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Abstract

We describe an artificial Ant Colony Optimization (ACO) capable of solving the graph
coloring problem. Ants of the artificial colony are able to generate successively shorter feasible
tours by using information accumulated in the form of pheromone trail deposited of the edge of
the colonies ant. Computer simulations demonstrate that the artificial ant colony is capable of
generating good solutions. It is the successful use natural metaphor to design an optimization
algorithm. We generated randomly 20 graphs of 100 nodes, the performance is a best than any
other available heuristic techniques such that genetic algorithm and others, so the average of
coloring of a graphs is less than any other algorithms. We achieve the goal the goal of the

problem
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1- INTRODUCTION

Ant algorithm were inspired the observation of real ant colonies™> Ants are social insects, that
is, insects that live in colonies and where behavior is directed more to the survival of the
colony as a whole than to that of single individual component of the colony. An important and
foraging behavior and how ants can find the shortest path between food sources to the nest and
vice versa, ants deposit on the ground substance called pheromone, forming in this' way
pheromone trail. The pheromone trial allows the ants to find their back to the food source [
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Dorigo, 1992].

Real ants are capable of finding the shortest path from a food source to the nest without using
visual cues. Also, they are capable of adapting to changes in the environment, for example,
finding a new shortest path once the old one, is no longer feasible due to a new obstacle.
Consider Fig. 1A: ants are moving on a straight line that connects a food source to their nest. It
is well known that the primary means for ants to form and maintain the line is a pheromone
trail. Ants deposit certain amount of pheromone while walking, and each ant probabilistically
prefers to follow a direction rich in pheromone. This elementary behavior of real ants can be
used to explain how they can find the shortest path that reconnects a broken line after the
sudden appearance of an unexpected obstacle has interrupted the initial path (Fig. 1B). In fact,
once the obstacle has appeared, those ants which are just in front of the obstacle cannot
continue to follow the pheromone trail and therefore they have to choose between turning right
or left. In this situation we can expect half the ants to choose to turn right and the other half to
turn left. A very similar situation can be found on the other side of the obstacle (Fig. 1 C). it is
interesting to note that those ants which choose, by chance, the shorter path around the obstacle
will more rapidly reconstitute the interrupted pheromone trail compared, the those which
choose the longer path. Thus, the shorter path will receive a greater amount of pheromone per
time unit and in turn a larger number of ants will choose the shorter path. Due to this positive
feedback (autocatalytic) process, all the ants will rapidly choose the shorter path (Fig. 1D)
[Dorigo, 1993). The most interesting aspect of this autocatalytic process is that finding the
shortest path around the obstacle seems to be an emergent property of the interaction between
the obstacle shape and ants distributed

2- Related Work

ACO algorithms show similarities with some optimization, learning and simulation
approaches like heuristic graph search. Monte Carlo simulation, neural networks, and
evolutionary computation. These similarities are briefly discussed in the following.

Heuristic graph search: In ACO algorithms each ant performs an heuristic graph search in
the space of the components of a solution: ants take biased probabilistic decisions to chose the
next component to move to, where the bias is given by an heuristic evaluation function which
favors components which are perceived as more promising.

Monte Carlo simulation: ACO algorithms can be interpreted as parallel replicated Monte
Carlo systems. Monte Carlo systems are general stochastic simulation systems, that is,
techniques performing repeated sampling experiments on the model of the system under
consideration by making use of stochastic component in the state sapling and \ or transition
rules. Analogously, in ACO algorithms the ants sample the problems solution space by
repeatedly applying a stochastic decision policy until a feasible solution of the considered
problem is built. Each ant "experiment" allows to adaptively modify the local statistical
knowledge on the problem structure (i.e., the pheromone trails).

Neural networks: Ant colonies, being composed of numerous concurrently and locally
interacting units, can be seen as "connectionist" systems [ Bishop, 1995, Hertz, 1991]. From a
structural point of view, the parallel between the ACO meta-heuristic and a generic neural
network is obtained by putting each state I visited by ants in correspondence with a neuron |,
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and the problem specific neighborhood structure of state I in correspondence with the set of
synaptic-like probagating through the neural network and modifying the strength of the
synaptic-like inter-neuron connections. Signals (ants) are locally probagated by means of a
stochastic transfer function and the more a synapse is used, the more the connection between
its two end-neurons is reinforced.

