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Abstract 

 A perturbation analysis is made of a nonlinear wave equation describing a solution to 
the problem of oscillation of gas-filled spherical cavity in an infinite compressible liquid. 
Numerical solution has been made of radial motion of the bubble in the liquid. The 
mathematical formulation takes into account the effects of the thermal conduction both inside 
and outside the bubble. The gas in the bubble is air and the liquid is water. The numerical 
results indicate that the thermal conduction strongly influence the dynamical behavior of the 
bubble in acoustic field. The calculated result fits with the experimental data of radius-time 
curve. It is clarified that the effect of thermal conduction stabilizes bubble oscillations. It is 
also clarified that the bubble transducers the energy of the acoustic wave into heat. 

  تحليل نظري للحركة ألقطريه لفقاعة غازيه كرويه  

  

  عباس زكي الأسدي

  العراق– جامعة البصرة - كلية الهندسة -قسم الهندسة الميكانيكية 

  

 الخلاصة

تم تكوين تحليل إحصائي لمعادله الموجه اللاخطيه لوصف حل مسألة تذبذب فقاعه كرويه مملوءة بالغـاز فـي                  

تعطي الصيغ ألرياضـيه    . تم تقديم حل عددي لمعادله الحركة ألقطريه للفقاعة في السائل         . سائل انضغاطي غير محدود   

. الغاز داخل الفقاعة هو الهواء والسائل المحيط بالفقاعة هـو المـاء           . تأثيرات التوصيل الحراري داخل وخارج الفقاعة     

تطابق النتائج . للفقاعة في وسط صوتيوضحت النتائج العددية أن التوصيل الحراري مؤثر بقوة على التصرف الحركي        

وضحت الحسابات أن تأثير التوصيل الحراري يجعل تذبـذب         .  الزمن -المحسوبة مع البيانات التجريبية لمنحني القطر       

  .كذلك وضحت أن الفقاعة تحول الطاقة للموجة الصوتية إلى حرارة. الفقاعة مستقراً
1- Introduction 

Cavitation is the formation and activity of bubbles (or cavities) in a liquid. Here the 
world formation refers both to creation of a new cavity or to the expansion of a pre-existing 
one. In a non-following system, the ambient pressure can be varied by sending ultrasound 
waves through the liquid, as in a sonochemical reactor. If the amplitude of the pressure 
variation is great enough to bring the pressure locally down to the cavitation threshold 
pressure, in the negative parts of the sound cycle, any minute cavity will grow. Thus tiny 
bubbles grow and contract in the sound field [1]. 

A gas bubble in a liquid performs forced radial oscillations when a sound wave 
impinges upon it. Oscillations of large bubbles were originally analyzed by Rayleigh (in 1917 
as is reviewed in [2]) derived an equation of the bubble collapse. He  assumed that the 
surrounding liquid is incompressible and inviscid, that the bubble remains spherical, and the 
surface tension is negligible. Plesst [3], Noltingk and Neppiras [4], and Poritsky [5] modified 
equation of Rayleigh  to include the effects of viscosity, surface tension, and an incident 
sound wave. Keller and Kolodner  [6],  who  included  the effects of  acoustic  radiation  by  
treating          the surrounding liquid as slightly compressible, made a different modification.  
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We shall combine these modifications to derive a new equation for the bubble radius. It 
includes the effects of acoustic radiation, viscosity, surface tension and an incident sound 
wave. In the present paper, the perturbation method which used by Benjamin [7], Jahsman 
[8], Tomita and Shima [9], and Fujikawa and Akamatsu [10] will be used to control the 
behavior of the functions appearing in the series. 

In this paper, the pressure and temperature inside the bubble shall be calculated by 
solving numerically (using finite difference method) the energy equation of a gas (air) inside 
the bubble. Temperature distribution in liquid (water) will be calculated from the energy 
equation in the liquid (which is solved numerically).     
 

2. The Bubble Model 
2.1 Statement of the problem 

There is a spherical bubble of initial radius Ro containing non-condensable gas in a 
viscous compressible liquid. At time zero, the ambient pressure is increased instantaneously 
to PL∞ , and then the bubble beings to oscillate accompanied with heat conduction through the 
bubble wall. The problem is to investigate these physical effects on the bubble oscillations. 
Schematic diagram depicting a model is illustrated in Fig. A.  

