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Abstract 
           Dynamics of single-mode laser governing by the modified Lorenz-Haken 
equations are analyzed. Different types of nonlinear dynamical behaviors ( sequences 
of bifurcation and chaos ) have been observed. The parameters controlling the laser 
dynamics are varied over a wide range of laser operation conditions. 

  :الخلاصة
نماذج .تم تحليل التصرفات الديناميكية لليزر النمط الأحادي الذي تتحكم به معادلات لورنس المطورة            

تم الحصول عليهـا  ) سلاسل متعاقبة من التفرع و الفوضى ( مختلفة للتصرفات الديناميكية اللاخطية   

لتحكم للتصرفات الديناميكية لليزر على مدى واسع لظروف        لقد تم ذلك بتغيير معاملات ا     .و مشاهدتها 

 .اشتغال الليزر) حالات ( 
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Introduction  
            Since Haken ( Haken 1975 ) showed the isomorphism between the 
equations describing a signal-mode homogeneously broadened resonantly 
tuned laser and the Lorenz equations for convective fluid dynamics  ( 
Lorenz 1963 ), new regimes of the control space become accessible when 
lasers are the object under study. In fact, Haken ( Haken 1975 ) used the 
isomorphism to demonstrate the correspondence between the onset of 
undamped pulsations and chaotic behavior in laser with lossy resonators ( 
or with the so-called bad-cavity ) and the onset of pulsation and chaotic 
behavior of convection and trubulence in heated fluids system with high 
Prandtl number      ( Lorenz 1963 ). The bad-cavity condition implies that 
the filed decay rate ( k ) must exceed the sum of the population inversion 
decay rate ( γ  ) and the polarization decay rate ( ⊥γ  ) ( Weiss and 
Klische 1984 ). In most of the laser systems the three decay rates are 
widely different from one another, and the available lasers are generally 
classified into three categories ( or classes ) depending on the values of 
the decay parameters ( Arecchi , et al. 1984, Arecchi 1987, Arecchi 1988 
). These are: class A          ( k>>γ≈γ⊥ ), class B ( γ>>>γ⊥ k ), and 
class C ( k≈γ≈γ ⊥ ).            
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        However, the onset of instabilities and chaos in these laser systems 
requires not only a bad-cavity condition but also a gain considerably 
above lasing threshold. Attention has been given identifying lasers that 
use transitions such that the resonator and the medium decay rates can 
satisfy the bad-cavity condition and the high gain. Perhaps, the optically 
pumped NH3 far-infrared laser is the most promising candidates in this 
regard ( Harrison and Al-Saidi 1985, Harrison, et al. 1985. Al-Saidi and 
Mahdi, 2005 ). The signal-mode semiconductor laser is also a good 
example of laser that satisfies the condition for optical instabilities and 
can easily display different types of pulsations and chaotic behaviors ( 
Yao et al. 1995, Van Tarwijk and Agrawal 1998). 
               The originally ( classical ) Lorenz-Haken equations are based on 
a two-level homogeneously broadened laser system with a symmetric 
Lorentzain gain profile. In order to investigate the effects of the 
asymmetry of the gain profile and inhomogeneous broadening on the 
dynamics of the laser system, two additional parameters are introduced 
into these equations. The resulting generalized Lorenz-Haken equations 
were used to study the dynamics of the signal-mode semiconductor laser        
( Yao, et al. 1995 ).    
               The purpose of this paper is to investigate the effects of the 
additional parameters (α  and ө ) on the dynamical behaviors of the laser 
system based on the generalized Lorenz-Haken based on the generalized 
Lorenz-Haken equations ( Weiss and Vilaseca 1991 ).  
 
Theoretical Considerations  
                The generalized Lorenz-Haken equations can be written in the 
following form: 
 

)( yxx −σ−=&  
 

[ ]xzri1yi1y ))(()( −θ−−α+−=&  
 

)Re( *yxbzz +−=&  
 
Where ⊥⊥ γγ=γ=σ /,/ bk  , and r is the pump parameter, and the 
variables x, y, z are proportional to the amplitudes of the electric field, 
atomic polarization, and population inversion, respectively with 
corresponding decay rates k , ⊥γ , and  γ . 
              The two parameters α  and ө are new controlling parameters, 
where a controls the coupling between the amplified and the phase 
variations ( sometimes called line width enhancement factor, which is 

( 1 ) 

( 2 ) 

( 3 ) 
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related to the medium refractive index) and ө controls the inhomogeneous 
broadening of the resonance of the resonance. It should be noticed that 
when we set α = ө = 0 in Eq. ( 2 ), the generalized Lorenz-Haken 
equations reduce to the well-known standard ( or classical ) Lorenz-
Haken equations ( H. Haken, 1975, R. Grahm, 1976 ). Re and ( *) in Eq. 
(3) are denoting the real part and the complex conjugate, respectively. 
 