Evolutionary computation: there are some general similarities between the ACO meta-
heuristic and evolutionary computation (EC). Both approaches use a population of individuals
which represent problem solutions, and in both approaches the knowledge about the problem
collected by the population is used to stochastically generate a new population of individuals.
A main difference is that in EC algorithms all the knowledge about the problem is contained
in the current population, while in ACO a memory of past performance is maintained under
the form of pheromone trails [ Fogel, 1995, Gold berg, 1989].

behavior. Although all ants move at approximately the same speed and deposit a pheromone
trail approximately the same rate, it is a fact that it takes longer to counter obstacles on their
longer side on their shorter side which makes the pheromone trail accumulate quicker on the
shorter side. It is the ants preference for higher pheromone trail levels which makes this
accumulation still quicker on the shorter path [Dorigo, 1999].
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Fig.d. (A1 Real ants lollow a path between nest and food source. (B) An abstacle appears on the path
choose whether to turn kel o Meht with equal probability. (€ Pheromone is deposited mor quickly an the
shorter path (DAl ants have chosen the shorter path
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In general a Graph Coloring Problem (GCP), given a graph G= (N, E), N is the number of nodes,
E is vertices, X - coloring of G is a mapping C: N~[1, ... ,X], such that C(i) = CU) if(I1,j)E E. the
GCP is the problem of finding a coloring of the graph G so that the number X of colors used in
minimum, that mean the objective is to use the fewest numbers of colors possible, so we describe
an ant colony optimization to solve this problem [ Dorigo, 1999].

3- GRAPH COLORING PROBLEM(7,S)

Let us say you are asked to help out a cartographer or a map-maker with her map-coloring
problem. it wants to color the countries on a map. It doesn't matter which color a country is
assigned, as long as its color is different from that of all bordering countries. If two countries
meet only at a single point, they do not count as sharing a border and hence can be made the
same color. The cartographer is poor and can't afford many crayons, so the idea is to use as few
colors as possible. In 1852 Francis Guthrie, while trying to color the map of countries of
England, noticed that four colors suffced. Subsequently, he conjectured that 4 colors are
enough to color any map. Successive efforts made to prove Guthrie's 4-color conjecture led to
the development of much of graph theory.

some of which are connected by lines! called edges. A vertex in a graph models some physical
entity or abstract concept. An edge, which joins exactly two vertices, represents the
relationship or association between the respective entities or concepts. The map of countries
mentioned above can, for instance, be converted into an equivalent graph by letting each
country be a vertex and connecting two vertices by an edge if the corresponding countries
share a border, where sharing a border is as species above. We introduce the graph coloring
problem, a classical problem in graph theory, using this informal definition of graph. In its
simplest form, the graph coloring problem is to assign labels (called colors) to the vertices of a
graph in such a way that no two vertices connected by an edge share the same label (color).
The objective is to use the fewest number of colors possible. The graph coloring problem has a
central role In computer science. It Models many significant real-world problems, or arises as
part of a solution for other important problems

3-1 Graph Theoretic Definitions(8)

The graph coloring problem A vertex coloring of a graph, or simply Coloring for short, is an
assignment of colors to the vertices such that no two adjacent vertices are assigned the same
color. Alternatively, a coloring is a partition of the vertex set into a collection of vertex-disjoint
independent sets. Each independent set in such a partition is called a color class. The graph coloring
problem is to find a vertex coloring for a graph using the minimum number of colors possible.
A X-coloring of a graph G is a coloring of G using X colors. The minimum possible value for
X is called the chromatic number of G. denoted as X(G)A coloring with the fewest possible
number of colors (a X-coloring~ is called an optimal coloring ..

3-2 Graph Theoretic Notation:

A graph G is a pair (Y.E) of a set of vertices V and a set of edges E. The edges are unordered
pairs of the form (i, j) where 1. j E Y . Two vertices i and j are said to be adjacent if and
only if (i: j \ E E and Non-adjacent otherwise. And can show some examples for graph coloring
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problem in follow.

L O

Fig(2)Example 1: 2-coloring of graph

Q.

- ~

B,

Fig( 3): Example 2: 2-coloring of a graph1 and 3-Coloringof graph2

Fig( 4): Example 3: 4-coloring of a graph.(Colors = a, b, c.d)

Fig (5) Example 4: 4-coloring of a graph
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Fig (6) Example 5: A -I-color

3-3 APPLICA TIONS OF GRAPH COLORING

(Coleman, More, 1983)

1. Transmitters 311d channel assignment

2. Fast register assignment

3. final exam scheduling
Vertices = classroom sections (over all courses) Two sections .tre
adjacent if 3 student in both

4. cartography

5.

3-4 ALGORITHM FOR GRAPH COLORI G PROBLE

The algorithm for graph coloring problem can show in figure (7) (David ,2003).

Void color(graph G)
A
Computer array XS=V(X)
for (T=2"-1;T>0;T--)
{if (T<S AND x[s\T]=1 AND XITI=X][S]-])
{color all vertices in S\T with the same new color:

}

Fig (7) algorithm for graph coloring problem
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3- Ant Colony Optimization (ACO)(Bullnheimer,1998)

The basic operation mode of an ACO algorithm is the following in each iteration , a population of ants
gradually and concurrently build solution to he problem according to transition rule which depends on
the Heuristic and pheromone trail information available .Ants can realease pheromone while building
the solutions(on line step by step pheromone trail updating ).once. they have been generated and
evaluated. on line delayed pheromone trail updating) positively reinforcing the edges traveled with an
amount of pheromone directly dependent on the solution quality or both. Then all the pheromone trail
suffer from evaporation. Moreover some .laernon actions can be performed from global perspective.
such a- observing the quality of all the solution generated and updating an additional Pheromone trail
only in some of them or applying local search procedure to the solutions generated by the ant and
depositing additional Pheromone. in both cases, the daemon replace he online delayed Pheromone
updating and the process is called Offline Pheromone trail updating.