In writing the basic equations, the following assumptions are made:  
(a) The bubble is spherically symmetric. (b) The effects of gravity and diffusion are 
negligible. (c) The evaporation and condensation at bubble wall are neglected. (d) The 
pressure inside the bubble is uniform throughout. (e) The non-condensable gas inside the 
bubble obeys the perfect-gas law. (f) The temperature of the gas is not uniform. (g) The 
thermal boundary layers developing both inside and outside the bubble are thin enough 
compared with the bubble radius. (h) The physical properties (viscosity, surface tension, 
thermal conductivity and density) of liquid and the gas are variable. The analysis based on the 
present assumptions will be the first step in an attempt to understand the behavior of the 
oscillation of cavitation bubble in the liquid.  

Under the above assumptions, the governing equations in the external region occupied 
by the liquid [10]: 
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In eq. (3) (Tait equation), B is 3047 bar and n=7.15 for water [11]  
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Fig. A. The bubble model 

 
2.2 The Equation of Radial Motion of the bubble 

In this section, we construct a mathematical formulation that enables us to study the 
radial motion of the bubble and the effects of heat conduction, shear viscosity, 
compressibility, and surface tension on the dynamical behavior.  
 Let  φ(r,t) be the velocity potential for the liquid. The sound speed in the liquid [10]. 
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 From the equations (1), (2), (3) and (4) Fujikawa and Akamatsu [10] obtained a partial 
differential equation concerning the velocity potential φ of  the liquid,  
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The boundary conditions are: 
(i) Continuity at the phase interface 
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(ii) The pressure equation in the liquid at the interface 
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(iii) At infinity  
∞→=φ ras0                …      (8) 

Now, consider the problem along the outgoing characteristic η(r,t) = constant     such 
that [10],  
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According to Fujikawa and Akamatsu method [10], 
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where η  is the initial time on outgoing characteristic and satisfies the condition    η = t  on  r 
= R. 

(a) First Perturbation Procedure. The first-order approximation 101 c
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 with the boundary conditions eqs. (6), (7) and (8). The appropriate solution can be written as 
follows: 
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On the other hand, from eq. (9), Fujikawa and Akamatsu [10] obtained, 
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An unknown function ƒ(η) in eq. (12) can be determined from the boundary condition 
eq. (6) by using eq. (13): 
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Therefore, the velocity potential (φ1) can be written as follows, 
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From equations (6), (7) and (15), we obtain the equation of motion of the bubble with 
the first-order correction of the liquid compressibility: 
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Raleigh equation (in 1917) is deduced from eq. (16) for special case when 0
c
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(b) Second Perturbation Method. Now, the right-hand side of eq. (5) is obtained from 

the first-order solution φ1, then the second-order correction  ϕ 2  is determine by  
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Under the boundary condition ϕ 2 = 0  at  و ∞→r we have 
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On the other hand, from eq. (9), we obtain 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

η

−
ηƒ

+
η−

+η=

)(R
1

r
1

c
)(

c
)(Rrt 2     …(20)   

An unknown function F(η) can be determined from the boundary condition     eq. (6) by 
using eq. (20),  
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Thus, we can obtain the solution of  φ  for the second-order approximation as follows:    
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     Finally, we obtain the equation of motion of the bubble with the second-order correction of 
the liquid compressibility: 
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2.3 The Temperature Profile both  Inside and Outside the Bubble 

The dynamics of a gas bubble in a liquid is strongly dependent on the pressure of the 
gas contained in it. In principle, this quantity must be determined from the solution of the 
energy equations inside and outside the bubble joined together by suitable boundary 
conditions at the bubble interface. 

The mathematical model for the bubble interior is described in detail by Kamath and 
Prosperetti [12]. The model accounts for the compressibility of the gas and heat transport by 
conduction inside the bubble. The main assumptions, discussed below, are those of perfect 
gas behavior and of spatial uniformity of the gas pressure. 

The internal pressure (Pg) is found by integrating [13]. 
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where γ is the ratio of the specific heats at the gas and kg is the gas thermal conductivity. The 
gas temperature field Tg (r, t) is obtained from the energy equation [14].  
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The complete mathematical formulation of the problem of spherical-bubble growth and 
collapse is needed a partial differential equation for the energy (or temperature) in the liquid 
[15],  
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Eq. (25) is used in the domain Rr0 ≤≤ , while eq. (27) is used in the domain ∞≤≤ rR . 

