation of liquid temperature at bubble wall. In section (3) 

we present and discuss results and in section (4) a number of conclusions are presented. 

Followings are the description of the cases.    
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The author has already constructed a model of bubble dynamics in acoustic field 

including effect of thermal conduction inside and outside a bubble [7]. In this paper, effect of 

variation of liquid-temperature is newly included in the study of bubble dynamics. This paper 

gives the results of investigation of the heat transfer effect on the dynamics of gas bubbles as 

well as of the reverse effect of the dynamics of radial bubble motion on the enhancement of 

heat transfer between the bubbles and liquid. 

 

2.1 Case(1) Adiabatic Model 

In this case, pressure and temperature are assumed to be spatially uniform in a bubble. It 

is a good approximation only when R&  <<  cg , where R&  is the speed of the bubble wall and cg 

is the speed of sound in the bubble [8]. The liquid temperature on the external side of the 

bubble wall is assumed to be constant (T∞) during bubble oscillations. The temperature 

discontinuity (∆T) exists at the bubble wall (∆T=Tg-T∞). In this case, it is assumed that no 

heat exchange is taken into account between a bubble and the surrounding liquid. 

As an equation of bubble radius (R), eq. (1) is employed in which  the effect of 

compressibility of liquid is taken into account (the derivation of eq. (1) was given by the 

author in ref. [7]).  
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PLR is the liquid pressure on the external side of the bubble wall and PL∞ is the sum of the 

ambient static pressure (Po) and a nonconstant ambient pressure component such as a sound 

field. When a bubble is irradiated by an acoustic wave [9], 

tsinPPP moL ω−=∞                                         …(3) 

 

where Pm is the pressure amplitude of the acoustic wave and ω  its angular frequency. PLR is 

related to the internal bubble pressure Pg(t) by [10],  
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The dynamics of a gas bubble in a liquid is strongly dependent on the pressure of the 

gas contained in it. A situation where the bubble interior contains an incondensable gas can be 

simply represented by a polytropic law of compression by [11] 
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is the internal pressure corresponding to the rest radius Ro.  

 

2.2 Case(2) Heat Transfer Model 

The difference between this case and the adiabatic case is the inclusion of the effects of 

heat transfer inside the bubble and variation of liquid temperature at bubble wall. In this case, 

pressure is assumed to be spatially uniform in a bubble as in the adiabatic case. The liquid 

temperature on the external side of the bubble wall is assumed to be variable (TLR) during 

bubble oscillations. Followings are the different points as compared with the adiabatic case, 

but eq. (1) is used for the motion of bubble radius as in the previous case. 

The internal pressure Pg is found by integrating [12]    
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where γ is the ratio of the specific heats of the gas and k is the gas thermal conductivity. The 

bubble interior is then described by an ordinary differential equation for the pressure and a 

partial differential equation, the energy equation, which is written in the following form (the 

gas temperature field Tg (r,t)). 
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with the following analytical expression for u(r, t): 
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where TL(r) is the liquid temperature at radius r and kL is the thermal conductivity of liquid. 

kL and kg depend on the liquid and gas temperature, respectively. The formulas of them are 

reported as an Appendix in ref. [8]. In this case, 
R
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temperature is continuous at the interface: 

TL (R,t) = Tg (R,t)                 … (11) 

The spatial distribution of the liquid temperature (TL=TL (r)) should satisfy the 

following boundary conditions.  

TL(R) = TLR                                        … (12) 
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In the present case, the temperature profile in the liquid  (TL=TL (r)) is assumed to be 

exponential (eqs. (16) and (17))  [14]. 
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where e0 is a parameter with the numerical value (e0=1 x 10-3). Both eqs. (16) and (17) satisfy 

the boundary conditions given by  (eqs. (12)∼(15)). 