Implement the algorithm ACS(Ant colon | s stem com on follows:-

*Transition rule .The destination node S is chosen as follows :

| arg max 1[7 J .[f] J } . ifqaql
< --(1)

,otherwise

with q being a random value uniformly in[O, 1], O E [0, I] being a parameter defining [he balance
explotaition-biased exploration .and with S being arandom node selected according to the probability
distribution given by the AS (Alit System) transition rule:-
Transition rule (AS): The destination node S for an ant K Located in node r is randomly chosen
according to the Following probability distribution :-

otherwise

with Trs being the pheromone trail of edge(r,s), '7,. being the heuristic value ,jk(r) being the set of
nodes that remain to be visited by ant k,and
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With a and B being parameter weighting the relative importance of pheromone trail and

heuristic information.
"Online step-by-step updating rule :Each time an ant travel all edge .it is made in the way.

/ v { ] _If J !

in this research AF. =F

"Offline pheromone updating :in this case ,the deposit of pheromone is done by the daemone
only considering a single ant the one who generated the global best solution ,Sglobal-best:

AT = _; JC(S, s il kr.s)e 8. . . =43)

eabacef

| 0. fJf.‘Ij[’;".l AT

There are many different ways to translate the above principle into a computational system to
solve graph coloring problem in our colony system (/ACS) an artificial an artificial ant k in
node r choose the node s to move to among those which do not belong to its working memory
Ik by applying the following ACO algorithm for graph coloring problem.

5-ACO ALGORITHM FOR GRAPH COLORING PROBLEM
we implement | he algorithm on the graph coloring problem ,we must acquire the main condition that
neighboring nodes not is at the same coloring. we mean that Ik contains all the neighboring of the ant k.
-Give an initial pheromone value .To, to each edge. 2-for k= | to m do
(in parallel) {k is the no. of nodes}

*place ant ~ in an initial node r g.{r is "the color of the graph} * include I' in
Lk(tabue list of ant k keeping a record of he visited nodes).
* while (am k not in target node) do
-select the next node to visit ,S ~ Lk according to transition rule.
include S in Lk. { S is the another color of the graph}
optional :online step-by-step updating of the
pheromone trail Trs of the traveled edge
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3- optional: for k>1to m do
"Evaluate the solution generated by ant k.Sr.
*for each edge(r.s)« Si..apply the online delayed
pheromone trail updating rule. 4-
Evaporate pheromone.
5- optional. perform the daemon actions.
6-it~stop condition is satisfied) then give the global best solution found as output and
stop ,Else go to step 2.

6-RESULTS AND PARAMETERS

the parameters considered here are those the effect dire' I.' he computation of the
probability of the numbers of colors in the graph:
-a :the relative importance of trail, a 20;

- /3 :the relative importance of visibility. /3 20;

- P :trail persistence. 0 s; p s I (1- p can be interpreted as trail

evaporation);

-Q:a constant related to the quantity of trail laid b (ant .

The number m of ants has always b n

nodes in the graph.

On 10 randomly generated graphs 0 f 100 nodes (vertices). Wetested several values for
each parameters in order to achieve some statistical information about the
average evolution, the default value of the parameters was (a=1./3 =1.p=0.5.(2 =
100 ),in each experiment only one of the values was changed ,expect for a and /3
,which have been tested over different sets values, the values tested over
different sets values , the values tested were a E {0.0.5.1.~.5:. /3 E{0.1.2.5}.
p E :0.3.0.5.0.7.0.9,0.999 }andQ E : 1.1 00 .1000we run the algorithm ten times
using the best parameters set .results are shown in table I .parameter Q is not
shown because its influence to be legible

B st parameters Average result Best result

ACO a=18=5p=099; | 15.05 14.05

SO, the future works can be used to the hybrid techniques between genetic and ant algorithm to
achieve the best optimization
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7-CONCLUSION

The key to the a, application of ACO to the graph coloring problem is to identity an
appropriate representation for the problem (to be represented as a graph searched by many
artificial Ants),and an appropriate' heuristic that defines of the vertices in the ants medicated by
the pheromone trail deposited on the graph edges will generate good , and often optimal
problem solutions. We applied ACO to the graph to be colored

We. saw that algorithmic must trail and error to achieve the best parameters for the
(GCP),This mean that we can't access the best solution at first application (If ACO , we take
time ,so in the future work .the best parameters by using GA(genetic algorithm) then
application of ACO .
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