ON the number of double secants of (k, n)-arc in $\operatorname{PG}(2, q)$

M.A. Abdul Hussain, Department of Mathematics, College of Education, University of Basrah.

Abstract
In this paper we discuss the number of double secants of (k, n)-arc in $\operatorname{PG}(2, q)$ for $k<q+2 n-4$ and $k \geq q+2 n-4$.
\title{ }
\[\begin{aligned} \& جالمعة البصرة - كلية التربية قبم الوبد المبالضيلت
\& الخلاصـ \end{aligned} \]
في هذا البحث قم درلسة القولطع المزدوجة القوس - (k, $)$) في المستوي الاسقطلي PG(2,q) و منلثشة اعدادها عنما $k \geq q+2 n-4$ و $k<q+2 n-4$. k.

1. Introduction

A (k, n)-arc in a projective plane $\operatorname{PG}(2, q)$ is a set of k points at most n on every line. A
(k, n)-arc is called complete if it cannot be extended to a ($k+1, n$)-arc. If the order of the plane is q, then $k \leq q n-q+n$ with equality if and only if every line intersects the arc in 0 or n points. Arcs realizing the upper bound are called maximal arcs. Equality in the bound implies that $n \mid q$ or $n=q+1$. If $1<n<q$, then the maximal arc is called nontrivial. The only known examples of nontrivial maximal arcs in Desarguesian projective planes are hyperovals ($n=2$), and for $\mathrm{n}>2$ the Denniston (1969) arcs and an infinite family constructed by (Thas, 1974, 1980). The Denniston arcs exist for all $\operatorname{pair}(n, q)=\left(2^{\mathrm{a}}, 2^{\mathrm{b}}\right), 0<\mathrm{a}<\mathrm{b}$.

The maximal arcs do not exist in Desarguesian planes of odd order (Ball, Blokhuis and Mazzocca ,1997). The case ($n, q)=(3,9)$ was proved by (Cossu, 1961) and (Thas, 1975) proved the cases $(n, q)=\left(3,3^{\mathrm{h}}\right)$. A general proof the first appeared in (Ball, Blokhuis and Mazzocca ,1997), although a more accessible version of the proof appears in (Ball and Bolkhuis ,1998) and (Hirschfeld ,1997).

A ($k, 2$)-arc is called for simply k-arc. An irreducible conic in $\mathrm{PG}(2, q)$ is $(q+1)$ arc. A line l in $\operatorname{PG}(2, q)$ is called i-secant of a (k, n)-arc K if $|l \cap \mathrm{~K}|=i$. The point $\mathrm{Q} \in \operatorname{PG}(2, \mathrm{q}) \mid \mathrm{K}$
is of index zero, if there is no n-secant passes through it.
In this paper we show that, if K containing a conic and $k<q+2 n-4$ the number of double secants is exactly one and for $k \geq q+2 n-4$ the number of double secants is at least one or not. Also, we show that for q odd there is a complete $(k, m)-\operatorname{arc}, k=(n-$ 1) $(q+1) / 2+n+(m-n)(q+n), m \geq n, n=(q+3) / 2$.

2. Basic result of double secants

In this section, we will give some result on the double secants and their numbers.
Suppose that K is a (k, n)-arc in $\operatorname{PG}(2, q)$ containing irreducible conic. An $n-$ secant of K which is a secant (2 -secant) of a conic will be called a double secant of K.

It is clear that, if $n=2$ then the number of double secants is exactly $k(k-1) / 2$.
Lemma 2.1 If a ($k, n>3$)-arc K containing a conic and $k=q+n-1$, then every n-secant of K is a double secant and the number of double secants is exactly one.

Proof: Let l be an n-secant of K. If l is not a double secant, then l is either a tangent or an exterior line of a conic. If l is a tangent, then it contains a point of a conic and $n-1$ points not on the conic, hence $k=q+1+n-1=q+n$. If l is an exterior line, then l contains n points not on the conic and hence $k=q+n+1$. In both cases, we have a contradiction. So l must be a double secant. Suppose that there are two double secants of K, then every double secant must be contained $n-2$ points not on the conic and hence the number of points on K is $q+2 n-3$ or $q+2 n-4$ which is a contradiction. \square

Lemma 2.2 If a ($k, n>4$) -arc K containing a conic and $k=q+n$, then every n-secant of K is a double secant or tangent of a conic and the number of double secants is exactly one.