The two-temperature field obtained from eqs. (25) and (27) must be match at the bubble 
interface, where the continuity of heat flux [16]. 
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and of temperatures  

Tg (R , t) = TL
 (R,t)                … (29) 

where TL(R,t) = TLB 
The bubble is irradiated by an acoustic wave. The liquid pressure at infinity is [17]. 

tsinPPP m0L ω−=∞                         …(30)           

 where Pm is the pressure amplitude of the acoustic wave and ω is its angular frequency  
)f2( π=ω . 

To solve the bubble model, eqs. (25) and (27) are solved using finite difference method, 
and coupled with numerical solution of the bubble radius equation (eq. (23)) (see Appendix). 
In this model, the liquid is water and the gas in the bubble is air.   

 
3. Results and Discussion 

 Calculations are performed under the following conditions. The initial bubble radius is 
4.5 µm. The frequency and the amplitude of acoustic wave are 26.5 kHz and 1 bar, 
respectively. The ambient liquid temperature (To) and the ambient liquid pressure (Po) are 
chosen to be 20 oC and 1 bar, respectively. The specific heat of liquid water and the ratio of 
the specific heats of the gas (air) inside the bubble are chosen to be 4.2 kJ/kg.K and 1.4, 
respectively. Calculations start from the time t=0 µs with the initial conditions that: 

oLoLBgo PP,TTT,0R,RR ===== ∞
&  

 Results of the calculation under the above conditions are shown in Figs. (1∼6) for 
three acoustic cycles. The time axes (the horizontal axes) in the figures are the same. All the 
physical quantities of a bubble change with time periodically with the frequency of the 
acoustic field applied on the bubble. In Fig. 1, the bubble radius (R) is shown as a function of 
time. It is seen that the bubble expands when the acoustic pressure applied on the bubble is 
negative and that it collapses strongly when the acoustic pressure changes to positive. After 
the strongest collapse, it oscillates softly a few times with its own frequency. In Fig. 2, the 
pressure inside the bubble (Pg) is shown as a function of time with logarithmic vertical axis. It 
is seen that Pg increases up to 100 bar at the strongest collapse and that soft oscillations follow 
due to the soft oscillations of the bubble radius.  
 In Fig. 3, the temperature inside a bubble (Tg) is shown as a function of time with a 
linear vertical axis. It is seen that the expansion of the bubble is the isothermal process. The 
temperature becomes very high at collapses of the bubble. In Fig. 4, the liquid temperature at 
bubble wall (TLB) is shown as a function of time. It is seen that TLB is identical to the ambient 
liquid temperature (To) except for the strongest collapses. At the strongest collapse, the liquid 
temperature increases. The heated liquid layer is very thin. In Fig. 5, the bubble wall velocity 
( R& ) is shown as a function of time. 
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 In Fig. 6, the comparison is given between the calculated result and the experimental 
data [18] of radius-time curve for one acoustic cycle. The calculated result fits well with the 
experimental data. 
 

4. Conclusions 
 A new equation of a bubble radius is derived. A new model of bubble dynamics is 
constructed in which effects of thermal conduction both inside and outside the bubble are 
included. The energy equations of the gas (air) inside the bubble and the liquid near the 
bubble are solved numerically without assuming a profile of the gas or liquid temperatures. At 
the slow expansion of the bubble Tg and TLB are almost identical to the ambient liquid 
temperature during bubble oscillations except at strong collapses. At strong collapses, Tg and 
TLB are increased. TLB increases mainly due to the thermal conduction from the heated interior 
of the bubble. The assumption of the spatial uniformity of the temperature (Tg) in a bubble is 
no more realistic one at the strong collapse of the bubble. It is concluded that the effects of 
thermal conduction both inside and outside the bubble are considerable on bubble dynamics 
in acoustic field. The calculated results fit with the experimental data of radius time curve. It 
is concluded that the effect of thermal conduction stabilizes bubble oscillations.  
 