In the present case, a boundary layer is assumed in liquid phase near a bubble. The 

thickness of the layer (δL) is assumed as given in eqs. (22) and (23).  
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The variation of the liquid temperature at bubble wall (TLR) is calculated by the 

following equation: 
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where )q(q 21 ′′ is the energy flux at r = R (r=R+δL) per unit area and unit time, and cpL is the 

specific heat of liquid water at constant pressure. 1q′  and 2q′  are calculated by eqs. (25) and 

(26), where  
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 The physical quantities of liquid at interface depend on the liquid temperature (TL) and 

the liquid pressure (PL). Formulas of these quantities employed in the calculations are 

described in the next section. 

Eqs. (1), (7), (8) and (24) are collectively dealt with in a single computer program and 

solved numerically. Since eqs. (1), (7), and (24) are ordinary differential equations, while eq. 

(8) is a partial differential equation. A finite-difference, second-order method [15,16], were 

employed to solve them numerically. 

3. Results and Discussion 

 Calculations are performed under a condition of To=20 oC and Ro=10.5 (µs), where To 

and Ro are the ambient liquid temperature and the initial bubble radius, respectively. The 

frequency and the amplitude of the acoustic field are chosen to be 26.5 kHz and 1 bar, 

respectively. The undisturbed pressure is taken to be Po=1 bar. Calculations start from the 

time t=0 (µs) with the initial conditions: 

oLoLRgo PP,TTT,0R,RR ===== ∞
&  

 
(A) case (1): Adiabatic Model 

Under the physical conditions employed in the calculations described above, a periodic 

solution is obtained by numerical calculations as is shown in Figs. (1∼4) for one acoustic 

cycle by the adiabatic model.  

 The pressure of the acoustic field applied on a bubble and employed in the calculation 

is a function of time. The bubble radius (R) is shown in Fig. 1 as a function of time. The 

bubble wall velocity )R( &  is shown in Fig. 2 as a function of time. Both the radius and the wall 

velocity of the bubble change with time periodically.  

In Fig. 3, the pressure inside the bubble (Pg) is shown as a function of time with 

logarithmic scale for vertical axis. In Fig. 4, the temperature inside the bubble (Tg) is shown 

as a function of time with linear vertical axis. Both the pressure and temperature change with 

time periodically. At the slow expansion phase in a bubble oscillation, the pressure and the 

temperature inside the bubble is slightly less than the ambient liquid pressure and 

temperature, respectively. On the other hand, at collapse stage the bubble, Pg and Tg increase 

suddenly, followed by oscillations due to the bounces of bubble radius (see Fig. 1). 
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(B) Case (2): Heat Transfer Model 

The results of the calculation using the model with thermal conduction both inside and 

outside the bubble (hereafter it is called” the model with HT’) stated in section 5 are shown in 

Figs. 5∼9. The results of the calculation shown in these figures indicate that the ratio of 

specific heats of the gas (air) inside the bubble of order of 1.4, the specific heat at constant 

pressure of liquid (water) is taken to be 4.2 kJ/kg.K. 

 As is shown in the figures 5∼9, all the physical quantities of a bubble change with 

time periodically with the frequency of the acoustic field applied on the bubble. In Fig. 5, the 

bubble radius (R) is shown as a function of time. In Fig. 6, the bubble wall velocity )R( &  is 

shown as a function of time.  

In Figs. 7 and 8 the pressure (Pg) and the temperature (Tg) inside the bubble are shown 

as a function of time, respectively. At the slow expansion phase in a bubble oscillation, Pg is 

slightly less than the ambient liquid pressure (Po) and Tg approaches (∼ equal) liquid 

temperature (To) (isothermal process). On the other hand, at collapse stage of a bubble, Pg and 

Tg increase drastically, followed by small oscillations due to the small bounces of bubble 

radius (see Fig. 5). The liquid-temperature at the bubble wall (TLR) is shown in Fig. 9 as a 

function of time. It is concluded from Fig. 9 that TLR is almost identical to To during bubble 

oscillations except at strong collapses. At strong collapse, TLR increases due to the thermal 

conduction from the heated interior of the bubble to the surrounding liquid. 