Proof: Since K containing a conic, then the points of K can be partitioned into $q+1$ points of a conic and $n-1$ points not on the conic. Suppose that l is an n-secant of K , then l either contained $n-2$ points not on the conic and two points of the conic, in this case l is a double secant of K or l contains $n-1$ points not on the conic and one point of the conic, therefore l is a tangent. Hence the number of double secants is exactly one.

Clearly, when $k<q+n+1$, then every n-secant is a double secant or tangent of a conic and when $k \geq q+n+1$, then every n-secant is a double secant, tangent or an exterior line of a conic. The following theorem is a generalized of lemmas (2.1) and (2.2).
Theorem 2.1 If K is a (k, n)-arc in $\operatorname{PG}(2, q)$ containing a conic, then
(i) If $k<q+2 n-4$, then the number of double secants is exactly one,
(ii) If $k \geq q+2 n-4$, then the number of double secants is at least one or not.

Proof: (i) Suppose that, there are two double secants of K, then every double secant must be contained $n-2$ points not on the conic. So that the number of points on K is at least $q+1+2 n-5=q+2 n-4$ which is a contradiction.
(ii) Since K containing a conic, then the points of K can be partitioned into $q+1$ points of the conic and at least $2 n-5$ points not on the conic. Suppose that l is an n-secant of K , if l is a double secant of K , then l must be contained $n-2$ points not on the conic and two points of the conic and hence every other secant of conic will be contained at least $n-3$ points not on the conic. If l is a tangent of the conic, then every secant of the conic will be contained at least $n-4$ points not on the conic, if every secant of the conic contains at most $n-3$ points not on the conic, then there is no double secant of K . Finally, if l is an exterior line of the conic then every secant of the conic will be contained at least $n-5$ points not on the conic, if every secant of the conic contains at most $n-4$ points not on the conic, then there is no double secant.

The following theorem is the main result of this paper.
Theorem 2.2 If K is a (k, n)-arc in $\mathrm{PG}(2, q)$ containing a conic, q is odd and $\mathrm{P}_{1}, \mathrm{P}_{2} \in \mathrm{~K}$ be two points not on the conic. Let l_{i} and m_{i} be the double secants of K such that $\bigcap_{0} l_{i}=\mathrm{P}_{1}$ and $\bigcap_{0} m_{i}=\mathrm{P}_{2},(i=1, \ldots,(q+1) / 2)$ and let t_{i} be an n-secants of K such that one of them is a double secant of $\mathrm{K},(i=1, \ldots, n-1)$ and the intersection of any two of l_{i}, m_{j} and t_{r} is a point of $\mathrm{K},(i, j=1, \ldots,(q+1) / 2),(r=1, \ldots, n-1)$, then
(i) The number of m-secants is at least $q+n$,
(ii) $\quad k=(n-1)(q+1) / 2+n+(m-n)(q+n)$ is a complete (k, m)-arc, where $m \geq n$, $n=(q+3) / 2$.

Proof: It is easy to show (i).
(ii) Suppose that K is not complete, then there is a point $\mathrm{Q} \in \mathrm{PG}(2, q) \mid \mathrm{K}$ of index zero such that K contained in $\mathrm{K}_{1}=\mathrm{K} \bigcup\{\mathrm{Q}\}$. Counting the points of K_{1}, we have $k_{1}=k+1=$
$(n-1)(q+1) / 2+n+(m-n)(q+n)+1$. Since the number of m-secants is $q+n$ and the intersection of any two m-secants is a point of K , then counting the points of $\operatorname{PG}(2, q) \mid$ K_{1}, we have

$$
\begin{aligned}
& t=(q+1-m)(q+n), \text { so } \\
& \begin{aligned}
t+k_{1} & =(q+n)(q+1-m)+(n-1)(q+1) / 2+n+(m-n)(q+n)+1 \\
& =\left(2 q^{2}+q+n q+5 n-2 n^{2}+1\right) / 2=\left(4 q^{2}+4 q+8\right) / 4=q^{2}+q+2 .
\end{aligned}
\end{aligned}
$$

Which is impossible, so K is complete
Now, we refer to (Hameed and Abdul Hussain ,1999) and determine the number of interior and exterior points on or not on the (k, m)-arc K when $m=n=(q+3) / 2$.