5. Nomenclature 
g : Refers to the gas in the bubble (air) 
L: Refers to the liquid (water) 
LB: Refers to the liquid at bubble wall 
o: Refers to the equilibrium value 

∞: Refers to the condition at a great  distance from the bubble 
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Symbol Definition Unit 
B Constant is used in eq. (3) bar 
c Sound speed in liquid at infinity m /s 
cp Heat capacity at constant pressure J /kg.K 
f Acoustic field frequency Hz 
ƒ Function is defined in eq. (12)  
F Function is defined in eq. (19)  
k Thermal conductivity W /m.K 
n Constant is used in eq. (3)  
P Pressure Pa 
Po Surrounding liquid pressure Pa 
Pm Acoustic pressure amplitude Pa 
PLR Liquid pressure at bubble wall Pa 
PL∞ Liquid pressure at infinity Pa 
r Radial distance from bubble center m 
R Bubble radius m 
R&  Bubble wall velocity m /s 
R&&  Second derivative of bubble radius m /s2 
Ro Initial bubble radius m 
t Time s 
T Temperature K 
To Ambient liquid temperature K 
u Velocity m/s 
γ Ratio of specific heat for gas  
µ Liquid viscosity N.s /m2 
ρ Liquid density kg /m3 
ρ∞ Ambient liquid density kg /m3 
σ Liquid surface tension N /m 

φ Velocity potential in liquid m2 /s 
ω Angular frequency rad /s 

 
 

Appendix   
Numerical Method 

The system to be solved consists of the radius equation, the pressure equation, and the 
temperature equations of the gas and liquid. The first two are ordinary differential equations, 
while the last two are a partial differential equation. 
 

(1) The Temperature Equation of    Air 
We begin by carring out a spatial discretization on this equation by introducing NN+1, 

equispaced points ( ) ζ∆−=ζ 1kkkk , kk = 1, 2, …, NN+1, with �1=0, �NN+1=1, and 

NN
1

=ζ∆ . This equation is:  
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The boundary conditions are, in terms of  � 
( ) 0t,1 ==ζτ                         …(A-3a)                                                                                 
( ) 0

t
t,0
=

∂
=ζτ∂                     …(A-3b)                                                                               

For Air, 
( ) ggg BTATk +=  

where Ag and Bg are in ref.[19]. 
 

( )∫ ′+′=τ
g

LB

T

T
gg TdBTA                    …(A-4a) 

( )[ ]{ } gg
2/1

gLB
2
gg ABA2TkT −τ+=                  

                                                      …(A-4b)  
We use the following approximation for the spatial differential operators: 
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Where the index i indicates evaluation at the node iζ . These two expressions are used for all 
internal nodes. 

For the first node, the appropriate expressions are: 
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while at the bubble wall 
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since 01NN =τ +  according to the equation of τ . The generic equation of this system has the 
form: 
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These expressions apply for 2 NNi ≤≤  except that, for i = NN the last term in the left-

hand side of eq.(A-10) vanishes since �NN+1=0. At the first spatial node (i =1) the coefficients 
take a somewhat different form due to (A-7) and (A-8). Specifically, one has 
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−= 22

g
1 R

tD6
C  

( ) tPDD gg
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11 ∆+τ= − &  
Once the system eq.(A-10) has been solved. For stability, we have used values of NN between 
100 and 200. 
 

(2) The Temperature Equation of Water 
This equation is 
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The energy equation (A-11) takes the form 
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The boundary conditions are, in terms of  � 
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For Water 

( ) LLL BTATk +=  
where AL and BL are in ref.[16]. 
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We use the following approximations for the spatial differential operators: 
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Where the index j indicates evaluation at the node jη  and 
MM

1
=η∆ ; where MM is 

number of nodes in liquid side. These two expressions are used for all internal nodes. 
For the first node, at the bubble wall, the expressions are: 
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while at ∞→r  
( ) 0t,r =∞=θ                       …(A-19)                                                                               

  
The generic equation of this system has the form: 

j1jjjj1jj FCBA =θ+θ+θ +−   …(A-20)                                                     
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These expressions apply for 1 < j < MM. Once the system (A-20) has been solved. We 

have used values of MM between 100 and 200. 
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Fig. 1. The bubble radius (R) as a function of time.
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Fig. 2. The pressure inside the bubble (Pg) as a function 
                  of time with logarithmic vertical axis.
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Fig. 3. The temperature at the bubble center as
                  a function of time.
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Fig. 4. The liquid temperature at the bubble wall( TLB)
                  as a function of time.
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Fig. 5. The bubble wall velocity (R) as a function of time.
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   Fig. 6. Comparison between the calculated result and the 
experimental data[18] of radius-time curve for acoustic cycle.
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