 In Fig. 10, a comparison is given between the radius-time curve calculated by the 

model with HT (line) and those calculated by the model without HT (dash) for one acoustic 

cycle (∼ 40 ms). The solid circles are the experimental data by Barber and Putterman [17]. It 

can be seen from the figure that the radius-time curve calculated by the model with HT (line) 

fits the experimental data (solid circles) more satisfactorily than that calculated by the model 

without HT (dash). 

Comparisons for the two cases of the temperature (Tg) and pressure (Pg) inside the 

bubble are shown in Fig. 11 and Fig. 12, respectively. It is concluded from the figures that the 

effect of heat transfer is considerable on bubble dynamics. 

 

4. Conclusion 

 A new model of bubble dynamics is proposed in which heat transfer (thermal 

conduction both inside and outside the bubble) is included. The assumption of the spatial 

uniformity of temperature in a bubble is no more a realistic one at the strong collapse of the 

bubble, while in this study the temperature in the bubble is calculated by solving 
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liquid temperature profile near bubble wall is assumed to be exponential.  

 From the calculations, it is concluded that the effect of heat transfer is considerable on 

bubble dynamics in  the acoustic field. The calculated results fit with the experimental data of 

radius-time curve much more satisfactorily than those by a model without heat transfer. It is 

concluded that the effect of heat transfer at bubble wall stabilizes bubble oscillations. It is also 

concluded that a bubble transducers the energy of the acoustic wave into heat.   

 
 

5. Nomenclature 
 

Symbol Definition Unit 
c Sound speed in the liquid at infinity m/s 
cpL Heat capacity of liquid at constant pressure   J/kg.K 
f Acoustic field frequency Hz 
k Thermal conductivity W/m.K 
P Pressure Pa 
PL∞ Pressure of the static and acoustic pressure Pa 
Po Ambient liquid pressure Pa 
Pm Acoustic pressure amplitude Pa 
Pgo Equilibrium pressure in the bubble Pa 
r Radial distance from the bubble m 
R Bubble radius m 
R&  Bubble wall velocity m/s 
R&&  Second derivative of the bubble radius m/s2 

t Time s 
T Temperature K 
TLR Liquid temperature at bubble wall K 
T∞ Ambient liquid temperature K 
u Velocity m/s 

1q′  Energy flux at r =R J/m2.s 

2q′  Energy flux at r = R+δL J/m2.s 
γ Ratio of specific heats for gas  
δ Thickness of the liquid layer m 
µ Liquid viscosity N.s/m2 
ρ Liquid density kg/m3 
ρ∞ Ambient liquid density  kg/m3 
σ Surface tension N/m 
ω  Angular frequency (2πf) rad/s 
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Subscripts 

g : Refers to gas in the bubble 

L : Refers to liquid 

LR : Refers to liquid at bubble wall 

o : Refers to the equilibrium value 

∞ : Refers to the condition at a great distance from the bubble. 
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Fig. 1. The bubble radius (R) as a function of time.
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Fig. 3. The pressure inside the bubble (Pg) as a function 
                  of time with logarithmic vertical axis.
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Fig. 5. The bubble radius (R) as a function of time.
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Fig. 6. The bubble wall velocity (R) as a function of time.
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Fig. 7. The pressure inside the bubble (Pg) as a function 
                  of time with logarithmic vertical axis.
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Fig. 8. The temperature at the bubble center as
                  a function of time.
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Fig. 9. The liquid temperature at the bubble wall ( TLb)
                  as a function of time.
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  Fig. 10. Comparison between the calculated results and the 
 experimental data[17] of radius-time curve for acoustic cycle.
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Fig. 11. The pressure inside the bubble (Pg) as a function 
          of time with logarithmic vertical axis for two cases.
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Fig. 12. The temperature at the bubble center as
                  a function of time.
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