The following system was suggested in (Hameed and Abdul Hussain, 1999),

$$
\begin{align*}
& x+y=q^{2}+q+1-k-r, \\
& x_{1}+y_{1}=k-t, \\
& x+x_{1}=q(q+1) / 2 \tag{2.1}\\
& y+y_{1}=q(q-1) / 2 \\
& x, x_{1}, y, y_{1} \geq 0 .
\end{align*}
$$

In the case of theorem (2.2) the number of points on the $(k,(q+3) / 2)$-arc is $k=\left(q^{2}+4 q+7\right) / 4$ and $r=0, t=q+1$. If we compare the value of k with the bounds of k in (Hameed and Abdul Hussain, 1999) we find that the cases $(1,4,5,7,9)$ does not occurs, so the remaining cases are satisfying and give the solution of system (2.1).
Corollary 2.1 If a $(k,(q+3) / 2)$-arc, $k=\left(q^{2}+4 q+7\right) / 4$ containing a conic, then the solution of system (2.1) is of one of the cases,
(1) $x>x_{1}, y>y_{1}$,
(2) $x>x_{1}, y<y_{1}$,
(3) $x=x_{1}, y>y_{1}$,
(4) $x>x_{1}, y=y_{1}$.

3. Small planes

In this section, we give two examples of the planes $\operatorname{PG}(2,3)$ and $\operatorname{PG}(2,5)$.
Example 3.1 In $\operatorname{PG}(2,3)$ a $(7,3)$-arc is complete and represent the Fano plane where the 6 double secant are the lines of Fano plane minus one.

Example 3.2 The set of points,
$k=\{$
$(1,0,0),(0,1,0),(0,0,1),(1,0,1),(1,1,1),(1,2,4),(1,4,4),(1,4,2),(1,3,3),(1,2,0),(0,1,2),(1,0,4$),
$(1,4,1)\}$, form a complete $(13,4)$-arc in $\operatorname{PG}(2,5)$ with secant distribution $t_{0}=0, t_{1}=6$, $t_{2}=12, t_{3}=4, t_{4}=9$.

A 6-arc in $\operatorname{PG}(2,5)$ is a conic, so the set of points $\mathrm{C}=\{(1,0,0),(0,1,0),(0,0,1),(1,1,1),(1,2,4)$,
$(1,4,2)\}$, form a conic in $\operatorname{PG}(2,5)$ which is a subset of K . The required double secants are given in table (3.1).

Table (3.1)

$l_{1}: x+4 z=0$,	$l_{3}: y=0$,	$l_{5}: 4 y+z=0$,	$l_{7}: 3 x+4 y+3 z=0$.
$l_{2}: 3 x+2 y+2 z=0$,	$l_{4}: x+z=0$,	$l_{6}: \quad x+y=0$,	

The intersection of the double secants l_{1}, l_{2} and l_{3} is the point $(1,0,1)$ and the intersection of the double secants l_{4}, l_{5} and l_{6} is the point $(1,4,4)$. The number of 4 secant is 9 . The set $\mathrm{K} \mid \mathrm{C}$ is the set of interior and exterior points of conic on K and the solution of system (2.1) is $x=12, y=6, x_{1}=3, y_{1}=4$.

References:

- Ball S., Blokhuis A. and Mazzocca F.,(1997) " Maximal arcs in Desarguesian planes of odd order do not exist", combinatorica 17, 31-41.
- Ball S. and Bolkhuis A.,(1998)" An easer proof of the maximal arcs conjecture", proc. Amer. Math. Soc. 126(11), 3377-3380.
- Cossu A., (1961)" Su alcune proprieta dei $\{\mathrm{k}, \mathrm{n}\}$-archi di un piano proiettivo sopra un corpo finito, Rend. Mat. Appl. 20 , 271-277.
- Denniston RH.F., (1969)"Some maximal arcs in finite projective planes", J. Combin. Theory 6, 317-319.
- Hameed F.K. and Abdul-Hussain M.A.,(1999) " On the irreducible conic in PG(2,q)", J. Basrah Researches Vol. 18, 102-110.
- Hirschfeld J.W.P.,(1997) " Projective Geometries over finite fields", 2nd edn, clarendon press, oxford.
- Thas J.A., (1974)" Construction of maximal arcs and partial geometries", Geom. Dedicata 3, 61-64.
- Thas J.A., (1975)" Some results concerning $\{(\mathrm{q}+1)(\mathrm{n}-1), \mathrm{n}\}-\operatorname{arcs}$ and $\{(\mathrm{q}+1)(\mathrm{n}-$ $1)+1, \mathrm{n}\}$-arcs in finite projective planes of order q", J. Combin. Theory Ser. A 19, 228-232.
- Thas J.A., (1980)" Construction of maximal arcs and dual ovals in translation planes", Europ. J. Combin. 1, 189-192.