 
Results and Discussion 
          For studying the dynamical behaviors of the laser system that satisfy 
the bad-cavity condition ( 1b +>σ ), we have set         σ= 3, b = 1. Also, in 
order to achieve the instability threshold     ( namely, the pump value at 
which the laser output becomes unstable ), we have taken the pump 
parameter value r = 21 ( i.e., 21 times the lasing threshold for laser system ). 
We have numerically solved the Lorenz-Haken equations ( 1 ) – ( 3 ) for 
selected values of the control parameters a and ө using the standard fourth-
order Runge-Kutta method. 
              Fig.1 illustrates the effect of variation the parameter a on the 
dynamical behavior of the laser system, when ө = 0. the value of a changed 
over the selected range α = 0.20 – 0.05. The left column represents the laser 
output intensity ( 2x ) as a function of times, while the right column 

represents the phase-space portrait ( the laser output intensity ( 2x ) versus 
the population inversion (z) corresponding to the time - series in the left 
column. We notice that our laser systems persisting to follow the well 
known universal route to chaos, the so-called period - doubling route ( or 
Feigenbaum scenario ) ( Feigenbaum, 1979, Cvitanovic 1984 ). In Fig.1 ( a 
), we note that the laser system exhibits stable periodic pulsations of period 
one, and the corresponding phase - space trajectory is a single limit cycle as 
shown in Fig.1 ( b ). This behavior changes to pulsations with period two 
when α  reduces to α = 0.1 ( Fig.1 (c) ) and this leads to a system trajectory 
with two cycles, as shown in Fig.1 (d) . As α  is reduced further (α  = 0.080, 
0.076, 0.050 ), more bifurcations appear these are period - four pulsations, 
period - eight pulsations ( Fig.1 (e) and (g) and the sequence transitions end 
by appearing of chaotic state as shown in Fig.1   ( I ). The corresponding 
attractor trajectories ( orbits ) are shown in Fig.1. ( f ), ( h ), and ( j ) , 
respectively, where four cycles, eight cycle, and many cycles pattern 
produce cause the system to become chaotic. It is clearly seen that when α  
= 0.050, the laser system displays irregular pulsations which are the nature 
of the chaotic behavior. 
        In order to have more information about our laser system, we plotted 
the imaginary part of the laser field amplitude ( Im (x) ) versus the real part 
of the laser filed amplitude ( Re(x) ) and also we have plotted the power ( or 
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intensity ) spectrum corresponding to the time-series. These are shown in 
Fig.2, where the left column represents the laser filed intensity picture, 
while the right column represents the power spectrum. It is clearly evident 
that when the system exhibits stable periodic pulsations, single frequency ( 
single peak ) appears in the power spectrum plot ( as we can see in Fig.2.( b 
) ), and two distinguished frequencies appear when the laser output is a 
period-two pulsations ( as shown in Fig.2.( d) ). Sequence of additional 
frequency peaks appear as the doubling of the period of the pulsations train 
continues, as shown in Fig.2 ( f ) and ( h ) until the system reaches the 
chaotic state as in Figs.2 ( j ), where the spectrum becomes a broad band 
which is the main characteristic of the chaotic behavior. 
           To provide clear picture of the dynamic of laser system and learn 
more from the instabilities of our present work we have examined the 
effects of varying the control parameters ө, when α  sets to zero (α  = 0 ). 
We have varied ө over the selected range ө = 0.15 – 0.03, we have obtained 
qualitatively similar behaviors ( results ) to the case of varying α  ( i.e. Fig.1 
) but with different parameter values. Fig.3 and Fig.4 illustrate the results 
obtained from this investigation. 
          When we tried to vary the values of the parameters α  and ө by the 
same amount ( i.e., α = ө ), we obtained similar results to the preceding 
ones. The path leading to chaos in the laser system again follows 
Feigenbaum's scenario. The representative examples for such behaviors 
when α  = ө ( = 2.0-0.1 ) are illustrated in Figs. ( 5 ) and ( 6 ). The results 
obtained give an indication that our system transfers into chaotic attractor             
( chaos ) regime only via a period - doubling sequence ( route ). It is 
interesting to note that our system can be nicely controlled over a range of 
laser operating conditions simply ( just ) by decreasing ( or increasing ) the 
values of the system control parameters.   
Conclusion 
          We have investigated the effect of the main control parameters on 
the dynamical features of the modified Lorenz-Haken laser system. We 
have observed period - doubling bifurcations and chaos. The results 
obtained using this simple mathematical model established the suitability 
of the Lorenz-Haken system for studying the dynamical behavior of the 
laser system, because of the variations of the main system control 
parameters capable to achieve a controllable instabilities in the laser 
system.  
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Fig.1. Left Column : Time-series ( normalized laser field intensity ( 2x ) versus  
          normalized time ) at r = 21, σ = 3  ,b = 1 , and ө = 0  For different values of α . 
          Right column : The corresponding Phase-space portrait (laser field intensity  
          versus population inversion ). 
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Fig.2. Left column : Imaginary part of the laser field amplitude (Im(x)) as a function  
          of the real part of laser field amplitude ( Re (x) ) corresponding to Fig.1. 
           Right column : Power spectra ( normalized laser field intensity versus  
           normalized frequency ) corresponding to the time-series plots in Fig.l. 
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Fig.3. Same as Fig.1., but with α  = 0 for different values of ө. 
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Fig.4. Same as Fig.2., but corresponding to the Fig.3. 
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Fig.5. Same as Fig.1., but for different values of α  = ө. 
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Fig.6. Same as Fig.2., but corresponding to Fig.5. 


